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ABSTRACT Functional proteins must fold with some minimal stability to a structure that can perform a biochemical task. Here
we use a simple model to investigate the relationship between the stability requirement and the capacity of a protein to evolve
the function of binding to a ligand. Although our model contains no built-in tradeoff between stability and function, proteins
evolved function more efficiently when the stability requirement was relaxed. Proteins with both high stability and high function
evolved more efficiently when the stability requirement was gradually increased than when there was constant selection for high
stability. These results show that in our model, the evolution of function is enhanced by allowing proteins to explore sequences
corresponding to marginally stable structures, and that it is easier to improve stability while maintaining high function than to
improve function while maintaining high stability. Our model also demonstrates that even in the absence of a fundamental
biophysical tradeoff between stability and function, the speed with which function can evolve is limited by the stability
requirement imposed on the protein.

INTRODUCTION

For nearly all proteins found in nature, there is a unique

mapping from the linear protein sequence to a thermodynam-

ically stable three-dimensional native structure, with the

mapping determined by the laws of physics (Anfinsen, 1973).

However, this unique mapping from sequence to confor-

mation is not a general property of polypeptide sequences,

because most randomly generated sequences do not have

stable folded structures (Keefe and Szostak, 2001; Davidson

et al., 1995). In other words, natural protein sequences exist

in the space of foldable sequences, which is but a small subset

of the space of all possible sequences. Therefore, evolution

must have acted heavily on natural proteins to select those

with stable native structures.

Although natural proteins possess stable native structures,

the evolutionary fitness of a protein depends not on the sta-

bility of the native structure per se, but rather on the sta-

bility of this structure being appropriate to allow the protein

to perform a function such as catalyzing a chemical reaction

or binding to a ligand. Stability is therefore under selection

only insofar as it is necessary for biochemical function, and

most natural proteins are only marginally stable at their

physiologically relevant temperatures (Fersht, 2002).

In protein mutagenesis studies, stability and function can

appear to be competing properties, with mutations that

increase stability often reducing function (Shoichet et al.,

1995; Schreiber et al., 1994), and mutations that improve or

alter function often decreasing stability (Wang et al., 2002).

However, several lines of evidence demonstrate that high

stability and high functionality are not inherently incompat-

ible. In nature, there is a strong correlation between the

temperature of an organism’s environment and the stability

of its proteins, indicating that natural evolution is able to

create functional and highly stable proteins if there is suf-

ficiently strong selection pressure (Somero, 1995; Rees and

Adams, 1995).

In the laboratory, protein engineers have also demon-

strated that natural proteins are not maximally stable by using

directed evolution to find mutations that make proteins more

stable without sacrificing enzymatic function (Giver et al.,

1998; Arnold, 1998; Serrano et al., 1993; Arnold et al.,

2001). These results show that high functionality and high

stability can coexist, suggesting that the marginal stabilities

of natural proteins are due primarily to the simple fact that

highly stable sequences are rare (Taverna and Goldstein,

2002), and therefore that most mutations to an evolved

protein will decrease its stability. For this reason, proteins

will tend to be no more stable than is required by their

environment, because any extra stability that confers no fur-

ther selective advantage will be eliminated by mutations.

Comprehensive experimental examinations of protein

evolution are limited by the vast number of possible

sequences and the difficulties in rapidly assaying protein

properties. However, simple protein models originally

developed to study protein folding (Dill et al., 1995; Hinds

and Levitt, 1994; Shakhnovich and Gutin, 1993; Socci et al.,

1998) provide a useful tool for studying protein evolutionary

dynamics (Chan and Bornberg-Bauer, 2002). Although these

models are gross oversimplifications of real proteins, their

tractability allows for a far more extensive exploration of

sequence space than can be done experimentally. Previous

studies using model proteins have focused on the evolution of

stable structures (Xia and Levitt, 2002; Cui et al., 2002;

Bastolla et al., 2000; Taverna and Goldstein, 2000; Tiana

et al., 2000; Bornberg-Bauer and Chan, 1999) or fast-folding

(Gutin et al., 1995; Mirny et al., 1998) proteins, whereas with

few exceptions (Williams et al., 2001; Hirst, 1999) the

interplay between the evolution of stability and function has

gone unexamined. Here we use a model protein to investigate
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how selection for stability affects the evolution of function. In

our model, we describe the function of a protein as its ability

to bind to a rigid ligand molecule. The fitness of a protein

depends on its ability to perform its function of binding to

a ligand, which in turn depends on its ability to fold to a native

structure with some minimal stability. We can increase the

minimal stability requirement by increasing the temperature

parameter, allowing us to explore the relationship between

stability and the evolvability of function.

METHODS

The protein model

We use a highly simplified model of a protein consisting of a chain of N 5

18 monomers on a two-dimensional lattice that we allow to occupy any

compact or noncompact conformation.

The monomers can be of 20 types, corresponding to the 20 amino acids.

Each monomer on the lattice has four nearest neighbor sites, of which as

many as two can be occupied by nonbonded neighboring residues (three in

the case of terminal residues). The energy E(C) of a protein conformation C is
the sum of the nearest-neighbor interactions of nonbonded residues,

EðCÞ5 +
N

i51

+
i22

j51

CijðCÞ3 eðAi;AjÞ;

where CijðCÞ equals one if residues i and j are nearest neighbors in

conformation C and zero otherwise, and eðAi;AjÞ is the interaction energy

between residue types Ai and Aj . The interaction energies eðAi;AjÞ are

based on a widely used statistical analysis of real proteins by Miyazawa and

Jernigan (1985) (Table 5). All energies are given in reduced units such that

one energy unit equals kBT at room temperature (298 K). Temperatures are

given in units such that T 5 1.0 at room temperature.

Folding the proteins

The native structure and stability of the protein can be determined by finding

the lowest energy conformation, Clow, and the partition function. Compu-

tation of the partition function requires defining a temperature parameter T.

This temperature parameter represents the thermodynamic temperature,

however, because the model protein interaction energies are independent of

temperature, the temperature parameter does not capture behaviors of real

proteins that are caused by the temperature dependence of the interaction

energies (for example, cold denaturation). To avoid confusion, we refer to T
as the temperature parameter rather than as the temperature.

The partition function at a temperature parameter of T is:

QðTÞ5 +
fCig

exp½2EðCiÞ=T�;

where the sum is taken over all conformations fCig. The free energy of

folding DGfðTÞ to Clow is then the difference between EðClowÞ and the free

energy of the ensemble of all other conformations,

DGfðTÞ5EðClowÞ1T lnfQðTÞ2exp½2EðClowÞ=T�g:

The fraction of proteins f ðTÞ that are expected to be folded to Clow at

equilibrium is given by

f ðTÞ5 1

11exp½DGfðTÞ=T�
:

Exact calculation of QðTÞ requires enumeration of all 5.81 3 106 unique

conformations corresponding to all of the self-avoiding walks that are not

related by symmetry (Rapaport, 1987). Many of these walks have very few

contacts, and so make only a small contribution to the partition function. We

only explicitly considered the 7.95 3 105 conformations with more than

four contacts. The remaining 5.01 3 106 conformations were treated by

a crude mean-field model, estimating the partition sum contribution of all

conformations with n contacts (0 # n # 4) as

QnðTÞ5 exp
2nÆeæ
T

� �
3 exp

2n2s2

e

2T
2

� �
3NðnÞ;

where Æeæ is the average residue-residue contact energy for the given protein
sequence assuming any residue is equally likely to be in contact with any

other nonadjacent residue, s2
e is the variance in the residue-residue contact

energy, and NðnÞ is the number of conformations with n contacts. This

approximation introduces only a very small error—a test of 103 random

sequences at T 5 1.0 showed that the root-mean-square error and maxi-

mum differences between the approximate and exact values of DGfðTÞ were
1.6 3 1024 and 2.8 3 1023, respectively. This error had no effect on the

evolutionary trajectories, because running a sample trajectory with and

without the approximation led to identical results. Folding a protein took

roughly 0.3 s on a 2-GHz processor.

Modeling the protein function

We introduce the concept of function by considering the binding of a ligand

to the protein, an idea that to our knowledge was first introduced by Miller

and Dill (1997). We define the function of a protein as its ability to bind to

a rigid ligand when the protein is in its lowest energy conformation Clow. The
binding energy BEðClowÞ is the interaction energy between the folded protein
and the rigid ligand in the lowest energy binding position, found by

searching all translational and rotational positions of the ligand relative to

the protein. Fig. 1 shows the ligand used in the simulations bound to a protein

in its lowest energy conformation.

The fitness function

The fitness FðTÞ of a protein at a temperature parameter of T is defined as

the negative product of the fraction of the proteins that are folded f ðTÞ times

the binding energy BEðClowÞ of the folded protein to the ligand, so that

FðTÞ52f ðTÞ3BEðClowÞ

52
1

11exp½DGfðTÞ=T�
3BEðClowÞ:

Because FðTÞ has a sigmoidal dependence on DGfðTÞ, the fitness of an
unstructured protein is essentially zero, and a protein gains fitness as it

achieves some minimal stability determined by the temperature parameter.

Once a protein has achieved the minimal stability, it can only substantially

improve its fitness by improving its ligand binding function. The stringency

of the stability requirement depends on the temperature parameter T at which

the fitness is computed, with higher temperature parameters favoring greater

stabilities.

Strictly speaking, the fraction of proteins bound to the ligand also

displays a sigmoidal dependence on the product of the ligand binding energy

and the fraction of folded proteins. However, because we are only interested

in differences in fitnesses rather than their magnitudes, any function that
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monotonically increases with this product will give the same results, and so

we choose the simpler functional form defined above.

Evolving the proteins

Each evolutionary replicate began with a population of 99 random

sequences. At each generation, the 33 most-fit sequences were selected,

and each was used to generate two identical offspring. Random point

mutations were made in all 99 resulting proteins with a per-site mutation rate

of 3.3 3 1022, which corresponds to a per-protein mutation rate of 0.6. The

mutated proteins were then refolded, and their fitnesses were calculated.

For the evolutionary trajectories that began with evolved proteins, we first

evolved random populations for 250 generations to bind to each of the

ligands shown in Fig. 6. The best binding sequences for ligands one, two, and

three were FFKFKKFKIFMLKWMKMF, FMGFMIIFFLKFKKFGWF,

and MFHVFCHFEWPKPMKCFM, respectively. These sequences were

then used for the initial identical populations of 99 proteins for the evo-

lutionary runs, which were otherwise carried out as before.

RESULTS

Rapid evolution of fitness at different stabilities

We carried out 50 evolutionary replicates each beginning

with a different initial random population at five different

reduced temperature parameters, T 5 0.8, 0.9, 1.0, 1.1, and

1.2. All replicates exhibited similar evolutionary trajectories,

with a rapid gain of fitness in the first few hundred generations

followed by only small subsequent increases in fitness. Fig. 2

shows two typical replicates at a temperature parameter of

1.0. Both the stability and the binding energy improved over

time, with improvements in binding energy usually associ-

ated with temporary small decreases in stability.

Fig. 2 also shows the lowest energy conformations at four

different points in the evolutionary trajectory for the two

proteins. The overall structures of the proteins were highly

conserved, and the stabilities and binding energies adjusted

primarily by changes in sequence that preserved these basic

structures. This behavior is consistent with the evolution of

FIGURE 2 Two typical replicates performed at a temperature parameter

of 1.0. The plots at the top show the evolution of fitness, of stability (solid

lines), and binding energy (dotted lines) of the most fit member of the

population. Structures at bottom are of the most-fit sequence at 10, 170, 330,

and 500 generations.

FIGURE 1 Lowest energy conformation of a protein (left) bound to the

rigid ligand used in the simulations (right, shown in bold) in the lowest

energy binding position. The stability of the protein at a temperature

parameter of T5 1.0 is DGf 521.04, and the binding energy of the protein

to the ligand is BE 5 217.90.
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real proteins, which is believed to involve changes in

sequence that conserve the structural scaffold of the protein.

The ligand binding arrangement shown in Fig. 1 is typical of

that of an evolved protein. The most-fit proteins usually

evolved to fold to compact conformations with a binding

region that fits into the cavity of the ligand.

Proteins evolve ligand binding function more
efficiently at lower stability

To determine how selection for stability affected the

evolution of ligand binding function, we examined the

binding energies achieved after 500 generations of evolu-

tion at all five temperature parameters. Fig. 3 shows the

distribution of binding energies for all cases. At least a few

replicates evolved strong binding proteins at all of the

temperature parameters. However, the frequency of evolu-

tion of strong binders was much higher at lower temperature

parameters, whereas at higher temperature parameters many

of the evolutionary trajectories became stuck at weak binding

proteins. The binding energy distributions are statistically

different for temperature parameters that varied by.0.2 with

confidences of .0.95 (Kolmogorov-Smirnov test, D and P
values for comparison of T 5 0.8 and T 5 1.0, T 5 0.8 and

1.1, T 5 0.8 and 1.2, T 5 0.9 and T 5 1.1, T 5 0.9 and 1.2,

and T5 1.0 and T5 1.2 are 0.64 and 7.8 3 10210, 0.58 and

3.7 3 1028, 0.68 and 4.8 3 10211, 0.34 and 4.4 3 1022,

0.60 and 1.08 3 1028, and 0.52 and 1.2 3 1026, re-

spectively; Press et al., 2002).

Table 1 shows the mean binding energies, stabilities, and

fitnesses evolved by the proteins. At higher temperature

parameters, the proteins evolved higher stability but weaker

binding. These results indicate that strong selection for

stability inhibits the evolution of strong binding. The

evolution of a few strong binders at high temperature pa-

rameters shows that it is fundamentally possible to evolve

good binding under strong selection for stability, however

the results clearly indicate that the statistical likelihood of

evolving strong binding is decreased by increasing the se-

lection for stability.

Low-stability evolution as a route to
high-stability fitness

Because sequences tend to evolve stronger binding at lower

temperature parameters, we speculated that it might be

possible to evolve high stability and strong binding proteins

more efficiently by performing the initial generations at

low temperature parameters. This approach is analogous to

simulated annealing, except that in this case the temperature

parameter is being increased, because performing the initial

generations at a low temperature parameter helps the proteins

escape weak binding traps. We tested this idea by performing

50 replicates in which the temperature parameter was set at

0.8 for the first 200 steps, then increased in a linear gradient

from 0.8 to 1.2 for 200 steps, and then kept at 1.2 for the final

100 steps. We compared the average final fitness of the

proteins after this 500-generation gradient to the final fitness

after 500 generations at a constantly high temperature

parameter of 1.2 to determine which approach better allows

the proteins to optimize the combination of stability and

ligand binding function. Fig. 4 shows that the proteins tended

to evolve higher fitness with the gradient than with the

constantly high temperature parameter. The two distributions

are statistically different with high confidence (Kolmogorov-

Smirnov test,D5 0.40, P5 4.2 3 1024; Press et al., 2002).

The gradient approach is more efficient at evolving high

fitness because it prevents the proteins from becoming

trapped in regions of high stability but weak binding by

allowing them to first evolve strong binding and then

improve their stability. This can be seen in the two typical

trajectories shown in Fig. 5. The immediate selection for high

stability of the constant temperature parameter approach

locks the proteins into stable structures that cannot easily

improve their binding energy, whereas gradual selection for

FIGURE 3 Ligand binding function evolves more efficiently at lower

temperature parameters. The histogram shows the distribution of the best

binding energies after 500 generations of evolution for all 50 replicates at

each temperature parameter. Binding energies are of the most-fit member of

the population.

TABLE 1 Average binding energies, stabilities, and fitnesses

after 500 generations

Temperature ÆBEæ ÆDGf jT51:0æ ÆF jT51:0æ

0.8 218.47 6 0.32 21.60 6 0.06 14.75 6 0.29

0.9 216.99 6 0.37 21.95 6 0.07 14.57 6 0.32

1.0 215.78 6 0.37 22.29 6 0.07 14.18 6 0.32

1.1 215.08 6 0.42 22.65 6 0.09 13.99 6 0.37

1.2 213.78 6 0.38 22.82 6 0.09 12.97 6 0.32

The stabilities and fitnesses are computed at a reference temperature

parameter of 1.0 to allow comparison. Mean 6 SE. Values are averages of

the most-fit member of all 50 populations.
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stability allows the proteins to first achieve strong binding

and then optimize their stability. These results indicate that it

is easier to improve stability while maintaining strong

binding than it is to improve binding while maintaining high

stability.

Evolution from different initial proteins

The results we have described thus far are from evolutionary

trajectories that began with random protein sequences.

Biological and laboratory protein evolution do not start with

random sequences, but instead modify the properties of

existing proteins. To test whether the trends we observed

depend on the initial populations, we repeated our experi-

ments beginning with proteins that had been evolved to bind

to different ligands by first evolving random protein

populations for 250 generations to bind to the three ligands

shown in Fig. 6.We then used themost fit protein from each of

these runs as the beginning sequence for 50 runs of evolution

for binding to the original ligand used above (Fig. 1).

All of the trends we found by beginning with random

populations were preserved when we started from these

evolved proteins. We again found that evolutionary trajec-

tories at lower temperature parameters yielded stronger

binding final proteins, and that the gradient was more

effective at evolving high-temperature fitness than a constant

high temperature parameter (Fig. 7). The different initial

populations do lead to different final binding energies and

fitnesses, with random populations tending to lead to better

values. However, the trends of lower temperature parameter

leading to stronger binding and a gradient approach leading

to higher fitness hold for all four initial populations.

DISCUSSION

We have shown that strong selection for stability inhibits the

evolution of ligand binding function by the proteins in our

model. The ability of a few proteins to evolve strong binding

at high temperature parameters shows that there are se-

quences that exhibit both good stability and strong binding.

However, at high temperature parameters, the evolving

proteins are more likely to become trapped in regions of

sequence space that correspond to highly stable but weakly

binding proteins. Presumably this trapping is due to that fact

that stronger selection for stability reduces the network of

sequences that are essentially neutral because there are fewer

highly stable sequences compatible with a given fold

(Shakhnovich, 1998; Koehl and Levitt, 2002). Therefore, at

high temperature parameters, mutations that increase binding

are more likely to lead to an unacceptably large drop in

stability. The net effect is a roughening of the fitness

landscape that makes it more difficult to escape local optima.

We present a strategy to overcome this problem of the

evolutionary trajectories becoming trapped at high stability

but weak binding proteins. Performing the initial rounds of

evolution at a low temperature parameter decreases the

FIGURE 4 High temperature parameter fitness evolves more efficiently

with a gradient than with constant selection at a high temperature parameter.

The histogram shows the distribution of fitnesses after 500 generations for

evolution at a constant temperature parameter of 1.2 and evolution with the

gradient from 0.8 to 1.2. Fitnesses are of the most fit member of the

population.

FIGURE 5 Evolution occurs more efficiently when proteins can first

evolve strong ligand binding function at low temperature parameters. Solid

lines show the stability-function trajectories with a gradient from 0.8 to 1.2,

and dotted lines show trajectories with a constant high temperature

parameter of 1.2. At left the final fitnesses are 14.01 for the gradient and

10.52 for the constant temperature parameter; at right, the values are 13.92

and 10.60, respectively. Plots are for the most-fit member of the population

sampled every 10 generations. Stabilities are computed at a reference

temperature parameter of T 5 1.0 to allow comparison.

FIGURE 6 Proteins were evolved for 250 generations to bind to these

ligands. We then modified the function of these evolved proteins by

evolving them to bind to the original ligand shown in Fig. 1.
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selection for stability, and so allows the proteins to more

easily find strong binding regions of sequence space. The

temperature parameter can then be increased, which leads to

the selection of more stable sequences. Our results indicate

that this approach is more effective for evolving highly stable

and strong binding proteins than constant selection for both

high stability and strong binding. This strategy takes ad-

vantage of the fact that it is easier to maintain strong li-

gand binding while improving stability than to maintain high

stability while improving binding.

Our results fit into the framework of current theories about

the distributions of proteins in sequence space that has

emerged from other lattice protein studies. These studies have

shown that protein structures are coded for by structurally

neutral networks spanning many diverse sequences, and that

these networks are structured as superfunnels, with the most

stable sequences also possessing the most connections in the

networks (Bornberg-Bauer and Chan, 1999; Broglia et al.,

1999; Bastolla et al., 2000, 1999). Our work suggests that

a protein evolves function most effectively when it can freely

explore in its structurally neutral network, rather then when it

is trapped in a small number of highly stable sequences. Our

initial relaxation of the stability requirement facilitates

exploration of the structurally neutral network, and once

highly functional sequences are found, they can be optimized

for stability. Although we do not consider recombination in

our current study, other work (Cui et al., 2002; Xia and Levitt,

2002) has shown that whereas structurally neutral networks

can easily be explored locally by point mutations, moves

between networks or to distant regions of the same network

are facilitated by crossover-induced sequence space jumps.

Therefore, we suggest that addition of recombination to our

evolutionary protocol may further assist in the evolution of

function.

The evolution of our model proteins also has strong

parallels with real protein evolution. As with real proteins,

our model proteins evolve primarily by structurally conser-

vative mutations that tinker with the contacts in a preserved

structural scaffold, rather than by mutations that cause

wholesale structural changes. The interplay between the

evolution of stability and function in our model is also

reminiscent of real protein evolution; for example, in the

evolution of new function in TEM-1 b-lactamase, gains in

function were correlated with drops in stability, followed by

gradual regaining of the lost stability (Wang et al., 2002).

Our model points to general trends that are important

in both natural and experimental protein evolution, where dif-

ferent structural and functional properties are under different

selection pressures. Protein evolution involves concurrent

selection for stability and function, and productive mutations

must improve one of these properties without excessively

damaging the other. Because most mutations to evolved

proteins will be deleterious to at least one of these properties,

strong selection for both stability and function will limit the

number of productive mutations, and so lead to trapping at

local fitness optima. Protein evolution therefore occurs most

efficiently when the temporary drops in stability associated

with gains in function are buffered by mild selection for

stability.
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