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Abstract The immediate evolutionary space accessible to HIV is largely determined by how

single amino acid mutations affect fitness. These mutational effects can shift as the virus evolves.

However, the prevalence of such shifts in mutational effects remains unclear. Here, we quantify the

effects on viral growth of all amino acid mutations to two HIV envelope (Env) proteins that differ at

>100 residues. Most mutations similarly affect both Envs, but the amino acid preferences of a

minority of sites have clearly shifted. These shifted sites usually prefer a specific amino acid in one

Env, but tolerate many amino acids in the other. Surprisingly, shifts are only slightly enriched at

sites that have substituted between the Envs—and many occur at residues that do not even

contact substitutions. Therefore, long-range epistasis can unpredictably shift Env’s mutational

tolerance during HIV evolution, although the amino acid preferences of most sites are conserved

between moderately diverged viral strains.

DOI: https://doi.org/10.7554/eLife.34420.001

Introduction
HIV’s envelope (Env) protein evolves very rapidly. The major group of HIV-1 that is responsible for

the current pandemic originated from a virus that entered the human population ~100 years ago

(Sharp and Hahn, 2011; Worobey et al., 2008; Faria et al., 2014). The descendants of this virus

have evolved so rapidly that their Envs now have as little as 65% protein identity (Lynch et al.,

2009). For comparison, protein orthologs shared between humans and mice have only diverged to a

median identity of 78% over 90 million years (Waterston et al., 2002; Hedges et al., 2006).

Env’s rapid evolution has dire consequences for anti-HIV immunity, since it erodes the efficacy of

most neutralizing antibodies (Albert et al., 1990; Wei et al., 2003; Richman et al., 2003;

Burton et al., 2005). Because of this public-health importance, numerous studies have experimen-

tally characterized aspects of the ‘evolutionary landscape’ that Env traverses. The immediate evolu-

tionary space accessible to any given Env is largely defined by the effects on viral fitness of all single

amino acid mutations to Env. Most mutational studies have measured how just a small number of

these mutations affect viral growth in cell culture, although it has recently become possible to use

deep mutational scanning to measure the effects of many (Al-Mawsawi et al., 2014; Duenas-

Decamp et al., 2016) or even all (Haddox et al., 2016) single amino acid mutations to an Env

variant.

But interpreting these studies in the context of Env evolution requires addressing a fundamental

question: How informative are mutational studies of a single protein variant about constraints on
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long-term evolution? During protein evolution, substitutions at one site can change the effect of

mutations at other sites (Natarajan et al., 2013; Gong et al., 2013; Harms and Thornton, 2014;

Podgornaia and Laub, 2015; Starr and Thornton, 2016; Klink and Bazykin, 2017). We will follow

the nomenclature of (Pollock et al., 2012) to refer to these changes in mutational effects as shifts in

a site’s amino acid preferences. Such shifts can accumulate as substitutions become entrenched via

epistatic interactions with subsequent changes (Starr et al., 2017; Pollock et al., 2012; Shah et al.,

2015; Bazykin, 2015)—although the magnitude of these shifts is usually limited (Doud et al., 2015;

Chan et al., 2017; Ashenberg et al., 2013; Risso et al., 2015).

Given that the Envs of circulating HIV strains represent a vast collection of homologs that often

differ at >100 residues, shifts in amino acid preferences could make the outcome of any study highly

dependent on the Env used. Indeed, epistasis among a few combinations of Env mutations has been

experimentally demonstrated (da Silva et al., 2010), and epistatic fitness landscapes have been

computationally inferred for a variety of HIV proteins (Kouyos et al., 2012; Ferguson et al., 2013;

Mann et al., 2014; Barton et al., 2015) including Env (Louie et al., 2018). However, the only pro-

tein-wide experimental studies of how amino acid preferences shift during evolution have examined

proteins that are structurally far simpler than Env, which forms a large heavily glycosylated heterotri-

meric complex that transitions through multiple conformational states (Munro et al., 2014;

Ozorowski et al., 2017).

Here, we use an improved version of a previously described deep mutational scanning strategy

(Haddox et al., 2016) to measure the effects on viral growth of all single amino acid mutations to

two transmitted-founder virus Envs that differ by >100 mutations. We compare these complete

maps of mutational effects to identify sites that have shifted in their amino acid preferences between

the Envs. Most sites show no detectable shifts, but 30 sites have clearly shifted preferences. These

shifted sites usually prefer a specific amino acid in one Env but have shifted to tolerate many amino

acids in the other Env. The shifted sites cluster in structure but are often distant from any amino acid

eLife digest The virus that causes AIDS, or HIV, has a protein called Env on its surface, which is

essential for the virus to infect cells. Env can also be recognized by the immune system, which then

targets the virus for destruction or blocks it from infecting cells. Unfortunately, Env evolves very

quickly, which means that HIV can evade our defenses. However, there are limits to how much this

protein can change, since it still needs to perform its essential role in helping viruses enter cells.

In the century since HIV first appeared in human populations, the virus has evolved considerably.

There are now many HIV strains that infect people, and they bear Env proteins with substantially

different sequences. However, it is not clear if these changes in sequence have resulted in Envs from

distinct strains being able to tolerate different mutations.

To examine this question, Haddox et al. compared how the Envs from two strains of HIV react to

modifications in their sequences. They created all possible individual mutations in the proteins, and

the resulting collections of mutated viruses were then tested for their ability to infect cells in the

laboratory.

Most mutations had similar effects in both Env proteins. This allowed Haddox et al. to identify

portions of the protein that easily accommodate changes, and portions that must remain unchanged

for viruses to remain infectious—at least in the laboratory. Some of these mutations are under

different types of pressures when the virus faces the immune system, and those were identified

using computational approaches.

However, some mutations were tolerated differently by the two Env proteins. Therefore, viral

strains differ in how their Env proteins can evolve. The parts of Env that showed differences in

mutational tolerance between the strains were not necessarily the parts that differ in sequence. This

shows that changes in sequence in one part of the protein can modify how other portions evolve.

It remains to be determined whether changes in tolerance to mutations translate into differences

in how the virus can escape immunity. This is an important question given that the rapid evolution of

Env is a major obstacle to creating a vaccine for HIV.

DOI: https://doi.org/10.7554/eLife.34420.002
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substitutions that distinguish the two Envs, demonstrating the action of long-range epistasis. By

aggregating our measurements for both Envs, we identify sites that evolve faster or slower in nature

than expected given the functional constraints measured in the lab, probably due to pressure for

immune evasion. Overall, our work provides complete across-strain maps of mutational effects that

inform analyses of Env’s evolution and function.

Results

Two Envs from clade A transmitted-founder viruses
The viruses most relevant to HIV’s long-term evolution are those which are transmitted from human-

to-human. However, the only prior work that has measured how all Env amino acid mutations affect

HIV growth is a study by some of us (Haddox et al., 2016) that used a late-stage lab-passaged

CXCR4-tropic virus (Peden et al., 1991). The properties of Env can vary substantially between such

late-stage viruses and the transmitted-founder viruses relevant to HIV’s long-term evolution

(Sagar et al., 2006; Wilen et al., 2011; Parrish et al., 2013; Ronen et al., 2015).

We therefore selected Envs from two transmitted-founder viruses, BG505.W6M.C2.T332N and

BF520.W14M.C2 (hereafter referred to as BG505 and BF520), that were isolated from HIV-infected

infants shortly after mother-to-child transmission (Nduati et al., 2000; Wu et al., 2006; Goo et al.,

2014). The BG505 Env has been extensively studied from a structural standpoint (Julien et al.,

2013; Lyumkis et al., 2013; Pancera et al., 2014; Huang et al., 2014; Sanders et al., 2015; Stew-

art-Jones et al., 2016; Gristick et al., 2016), and variants of this Env are being tested as vaccine

immunogens (Sanders et al., 2013, 2015; de Taeye et al., 2015). We used the T332N variant of

BG505 Env because it has a common glycosylation site that is targeted by many anti-HIV antibodies

(Sanders et al., 2013). The BF520 Env was isolated from an infant who developed an early broad

anti-HIV antibody response (Goo et al., 2014; Simonich et al., 2016). We have previously created

comprehensive codon-mutant libraries of the BF520 Env and used them to map HIV antibody escape

(Dingens et al., 2017), but these BF520 libraries have not been characterized with respect to how

mutations affect viral growth.

Both BG505 and BF520 are from clade A of the major (M) group of HIV-1. Figure 1 shows the

phylogenetic relationship among these two Envs and other clade A sequences. BG505 and BF520

are identical at 721 of the 836 pairwise-alignable protein sites (86.2% identity). However, in our

experiments we mutagenized only the ectodomain and transmembrane domain of Env, and

excluded the signal peptide and cytoplasmic tail. The reason is that we measure how Env mutations

affect viral growth, which is influenced both by the functionality of Env protein molecules and their

expression level. Mutations in the signal peptide and cytoplasmic tail commonly affect Env expres-

sion level (Chakrabarti et al., 1989; Yuste et al., 2004; Li et al., 1994), so we excluded these

regions with the goal of reducing the degree to which we simply identified mutations that affected

Env expression. In the ectodomain and transmembrane domains of Env, BG505 and BF520 are iden-

tical at 549 of the 616 sites (89.1% identity) that are alignable across clade A Envs (Figure 1—source

data 1, Figure 1—source data 2). The divergence between BG505 and BF520 therefore offers

ample opportunity to investigate mutational shifts during Env evolution.

Deep mutational scanning of each Env
We have previously described a deep mutational scanning strategy for measuring how all amino acid

mutations to Env affect HIV growth in cell culture, and applied this strategy to the late-stage lab-

adapted LAI strain (Haddox et al., 2016). Here, we made several modifications to this earlier strat-

egy to apply it to transmitted-founder Envs and to reduce the experimental noise. This last consider-

ation is especially important when comparing Envs, since it is only possible to reliably detect

differences that exceed the magnitude of the experimental noise. Our modified deep mutational

scanning strategy is in Figure 2A. This approach had the following substantive changes: instead of

SupT1 cells, we used SupT1.CCR5 cells (SupT1 cells that express CCR5 in addition to CXCR4

[Boyd et al., 2015]) to support growth of viruses with transmitted-founder, CCR5-tropic Envs; we

used more virions for the first passage (� 3� 10
6 versus 5� 10

5 infectious units per library) to avoid

bottlenecking library diversity; and rather than performing a full second passage we just did a short

high-MOI infection to enable recovery of env genes from infectious virions without bottlenecking
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(Figure 2A). We performed this deep mutational scanning in full biological triplicate for both BG505

and BF520 (Figure 2B). Our libraries encompassed all codon mutations to all sites in Env except for

the signal peptide and cytoplasmic tail.

The deep mutational scanning effectively selected for functional Envs as evidenced by strong

purifying selection against stop codons. Figure 3A shows the average frequency of mutations across

Env in the plasmid mutant libraries, the mutant viruses, and wildtype controls as determined from

the deep sequencing. The mutant viruses show clear selection against stop codons and many nonsy-

nonymous mutations (Figure 3A). This selection is more apparent if we correct for the background

error rates estimated from the wild-type controls (Figure 3—source data 1). The error-corrected fre-

quencies of stop codons drop to 3–16% of their original values (Figure 3—source data 1), with the

residual stop codons probably due to some non-functional virions surviving due to complementation

by other co-infecting virions. The error-corrected frequencies of nonsynonymous mutations also

drop substantially (43%–49% of their original values), whereas the frequencies of synonymous muta-

tions drop only slightly (85%–95% of their original values). These trends are consistent with the fact

that nonsynonymous mutations are often deleterious, whereas synonymous mutations often

(Zanini and Neher, 2013) have only mild effects on viral growth. Figure 3A only summarizes one

aspect of the deep mutational scanning data, but Supplementary file 1 and 2 contain detailed plots

showing all aspects of the data (read depth, per-site mutation rate, etc) as generated by the

dms_tools2 software (Bloom, 2015, https://jbloomlab.github.io/dms_tools2/).

Figure 1. Phylogenetic tree showing the relationship of BG505 and BF520 to other clade A Envs. The tree

shows the 69 Envs in the alignment in Figure 1—source data 1, which is a subsample of clade A sequences from

the group M alignment in the Los Alamos HIV sequence database (http://www.hiv.lanl.gov). Sites not mutagenized

in our experiments (the signal peptide and cytoplasmic tail) or that are poorly alignable were masked as indicated

in Figure 1—source data 2, leaving 616 alignable sites. The pairwise identity of BG505 and BF520 to

other sequences at alignable sites is in Figure 1—figure supplement 1. The tree topology was inferred using

RAxML (Stamatakis, 2014) under the GTRCAT model of nucleotide substitution, and branch lengths were

optimized under the M0 Goldman-Yang model (Yang et al., 2000) using phydms (Hilton et al., 2017).

DOI: https://doi.org/10.7554/eLife.34420.003

The following source data and figure supplement are available for figure 1:

Source data 1. The alignment of clade A env coding sequences is in cladeA_alignment.fasta.

DOI: https://doi.org/10.7554/eLife.34420.004

Source data 2. The 240 Env sites masked in all phylogenetic analyses because they were not mutagenized in our

experiments or are poorly alignable are listed in alignment_mask.csv.

DOI: https://doi.org/10.7554/eLife.34420.005

Figure supplement 1. Pairwise identity of all Env sequences to BG505 and BF520.

DOI: https://doi.org/10.7554/eLife.34420.006
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We used the deep mutational scanning data to estimate the preference of each site in Env for

each amino acid via the analysis method described in Bloom (2015). As graphically illustrated in

Figure 2A, the preferences for each site are normalized to sum to one. Our libraries were mutagen-

ized at 670 sites in BG505 and 662 sites in BF520, so 670� 20 ¼ 13; 400 and 662� 20 ¼ 13; 240 pref-

erences were estimated for each Env, respectively. The correlations between the preferences from

different experimental replicates are in Figure 3B, and the preferences themselves are in Figure 3—

source data 2. These replicate-to-replicate correlations are substantially higher than those for the

deep mutational scanning of LAI Env by (Haddox et al., 2016), which had replicate-to-replicate

Pearson correlations of only R ¼ 0:45 to 0:50.

While the replicates are well correlated across all replicates for both BG505 and BF520, the repli-

cates for BG505 are more correlated with each other than with replicates for BF520, and vice versa

(Figure 3B, compare red and blue versus gray plots). This fact hints that there are some shifts in

amino-acid preferences between the two Envs—something that is investigated with more statistical

rigor later in this paper. Note also that there is a trend for highly preferred amino acids to be more
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Figure 2. Deep mutational scanning workflow. (A) We made libraries of proviral HIV plasmids with random codon-

level mutations in the env gene. The number of mutations per gene approximately followed a Poisson distribution

with a mean between 1 and 1.5 (Figure 2—figure supplement 1). We transfected the plasmids into 293T cells to

generate mutant viruses, which lack a genotype-phenotype link since cells are multiply transfected. To establish a

genotype-phenotype link and select for Env variants that support HIV growth, we passaged the libraries in SupT1.

CCR5 cells for four days at a low multiplicity of infection (MOI) of 0.01. To isolate the env genes from only viruses

that encoded a functional Env protein, we infected the passaged libraries into SupT1.CCR5 cells at high MOI and

harvested reverse-transcribed non-integrated viral DNA after 12 hr. We then deep sequenced the env genes from

these final samples as well as the initial plasmid library, using molecular barcoding to reduce sequencing errors.

We also deep sequenced identically handled wildtype controls to estimate error rates. Using these sequencing

data, we estimated the preference for each of the 20 amino acids at each site in Env. These data are represented

in logo plots, with the height of each letter proportional to that site’s preference for that amino acid. (B) We

conducted this experiment in full biological triplicate for both BG505 and BF520, beginning each replicate with

independent creation of the plasmid mutant library. These replicates therefore account for all sources of noise and

error in the experiments.

DOI: https://doi.org/10.7554/eLife.34420.007

The following figure supplement is available for figure 2:

Figure supplement 1. Sanger sequencing of selected clones from the mutant plasmid libraries.

DOI: https://doi.org/10.7554/eLife.34420.008
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strongly preferred in BG505 than BF520 (most high-preference points in the gray plots in Figure 3B

fall above the diagonal); however, this trend does not necessarily reflect differences between the

Envs. Rather, there were modest differences in the stringency of selection between our deep muta-

tional scans of BG505 and BF520 (Figure 3—source data 1 shows that purifying selection better

purged stop codons in BG505). In the next section, we correct for these experimental differences by

calibrating each dataset to match the stringency of selection in nature.

Figure 3. The deep mutational scanning selects for functional Envs and yields measurements that are well

correlated among replicates. (A) The average per-codon mutation frequency when sequencing plasmids encoding

wildtype Env (DNA), plasmid mutant libraries (mutDNA), mutant viruses after the final infection (mutvirus), and virus

generated from wild-type plasmids (virus). Mutations are categorized as nonsynonymous, synonymous, or stop

codon. The DNA samples show that sequencing errors are rare, and the virus samples show that viral-replication

errors are well below the frequency of mutations in the mutDNA samples. Comparing the mutvirus to mutDNA

shows clear purifying selection against stop codons and some nonsynonymous mutations, particularly after

subtracting the background error rates given by the virus and DNA samples (Figure 3—source data 2). More

extensive plots from the analysis of the deep sequencing data are in Supplementary file 1 and 2. (B) Correlations

between replicates in the measured preferences of each site in Env for all 20 amino acids. Blue indicates replicate

measurements on BF520, red indicates replicate measurements on BG505, and gray indicates across-Env

measurements of BF520 versus BG505. R is the Pearson correlation coefficient. The numerical values for the

preferences are in Figure 3—source data 2. Figure 3—figure supplement 1 shows the correlations using

contour rather than scatter plots.

DOI: https://doi.org/10.7554/eLife.34420.009

The following source data and figure supplement are available for figure 3:

Source data 1. Average frequencies of nonsynonymous, synonymous, and stop-codon mutations as plotted in

mutfreqs are in avgmutfreqs.csv.

DOI: https://doi.org/10.7554/eLife.34420.010

Source data 2. Preferences for each replicate and averages are in all_prefs_unscaled.zip.

DOI: https://doi.org/10.7554/eLife.34420.011

Figure supplement 1. Correlations plotted on a contour rather than a scatter plot.

DOI: https://doi.org/10.7554/eLife.34420.012
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Amino acid preferences of the Envs and their relationship to HIV
evolution
The most immediate question is how authentically the experimental measurements describe the

actual selection on Env function in nature. Direct comparisons between experimentally measured

amino acid preferences and amino acid frequencies in natural sequences are confounded by the fact

that the natural sequences are evolutionarily related. This problem can be overcome by making the

comparison in a phylogenetic context to account for the evolutionary relationships among

sequences.

Specifically, we used our deep mutational scanning data to construct experimentally informed

codon models (ExpCM’s) for Env’s evolution. An ExpCM is a phylogenetic substitution model that

incorporates the functional constraints measured in a deep mutational scanning experiment

(Hilton et al., 2017). If the experiment captures much of the actual evolutionary constraint on a

gene, then an ExpCM will describe the gene’s natural evolution better than a standard phylogenetic

codon substitution model. The reason is that standard codon substitution models (Yang et al.,

2000) only model functional constraint via a single parameter that represents the rate of fixation of

nonsynonymous protein-altering mutations relative to synonymous ones; this parameter is called

dN/dS or !. In contrast, an ExpCM accounts for the preference of each site for each of the 20 amino

acids under the functional selection in the deep mutational scan, and then additionally adds an !

parameter that represents the relative rate of nonsynonymous to synonymous substitutions after

accounting for these functional constraints (Bloom, 2017; Hilton et al., 2017). Importantly, since we

expect some sites in Env to be under diversifying selection from immunity, we extended the

ExpCM’s described in Hilton et al. (2017) to draw ! from a gamma distribution as is commonly

done for codon-substitution models (Yang et al., 2000).

Table 1 shows that ExpCM’s informed by the deep mutational scanning of either BG505 or

BF520 describe the natural evolution of Env vastly better than a standard codon substitution model.

In addition to the improved fit of the ExpCM’s, we can also interpret the ! parameter. Recall that for

standard codon substitution models, ! is simply the rate of fixation of nonsynonymous mutations rel-

ative to synonymous ones. For such models, the gene-wide average ! is almost always <1, since

purifying selection purges many functionally deleterious amino acid mutations even for adaptively

evolving proteins (Murrell et al., 2015). Indeed, Table 1 shows that Env’s gene-wide average ! is

<one for a standard model. But for ExpCM’s, ! is the relative rate of nonsynonymous to synonymous

substitutions after accounting for functional constraints measured in the deep mutational scanning

(Bloom, 2017). For the ExpCM’s, the gene-wide average ! is >1 (Table 1), indicating that external

selection (e.g. from immunity) drives Env to fix amino acid mutations faster than expected under a

null model that only accounts for functional constraints on the protein.

ExpCM’s also have a stringency parameter that relates selection in the experiments to that in

nature. Essentially, this parameter indicates how strongly natural selection prefers the amino acids

that are preferred in the deep mutational scanning (Hilton et al., 2017). A stringency parameter >1

indicates that natural selection prefers the same amino acids as the experiments, but with greater

stringency. Both ExpCM’s have stringency parameters >1 (Table 1)—a finding that makes sense,

since the stop-codon analysis in the previous section suggests that the experimental selections are

more lax than natural selection on HIV.

For the entire rest of the paper, we use the experimentally measured preferences re-scaled by

the stringency parameters in Table 1. The reason we do this is to distinguish genuine differences

between the two Envs from mere variation in the strength of selection between the two sets of

experiments. Re-scaling both sets of preferences to optimally describe Env evolution in nature is a

principled way to standardize the measurements; see (Hilton et al., 2017) and the

Materials and methods section entitled ‘Re-scaling the preferences’ for a more detailed explanation.

A qualitative way to assess if the deep mutational scanning authentically describes selection on

Env function is to visually compare the measurements with existing knowledge. Figure 4 and Fig-

ure 5 show the re-scaled across-replicate average of the amino acid preferences for each Env. At

sites of known functional importance, these preferences are usually consistent with prior knowledge.

For instance, residues T257, D368, E370, W427, and D457 are important for Env binding to CD4

(Olshevsky et al., 1990), and all these amino acids are highly preferred in our deep mutational scan-

ning (Figure 4 and Figure 5). Likewise, Env has 10 disulfide bonds (linking sites 54–74, 119–205,
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126–196, 131–157, 218–247, 228–239, 296–331, 378–445, 385–418, and 598–604), most of which are

important for function (van Anken et al., 2008)—and the cysteines at these sites are highly pre-

ferred in our deep mutational scanning. The deep mutational scanning is also consistent with prior

knowledge about sites that are tolerant of mutations. For instance, Env has five variable loops that

mostly evolve under weak constraint in nature (Starcich et al., 1986; Zolla-Pazner and Cardozo,

2010)—and most sites in these loops are mutationally tolerant in our deep mutational scanning (see

sites indicated by gray overlay bars in Figure 4 and Figure 5, such as 132 to 195). It is beyond the

scope of this paper to catalog associations between our measurements and all other prior muta-

tional studies of Env, but the concordance of our findings with the above mutational studies, and the

fact that our data improve phylogenetic models of Env’s natural evolution, suggest that our experi-

ments do a reasonable job of authentically measuring functional selection on Env.

Shifts in amino acid preferences between BG505 and BF520
The most fundamental question that we seek to address is how similar the amino acid preferences

are between the two Envs. We have already noted that Figure 3B shows that the preferences are

more correlated for replicate measurements on the same Env than for replicate measurements on

different Envs. However, simply comparing correlation coefficients does not identify specific sites

where mutational effects have shifted, nor does it quantify the magnitude of any shifts.

We therefore used a more rigorous approach to identify sites where the amino acid preferences

differ between BG505 and BF520 by an amount that exceeds the noise in our experiments. We first

re-scaled the preferences from each experimental replicate by the stringency parameter for that Env

from Table 1 to calibrate all measurements to the stringency of natural selection. We then identified

the 659 sites in the mutagenized regions of Env that are pairwise alignable between BG505 and

BF520 (Figure 6—source data 1). For each site, we calculated the shift in amino acid preferences

between Envs using an approach similar to that of (Doud et al., 2015) as illustrated in Figure 6A.

This approach calculates the magnitude of the shift after correcting for experimental noise by com-

paring the differences in preferences between replicates for BG505 and BF520 to the differences

between replicates for the same Env. Figure 6A shows this calculation for a site that has not shifted

(site 598, which strongly prefers cysteine in both Envs), the most shifted site (512, which shifts from

being mutationally tolerant in BG505 to strongly preferring alanine in BF520), and two other sites

with more intermediate behaviors.

The overall distribution of shifts between BG505 and BF520 is shown in Figure 6B. Most sites

have relatively small shifts (close to zero), although there is a long tail of sites with large shifts. This

Table 1. Evolutionary models informed by the deep mutational scanning describe HIV’s evolution in nature much better than a

standard substitution model.

Shown are the results of maximum likelihood fitting of substitution models to the clade A phylogeny in tree. Experimentally informed

codon models (Hilton et al., 2017) utilizing the across-replicate average of the deep mutational scanning describe Env’s natural evolu-

tion far better than a standard codon substitution model (Yang et al., 2000) as judged by comparing the Akaike information criteria

(Posada and Buckley, 2004). Both ExpCM’s have a stringency parameter >1. All models draw ! from a gamma distribution, and the

table shows the mean (�!) and shape parameters (!a and !b) of this distribution. The last two columns show the number of sites evolv-

ing faster (!r>1) or slower (!r<1) than expected at a false discovery rate of 0.05, as determined using the approach in Bloom (2017)

(see also the last section of the Results). Analyses were performed using phydms (Hilton et al., 2017, http://jbloomlab.github.io/

phydms/). Table 1—source data 1. shows the results for additional substitution models.

Model DAIC LogLikelihood nParams Stringency �! !a !b Nsites !r>1 Nsites !r<1

ExpCM BF520 0.0 �35218.8 7 2.8 1.4 1.0 0.7 66 35

ExpCM BG505 269.0 �35353.3 7 2.1 1.3 0.9 0.7 65 53

Goldman-Yang M5 3455.1 �36941.4 12 nan 0.8 0.6 0.7 14 211

DOI: https://doi.org/10.7554/eLife.34420.013

The following source data available for Table 1:

Source data 1. Results for phylogenetic models where ! is not drawn from a gamma-distribution or where the preferences are averaged across sites to

eliminate the site specificity are in modelcomparison.md.

DOI: https://doi.org/10.7554/eLife.34420.014

Haddox et al. eLife 2018;7:e34420. DOI: https://doi.org/10.7554/eLife.34420 8 of 29

Research article Genomics and Evolutionary Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.34420.013
https://doi.org/10.7554/eLife.34420.014
https://doi.org/10.7554/eLife.34420


Figure 4. Amino acid preferences for the BG505 Env. At each site, the height of the letter is proportional for that site’s preference for that amino acid.

The top color bar indicates the region of Env (gp120 variable loop, gp120 not variable loop, or gp41). The lower color bar indicates the evidence that

the site evolves faster (!r>1) or slower (!r<1) than expected given the experiments (Bloom, 2017). We report the p-value for !r 6¼ 1 rather than the

value of !r itself since point estimates of !r are unreliable for individual sites due to low numbers of observations, making the p-value a better indicator

of the strength of the statistical evidence for faster or slower than expected evolution (Kosakovsky Pond and Frost, 2005; Murrell et al., 2012). The

letters above the logos indicate the wildtype amino acid in BG505. Sites are numbered using the HXB2 scheme (Korber et al., 1998). This logo plot

shows the site-specific amino acid preferences for BG505 after averaging the replicates and re-scaling by the stringency parameter in Table 1. The

figure was generated using dms_tools2 (Bloom, 2015), which in turn utilizes weblogo (Crooks et al., 2004). The numerical values of the preferences

are in Figure 4—source data 1, the mapping from sequential to HXB2 numbering is in Figure 4—source data 2, and the !r values are in Figure 4—

source data 3.

DOI: https://doi.org/10.7554/eLife.34420.015

The following source data is available for figure 4:

Source data 1. The numerical values of the amino acid preferences plotted in this figure are in rescaled_BG505_prefs.csv.

DOI: https://doi.org/10.7554/eLife.34420.016

Source data 2. The sequence of BG505 Env and mapping from sequential (original column) to HXB2 numbering (new column) is in BG505_to_HXB2.csv.

DOI: https://doi.org/10.7554/eLife.34420.017

Source data 3. The !r values and associated p-values for BG505 in HXB2 numbering are in BG505_omegabysite.tsv.

DOI: https://doi.org/10.7554/eLife.34420.018
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tail reaches its upper value with site 512, which has a shift of 0.52 out of a maximum possible of 1.0.

How should we interpret this distribution—have mutational effects shifted a lot, or not very much?

We can establish an upper-bound for how much sites might shift by comparing Env to a non-homol-

ogous protein. Figure 6B shows the distribution of shifts when comparing Env to influenza’s

Figure 5. Amino acid preferences for the BF520 Env. This figure is the same as Figure 4 except that it shows the data for BF520 instead of BG505. The

numerical values of the preferences are in Figure 5—source data 1, the mapping from sequential to HXB2 numbering is in Figure 5—source data 2,

and the !r values are in Figure 5—source data 3.

DOI: https://doi.org/10.7554/eLife.34420.019

The following source data is available for figure 5:

Source data 1. The numerical values of the amino acid preferences plotted in this figure are in rescaled_BF520_prefs.csv.

DOI: https://doi.org/10.7554/eLife.34420.020

Source data 2. The sequence of BF520 Env and mapping from sequential (original column) to HXB2 numbering (new column) is in BF520_to_HXB2.csv.

DOI: https://doi.org/10.7554/eLife.34420.021

Source data 3. The !r values and associated p-values for BF520 in HXB2 numbering are in BF520_omegabysite.tsv.

DOI: https://doi.org/10.7554/eLife.34420.022
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hemagglutinin protein, which has previously had its amino acid preferences measured by deep muta-

tional scanning (Doud and Bloom, 2016). Most sites have large shifts between Env and hemaggluti-

nin, with the typical shift being ~ 0.4 and some approaching the maximum value of 1.0. We can also

establish a lower-bound by creating a null distribution for the expected shifts if all differences are

simply due to experimental noise. This null distribution is created by randomizing the experimental

replicates among Envs. Figure 6B shows that the null distribution is more peaked at zero than the

real distribution, and does not have the same prominent tail of sites with large shifts. The answer to

the question of how much mutational effects have shifted is therefore nuanced: they have substan-

tially shifted at some sites, but remain vastly more similar between the two Envs than between two

unrelated proteins.

We can use the null distribution to identify sites where the shifts between BG505 and BF520 are

significantly larger than the noise in our experiments (Figure 6B). There are 30 such sites at a false

discovery rate of 0.1. Figure 6C shows the amino acid preferences of these significantly shifted sites

for each Env. For the majority of shifted sites, one Env prefers a specific amino acid whereas the

other Env tolerates many amino acids; for instance, see sites 512, 516, 599, 165, 605 and 505 in

Figure 6C. Such broadening and narrowing of a site’s mutational tolerance is frequently linked to

changes in protein stability, with a more stable protein typically being more mutationally tolerant

(Wang et al., 2002; Bloom et al., 2006; Gong et al., 2013; Kumar et al., 2017). Work with engi-

neered Env protein in the form of ‘SOSIP’ trimer (Binley et al., 2000; Sanders et al., 2002) has

shown that BG505 SOSIP is more thermostable than BF520 SOSIP (Verkerke et al., 2016). Consis-

tent with this fact, sites with altered mutational tolerance are often (although not always, see sites

165 and 520 in Figure 6C) more mutationally tolerant in BG505. Differences in Env’s expression level

might also contribute to a general broadening or narrowing of tolerance to subsequent mutations.

The reason is that our experiments select for viral growth (which is affected by both Env function

and expression), so it is possible that some of the shifts are due to epistatic mutational effects on

expression rather than function.

However, not all of the significantly shifted sites show a simple pattern of broadening or narrow-

ing of mutational tolerance. For instance, site 288 does not alter its mutational tolerance but rather

flips its rather narrow amino acid preference from phenylalanine in BG505 to leucine in BF520

(Figure 6C). Thus, there is variation in both the extent and types of shifts observed.

Structural and evolutionary properties of shifted sites
What distinguishes the sites that have undergone significant shifts? First, we analyzed the distribu-

tion of shifted sites in context of Env’s three-dimensional structure. Env’s structure is highly confor-

mationally dynamic and undergoes large changes upon receptor binding and membrane fusion. In

an effort to account for these dynamics, we examined multiple conformational states of Env: the

closed pre-fusion state (Stewart-Jones et al., 2016), the open CD4-bound state (Ozorowski et al.,

2017), and the post-fusion six-helix bundle (Weissenhorn et al., 1997). Figure 7A shows the loca-

tions of the shifted sites on the crystal structure of Env in the closed pre-fusion state. There is no

visually obvious tendency for shifted sites to preferentially be on Env’s surface or in its core, and sta-

tistical analysis of both the closed and open states of Env (Figure 7B) finds no association between a

site’s relative solvent accessibility and whether its amino acid preferences have shifted. We did not

attempt to analyze the association between solvent accessibility and shift for the post-fusion six-helix

bundle because crystal structures of this conformation only contain ~ 80 Env residues

(Weissenhorn et al., 1997; Chan et al., 1997; Tan et al., 1997).

However, Figure 7A does suggest that the sites of significant shifts tend to cluster in Env’s struc-

ture. A statistical analysis confirms that there is clustering of shifted sites for the closed and open

conformations, with the effect being strongest when we define contacts based on the closest intra-

residue distance across these two conformations (Figure 7C). Therefore, the factors that drive shifts

in Env’s mutational tolerance often affect physically interacting clusters of residues in a coordinated

fashion. We also investigated clustering of shifted sites in the post-fusion six-helix bundle. Because

structures of this conformation only resolve the coordinates of ~80 residues, we did not perform a

statistical analysis. However, a qualitative analysis revealed that three of the four shifted sites that

are resolved in the post-fusion conformation cluster at one end of the helical bundle (Figure 7—fig-

ure supplement 1).
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Figure 6. Env sites with shifted amino acid preferences between BG505 and BF520. Note that the preferences have been re-scaled using the stringency

parameters in Table 1 to enable direct comparison across Envs. (A) Calculation of the corrected distance between the amino acid preferences of

BG505 and BF520 at four example sites. We have triplicate measurements for each Env. We calculate the distance between each pair of replicate

measurements, and group these into comparisons between the two Envs and within replicates for the same Env. We compute the root-mean-square

distance (RMSD) for both sets of comparisons, which we denote as RMSDbetween and RMSDwithin. The latter quantity is a measure of experimental noise.

The noise-corrected distance between Envs at a site, RMSDcorrected, is simply the distance between the two Envs minus this noise. (B) The bottom

distribution (orange) shows the corrected distances between BG505 and BF520 at all alignable sites (see Figure 6— source data 1 for numerical

values). The next distribution (blue) is a null generated by computing the corrected distances on all randomizations of the replicates among Envs. The

top two distributions (green) compare Env to the non-homologous influenza hemagglutinin (HA) protein (Doud and Bloom, 2016) simply putting sites

into correspondence based on sequence number. We compute the p-value that a site has shifted between BG505 and BF520 as the fraction of the null

distribution that exceeds that shift, and identify significant shifts at a false discovery rate (FDR) of 0.1 using the method of (Benjamini and Hochberg,

1995). Using this approach, 30 of the 659 sites have significant shifts (corrected distance �0.22). (C) All sites that have significantly shifted their

amino acid preferences at an FDR of 0.01. For each site, the logo stacks show the across-replicate average preferences for BG505 and BF520. The wild-

type amino acid for that Env is indicated using the small black letters above each logo plot; note how the wild-type amino acid is frequently but not

always the most preferred one. The sites are sorted by the magnitude of the shift.

DOI: https://doi.org/10.7554/eLife.34420.023

The following source data is available for figure 6:

Source data 1. The corrected distances between BG505 and BF520 at each site are in BG505_to_BF520_prefs_dist.csv.

DOI: https://doi.org/10.7554/eLife.34420.024
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An obvious hypothesis is that strongly shifted sites have substituted between BG505 and BF520,

or physically contact such substitutions. According to this hypothesis, substitutions would alter the

local physicochemical environment of the substituted site and its neighbors, thereby shifting the

amino acid preferences of sites in the physical cluster. But surprisingly, for both the closed and open

conformations, the typical magnitude of shifts is not significantly larger at sites that have substituted,

or at sites that contact sites that have experienced substitutions (Figure 7C). For the six-helix

Figure 7. Characteristics of significantly shifted sites. (A) One monomer of the closed pre-fusion Env trimer

(Stewart-Jones et al., 2016) is colored from white to red according to the magnitude of the mutational shift at

each site (red indicates large shift). Sites that are significantly shifted according to Figure 6B are in spheres, and

all other sites are in cartoon representation. (B) There is no significant difference in the relative solvent accessibility

of sites that have and have not undergone significant shifts. This observation holds for both the closed trimer

conformation in (A) and the CD4-bound trimer conformation (Ozorowski et al., 2017). The absolute solvent

accessibility of each site was calculated using DSSP (Kabsch and Sander, 1983) and normalized to a relative

solvent accessibility using the absolute accessibilities from Tien et al. (2013). (C) Sites of significant shifts are

clustered in the structures of both the closed and open Env trimers. The left two plots show the distance of each

significantly shifted and not-shifted site to the closest other shifted site in the indicated structure. The right-most

plot shows the minimum distance across both conformations. The trend for shifts to cluster becomes stronger

when considering the minimum distance, suggesting multiple conformations contribute to this trend. (D) Large

mutational shifts are not strongly enriched at sites that have substituted between BG505 and BF520, or at sites

that contact sites that have substituted. The plots show the magnitudes of the shifts among structurally resolved

sites that have substituted between BG505 and BF520, the non-substituted sites that physically contact a

substitution in the indicated structure(s) (any non-hydrogen atom within 3.5 angstroms), and all other sites.

Figure 7— source data 1 shows that there is a borderline-significant tendency of significantly shifted sites to have

substituted. All plots only show sites that are structurally resolved in the indicated structure(s). Structural distances

and solvent accessibilities were calculated using all monomers in the trimer. P-values were calculated using the

Mann-Whitney U test. Figure 7—figure supplement 1 and Figure 7—figure supplement 2 zoom in on some

relevant clusters of sites.

DOI: https://doi.org/10.7554/eLife.34420.025

The following source data and figure supplements are available for figure 7:

Source data 1. The sites of significant shifts in Figure 6B are somewhat more likely to have substituted between

BG505 and BF520.

DOI: https://doi.org/10.7554/eLife.34420.028

Figure supplement 1. Cluster of shifted sites in the post-fusion six-helix bundle of Env.

DOI: https://doi.org/10.7554/eLife.34420.026

Figure supplement 2. Clusters of shifted sites in highly dynamic regions of Env.

DOI: https://doi.org/10.7554/eLife.34420.027
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bundle, there are five structurally resolved substituted sites, one of which is adjacent to the cluster

of shifted sites (Figure 7—figure supplement 1). The number of resolved shifted and substituted

sites in this structure is too small for a meaningful statistical analysis of the type in Figure 7D. How-

ever, the cluster of shifted and substituted sites in the six-helix bundle is also present in the closed

and open states (Figure 7—figure supplement 1), and so is included in the statistical analyses in

Figure 7D.

There is a borderline trend for the significantly shifted sites to be more likely to have substituted

between BG505 and BF520 (Figure 7—source data 1), but most shifted sites have not substituted

(only 8 of the 30 shifted sites differ in amino acid identity between the two Envs). The lack of strong

enrichment in shifts at substituted sites contrasts with previous protein-wide experimental

(Doud et al., 2015) and simulation-based (Pollock et al., 2012; Shah et al., 2015) studies of shifting

amino acid preferences, which found that shifts were dramatically more pronounced at sites of sub-

stitutions. The difference may arise because these earlier studies examined proteins that are fairly

conformationally static (absolutely so in the case of the simulations). The fact that Env is extremely

complex and conformationally dynamic (Munro et al., 2014; Ozorowski et al., 2017) may increase

the opportunities for long-range epistasis to enable substitutions at one site to shift the amino acid

preferences of distant sites.

Indeed, many of the shifted sites cluster within regions of Env that are highly conformationally

dynamic. Figure 7—figure supplement 2 shows the structural context of these clusters in finer

detail. One cluster is at the trimer apex where two of Env’s variable loops pack against one another

and against an adjacent protomer. These interactions are likely involved in regulating the transition

between conformational states, and upon CD4 binding, these loops become highly disordered

(Guttman et al., 2014; Ozorowski et al., 2017). Mutations at two of the shifted sites in this cluster

(165 and 307) have been shown to cause Env to assume aberrant conformations, suggesting that

these sites can strongly modulate Env’s dynamics (Lee et al., 2017). Strikingly, this cluster of shifted

sites may reflect previously observed differences in the conformational dynamics of this regions

between these two Envs; the V2 region of BF520 SOSIP trimer is more accessible to deuterium

exchange than the BG505 SOSIP trimer (Verkerke et al., 2016). The other cluster of shifted sites is

near a network of hydrophobic amino acids that has been proposed to help transmit the large-scale

conformational change that takes place upon CD4 binding (Ozorowski et al., 2017). One of the

shifted sites (site 69) overlaps with this network, and mutations at another (site 64) have been shown

to strongly modulate the relative stability of the open and closed conformations (de Taeye et al.,

2015). In total, these two clusters consist of nearly half of the shifted sites (13 out of 30). One

hypothesis why so many shifted sites cluster in these regions is that their dynamic nature allows

long-range epistatic interactions to be readily propagated between substituted sites and distant

shifted sites. It is difficult to discern exactly how these interactions might occur, but there is certainly

a trend for sites that are conformationally dynamic to also be sites that show shifts in their

amino acid preferences during evolution.

Entrenchment of substitutions modestly contributes to mutational
shifts
One idea that has recently gained support in the protein-evolution field is that substitutions become

‘entrenched’ by subsequent evolution (Pollock et al., 2012; Shah et al., 2015; Starr et al., 2017).

Entrenchment is the tendency of a mutational reversion to become increasingly unfavorable as a

sequence evolves. Given two homologs, if there is no entrenchment then the effect of mutating a

site in the first homolog to its identity in the second will simply be the opposite of mutating the site

in the second homolog to its identity in the first. But if there is entrenchment, then both mutations

will be unfavorable, since the site is entrenched at its preferred identity in each homolog.

Figure 8 shows the distribution of effects for mutating all sites that differ between BG505 and

BF520 to the identity in the other Env. As expected under entrenchment, the average effect of these

mutations is deleterious—although there are a substantial number of sites where the mutational flips

are not deleterious. We can get some sense of the magnitude of the entrenchment by comparing

the effects of the BG505$BF520 mutations to the distribution of effects of all possible amino acid

mutations (Figure 8). This comparison shows that even unfavorable inter-Env mutational flips are

generally more favorable than random amino acid mutations. Therefore, entrenchment occurs for

some but not all substitutions that distinguish BG505 and BF520, and the magnitude of
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entrenchment is less than the effect of a typical random mutation. Entrenchment of substitutions

therefore contributes to some of the mutational shifts. But given that many of these shifts occur at

sites that do not even differ between the Envs (Figure 7D), entrenchment of substitutions is clearly

not the only cause of the shifting amino acid preferences.

Comparing selection in the lab to natural selection
Our experiments measure the effects of mutations on viral growth in a T-cell line in the lab. But HIV

actually evolves in humans, where additional selection pressures on Env are undoubtedly present.

For instance, antibody pressure might increase the rate of evolution at some sites (Albert et al.,

1990; Wei et al., 2003; Richman et al., 2003), whereas pressure to mask certain epitopes

(Kwong et al., 2002) might add constraint at other sites. Comparing selection in our experiments to

natural selection can identify sites that are under such additional pressures during HIV’s actual evolu-

tion in humans.

We determined whether each site in Env evolves faster or slower in nature than expected given

three models: that evolution is purely neutral (all nonsynonymous and synonymous mutations have

equivalent effects), that sites are under the protein-level constraint measured in our experiments

Figure 8. Entrenchment of substitutions during Env evolution. There are 12,521 possible amino acid mutations at

the 659 mutagenized sites alignable between BG505 and BF520. The blue densities show the effects of all these

mutations to each Env. The orange densities show the effects of just the 92 mutations that convert BG505 to

BF520 or vice versa. In the absence of entrenchment, mutating a site in BG505 to its identity in BF520 should have

the opposite effect of mutating the site in BF520 to its identity in BG505. In this case, we would expect the

BF520!BG505 distribution to be the mirror image of the BG505!BF520 distribution—and both distributions

should be centered around zero if the two Envs are equivalently functional. Instead, mutating a site in either Env

to its identity in the other Env tends to be deleterious, indicating that substitutions are often entrenched in the

Env in which they have fixed. The effect of a mutation is quantified as the log of the ratio of the site’s preference

for the mutant amino acid to the preference for the wild-type amino acid.

DOI: https://doi.org/10.7554/eLife.34420.029
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with BG505, or that sites are under the constraint measured with BF520. The first model used a stan-

dard dN/dS test (Kosakovsky Pond and Frost, 2005), whereas the other two models are conceptu-

ally similar but account for the experimentally measured amino acid preferences as described by

(Bloom, 2017). All three models test if individual sites evolve faster or slower than expected, but

they ‘expect’ different things: the dN/dS model expects nonsynonymous and synonymous mutations

fix at the same rate, while the ExpCM expects the rate at a site to depend on the experimentally

measured functional constraints. In all cases, the evidence that a site r evolves differently than

expected is statistically summarized by the p-value that !r is > or < 1. The standard dN/dS model

finds hundreds of sites that evolve slower than expected under neutral evolution (Table 1, !r<1),

and only a handful of sites that evolve faster than expected under neutral evolution (Table 1, !r>1).

This finding is unsurprising, since it is well known that Env is under functional constraint. In contrast,

ExpCM’s that test the rates of evolution relative to the experimentally measured constraints find far

fewer sites that evolve slower than expected, but many more sites that evolve faster (Table 1).

The sites that evolve slower or faster than expected from the experiments are shown in

Figure 9A, B, and overlaid on the logoplots in Figure 4 and Figure 5 as the !r values. The identified

sites are similar regardless of whether we use the experiments with BG505 or BF520 (Figure 9C).

The reason the results are similar for both experimental datasets is that (as discussed above) the

amino acid preferences of most sites are similar in both Envs, suggesting that either dataset pro-

vides a reasonable approximation of the site-specific functional constraints across the clade A Envs

in Figure 1.

What causes some sites to evolve faster or slower in nature than expected from the experiments?

The answer in both cases is likely to be immune selection. Most of the sites of faster-than-expected

evolution are on the surface of Env (Figure 9A, B and Figure 9—figure supplement 1). Env’s escape

from autologous neutralizing antibodies often involves amino acid substitutions in surface-exposed

regions (Moore et al., 2009), including at many of the sites that evolve faster than expected. Since

our deep mutational scanning did not impose antibody pressure, sites where substitutions are anti-

body-driven will evolve faster in nature than expected from the experiments.

Interestingly, immune selection also offers a plausible explanation for the sites that evolve slower

than expected. In addition to escaping immunity via substitutions at antibody-binding footprints,

Env is notorious for employing a range of more general strategies to reduce its susceptibility to anti-

bodies. These strategies include shielding immunogenic regions with glycans (Wei et al., 2003;

Stewart-Jones et al., 2016; Gristick et al., 2016) or hiding them by adopting a closed protein con-

formation (Kwong et al., 2002; Guttman et al., 2015; Ozorowski et al., 2017). Sites that contrib-

ute to such general immune-evasion strategies will be under a constraint in nature that is not

present in our experiments—and indeed, such sites evolve more slowly than expected from our

experiments. For instance, we find very little selection to maintain most glycans in our cell-culture

experiments. Of the 21 N-linked glycosylation sites shared between BG505 and BF520, only four are

under strong selection to maintain the glycan in our experiments—despite the fact that most are

conserved in nature (Figure 9C and Figure 9—figure supplement 2). This finding concords with

prior literature suggesting that these glycans are selected primarily for their role in immune evasion

(Pugach et al., 2004; Wang et al., 2013; Rathore et al., 2017). Similarly, a network of sites that

help regulate Env’s transition between open and closed conformations that have different antibody

susceptibilities (Figure 9D) also evolve slower in nature than expected from our experiments. There-

fore, we can distinguish evolutionary patterns that are shaped by simple selection for Env function

from those that are due to the additional complex pressures imposed during human infections.

Discussion
We have experimentally measured the preference for each amino acid at each site in the ectodomain

and transmembrane domain of two Envs under selection for viral growth in cell culture. These

amino acid preference maps are generally consistent with prior knowledge about sites that are

important for protein properties such as receptor binding or disulfide-mediated stability. However,

the main value of these maps comes not from comparing them with prior knowledge, but from the

fact that such prior knowledge encompasses just a small fraction of the vast mutational space avail-

able to Env. Because Env evolves so rapidly, every study of this protein must be placed in an
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evolutionary context, and our comprehensive amino acid preference maps potentially enable this in

ways that prior piecemeal studies of mutations cannot.

But these maps come with a potentially serious caveat: each one is measured for just a single Env

variant. The major question that our study aimed to answer is whether the maps are still useful for

evolutionary questions, or whether Env’s amino acid preferences shift so rapidly that each map only

applies to the specific HIV strain for which it was measured. This question is reminiscent of one that

was grappled with in the early days of protein crystallography, when it first became possible to build

Figure 9. Sites in Env that evolve faster or slower in nature than expected given the functional constraints

measured in the lab. We calculated the statistical evidence that each site evolves faster (!r>1) or slower (!r<1)

than expected given the experimentally measured amino acid preferences using the method of Bloom (2017). (A)

One monomer of the Env trimer (Stewart-Jones et al., 2016) is colored from blue to white to red based on the

strength of evidence that sites evolve slower than expected (blue), as expected (white) or faster than expected

(red) given the BG505 experiments. Sites for which we lack !r estimates are colored black. Sites where the rate of

evolution is significantly different than expected at a false discovery rate of 0.05 are shown in spheres. (B) Like (A)

but using the data from the BF520 experiments. For both Envs, sites that evolve significantly slower or faster than

expected are often on Env’s surface Figure 9—figure supplement 1. (C) The results are similar regardless of

whether the BG505 or BF520 experiments are used. Many of the sites of slower-than-expected evolution are

asparagines in N-linked glycosylation motifs Figure 9—figure supplement 2. All sites that evolve slower than

expected for both experimental datasets are in Figure 9—figure supplement 3. (D) A large cluster of sites that

evolve slower than expected is likely involved in Env’s transition between open and closed conformational states.

Gray boxes indicate sites that (Ozorowski et al., 2017) proposed form a hydrophobic network that regulates the

conformational change; blue boxes and sticks indicate sites that evolve slower than expected. All analyses used

the phylogenetic tree in Figure 1. The !r and Q-values are in Figure 9— source data 1.

DOI: https://doi.org/10.7554/eLife.34420.030

The following source data and figure supplements are available for figure 9:

Source data 1. The !r and Q-values are in merged_omegabysite.csv.

DOI: https://doi.org/10.7554/eLife.34420.034

Figure supplement 1. Relative solvent accessibilities of sites evolving faster or slower than expected.

DOI: https://doi.org/10.7554/eLife.34420.031

Figure supplement 2. Amino acid preferences and alignment frequencies for glycosylation motifs.

DOI: https://doi.org/10.7554/eLife.34420.032

Figure supplement 3. Amino acid preferences and alignment frequencies of sites that evolve slower than

expected.

DOI: https://doi.org/10.7554/eLife.34420.033
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maps of a protein’s structure. Because it was not (and is still not) possible to crystallize every variant

of a protein, it was necessary to determine whether protein structures could be usefully generalized

among homologs. Fortunately for the utility of structural biology, it soon became apparent that

closely homologous proteins have similar structures (Chothia and Lesk, 1986; Sander and

Schneider, 1991). This rough generalizability of protein structures holds even for a protein as con-

formationally complex as Env—for although there are many examples of mutations that alter aspects

of Env’s conformation and dynamics (Kwong et al., 2000; White et al., 2010; Almond et al., 2010;

Davenport et al., 2013), SOSIP trimer structures from diverse Env strains remain highly similar in

most respects (Julien et al., 2015; Pugach et al., 2015; Stewart-Jones et al., 2016;

Verkerke et al., 2016; Gristick et al., 2016).

Our results show that amino acid preference maps of Env also have a useful level of conservation

for many purposes. From a qualitative perspective, the amino acid preferences look mostly similar

between BG505 and BF520, and so provide a valuable reference for estimating which mutations are

likely to be tolerated at each site in diverse HIV strains. Indeed, we anticipate that the complete

maps of mutational effects in Figure 4 and Figure 5 will be useful for future sequence-structure-

function studies. From an analytical perspective, a powerful use of our maps is to identify sites that

evolve differently in nature than is required by the simple selection for viral growth imposed in our

experiments—and the identified sites are largely the same regardless of whether the analysis uses

an amino-acid preference map from BG505 or BF520.

Of course, from the perspective of protein evolution, the most interesting sites are the exceptions

to the general conservation of amino-acid preferences. Consistent with studies of other proteins

(Natarajan et al., 2013; Harms and Thornton, 2014; Doud et al., 2015; Starr et al., 2017), we find

a subset of sites that change markedly in which mutations they tolerate. Some shifted sites simply

accommodate more amino acids in the more stable BG505 Env—a type of shift that has been well-

documented for other proteins (Wang et al., 2002; Bloom et al., 2006; Gong et al., 2013;

Kumar et al., 2017). But interestingly, there is no strong trend for shifts to be enhanced at sites that

differ between BG505 and BF520. Recent studies of protein evolution have focused on the idea that

substitutions become ‘entrenched’ as sites shift to accommodate new amino acids (Pollock et al.,

2012; Shah et al., 2015; Bazykin, 2015; Starr et al., 2017). Indeed, a prior protein-wide compari-

son of amino acid preferences across homologs of influenza nucleoprotein found a significant enrich-

ment of shifts at sites of substitutions (Doud et al., 2015). But although there is some entrenchment

of differences between BG505 and BF520, this is not the major factor behind the shifts in amino acid

preferences: the majority of sites that have shifted between BG505 and BF520 actually have the

same wild-type amino acid in both Envs even though the preferences have shifted. This rather sur-

prising result might be due to Env’s exceptional conformational complexity—mutations can cause

long-range alterations in Env’s conformation (Kwong et al., 2000; White et al., 2010;

Almond et al., 2010; Davenport et al., 2013), so it seems plausible that they might also shift muta-

tional tolerance at distant sites. Regardless of the exact mechanism, our large-scale datasets of

mutational effects in multiple viral strains should be useful for efforts to computationally parameter-

ize ‘fitness landscapes’ of Env (Kouyos et al., 2012; Ferguson et al., 2013; Mann et al., 2014;

Barton et al., 2015; Louie et al., 2018).

Our experiments provide highly quantitative data on the mutational tolerance of Env under selec-

tion for viral growth in cell culture. These data are amenable to rigorous functional and evolutionary

analyses. Here, we have shown how these data can be compared between Envs to identify sites

where mutational tolerance shifts with viral genotype, or between experiments and nature to identify

sites under different pressure in the lab and in humans. Future experiments that modulate selection

pressures in other relevant ways should provide further insight into the forces that drive and con-

strain HIV’s evolution.

Materials and methods

Creation of codon-mutant libraries
Our codon mutant libraries mutagenized all sites in env to all 64 codons, except that the signal pep-

tide and cytoplasmic tail were not mutagenized. The rationale for excluding these regions is that
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they are not part of Env’s ectodomain and are prone to mutations that strongly modulate Env’s

expression level (Chakrabarti et al., 1989; Yuste et al., 2004; Li et al., 1994).

The codon-mutant libraries were generated using the approach originally described in

(Bloom, 2014a), with the modification of (Dingens et al., 2017) to ensure more uniform primer melt-

ing temperatures. The computer script used to design the mutagenesis primers (along with some

detailed implementation notes) is at https://github.com/jbloomlab/CodonTilingPrimers. For BF520,

the three libraries are the same ones described by (Dingens et al., 2017). For BG505, we created

three libraries for this study. The wild-type BG505 sequence used for these libraries is in

Supplemental file 3. The BG505 mutagenesis primers are in Supplemental file 4.

The end primers for the BG505 mutagenesis were: 5’-tgaaggcaaaactactggtccgtctcgagcagaaga-

cagtggcaatgaga-3’ and 5’-gctacaaatgcatataacagcgtctcattctttccctaacctcaggcca-3’. As with BF520, we

cloned the BG505 env libraries into the env locus of the full-length proviral genome of HIV strain

Q23 (Poss and Overbaugh, 1999) using the high-efficiency cloning vector described in

(Dingens et al., 2017). For this cloning, we digested the cloning vector with BsmBI, and then used

PCR to elongate the amplicons to include 30 nucleotides at each end that were identical in sequence

to the ends of the BsmBI-digested vector. The primers for this PCR were: 5’-agataggttaattgagagaa-

taagagaaagagcagaagacagtggcaatgagagtgatgg-3’ and 5’-ctcctggtgctgctggaggggcacgtctcattctttccc-

taacctcaggccatcc-3’. Next, we used NEBuilder HiFi DNA Assembly (NEB, E2621S) to clone the env

amplicons into the BsmBI-digested plasmids. We purified the assembled products using Agencourt

AMPure XP beads (Beckman Coulter, A63880) using a bead-to-sample ratio of 1.5, and then trans-

formed the purified products into Stellar electrocompetent cells (Takara, 636765). The transforma-

tions yielded between 1.5 and 3.6 million unique clones for each of the three replicate libraries, as

estimated by plating 1:2000 dilutions of the transformations. We scraped the plated colonies and

maxiprepped the plasmid DNA; unlike in (Dingens et al., 2017), we did not include a 4 hr outgrowth

step after the scraping step. For the wild-type controls, we maxiprepped three independent cultures

of wildtype BG505 env cloned into the same Q23 proviral plasmid. See Figure 2—figure supple-

ment 1 and Figure 3A for information on the average mutation rate in these libraries as estimated

by Sanger sequencing and deep sequencing, respectively.

Generation and passaging of viruses
For BG505, we generated mutant virus libraries from the proviral plasmid libraries by transfecting

293 T cells in three 6-well plates (so 18 wells total per library) with a per-well mixture of 2 �g plasmid

DNA, 6 �l FuGENE 6 Transfection Reagent (Promega, E269A), and 100 �l DMEM. The 293 T cells

were seeded at 5� 10
5 cells/well in D10 media (DMEM supplemented with 10% FBS, 1% 200 mM

L-glutamine, and 1% of a solution of 10,000 units/mL penicillin and 10,000 �g/mL streptomycin) the

day before transfection, such that they were approximately 50% confluent at the time of transfec-

tion. In parallel, we generated wildtype viruses by transfecting one six-well plate of 293 T cells with

each wildtype plasmid replicate. At 2 days post-transfection, we harvested the transfection superna-

tant, passed it through a 0.2 �m filter to remove cells, treated the supernatant with DNAse to digest

residual plasmid DNA as in (Haddox et al., 2016), and froze aliquots at �80�C. We thawed and

titered aliquots using the TZM-bl assay in the presence of 10 �g/mL DEAE-dextran as described in

(Dingens et al., 2017).

We conducted the low MOI viral passage illustrated in Figure 2A in SupT1.CCR5 cells (obtained

from Dr. James Hoxie; Boyd et al., 2015). The SupT1.CCR5 cells tested negative for mycoplasma.

The SupT1.CCR5 cell line was previously created by engineering the parental SupT1 cell line to

express CCR5 (Boyd et al., 2015). We used antibody staining followed by flow cytometry to validate

that our stock of SupT1.CCR5 cells expressed CCR5, CXCR4, and CD4. There is no validated STR

profile for SupT1.CCR5 cells. However, we performed STR profiling on our stock of cells and com-

pared the results to the ATCC SupT1 (ATCC #CRL-1942) reference profile. We found that 11 of 14

alleles plus both amelogenin alleles matched the reference, with no additional mismatched alleles

ins the SupT1.CCR5 profile. Given the known instability of lymphoma cell lines (Inoue et al., 2000),

this level of identity suggests that the SupT1.CCR5 cells are indeed related to the parental SupT1

cells (Capes-Davis et al., 2013)

During this passage, cells were maintained in R10 media, which has the same composition as the

D10 described above, except RPMI-1640 (GE Healthcare Life Sciences, SH30255.01) is used in the

place of DMEM. In addition, the media contained 10 �g/mL DEAE-dextran to enhance viral infection.
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We infected cells with 4 million (for replicate 1) or 5 million (for replicates 2 and 3) TZM-bl infectious

units of mutant virus at an MOI of 0.01, with cells at a starting concentration of 1 million cells/mL in

vented tissue-culture flasks (Fisher Scientific, 14-826-80). At day one post-infection, we pelleted cells,

aspirated the supernatant, and resuspended cell pellets in the same volume of fresh media still

including the DEAE-dextran. At 2 days post-infection, we doubled the volume of each culture with

fresh media still including DEAE-dextran. At 4 days post-infection, we pelleted cells, passed the viral

supernatant through a 0.2 �m filter, concentrated the virus ~ 30 fold using ultracentrifugation as

described in (Dingens et al., 2017), and froze aliquots at �80�C. In parallel, for each replicate, we

also passaged 2� 10
5 (for replicate 1) or 5� 10

5 (for replicates 2 and 3) TZM-bl infectious units of

wildtype virus using the same procedure. To obtain final titers for our concentrated virus, we thawed

one of the aliquots stored at �80�C and titered using the TZM-bl assay in the presence of 10 �g/mL

DEAE-dextran.

For the final short-duration infection illustrated in Figure 2A, for each replicate we infected 10
6

TZM-bl infectious units into 10
6 SupT1.CCR5 cells in the presence of 100 �g/mL DEAE-dextran (note

that this is a 10-fold higher concentration of DEAE-dextran than for the other steps, meaning that

the effective MOI of infection is higher if DEAE-dextran has the expected effect of enhancing viral

infection). Three hours post-infection, we pelleted the cells and resuspended them in fresh media

without any DEAE-dextran. At 12 hr post-infection, we pelleted cells, washed them once with PBS,

and then used a miniprep kit to harvest reverse-transcribed unintegrated viral DNA (Haddox et al.,

2016).

The generation, passaging and deep sequencing of BF520 was done in a highly similar fashion,

except that we only had a single replicate of the wild-type control. Note that the final passaged

BF520 mutant libraries analyzed here actually correspond to the ‘no-antibody’ controls described in

(Dingens et al., 2017), but that study did not analyze the initial plasmid mutant libraries relative to

these passaged viruses, and so was not able to provide measurements of the amino acid

preferences.

Illumina deep sequencing
We deep sequenced all of the samples shown in Figure 3A: the plasmid mutant libraries and wild-

type plasmid controls, and the cDNA from the final mutant viruses and wildtype virus controls. In

order to increase the sequence accuracy, we used a barcoded-subamplicon sequencing strategy.

This general strategy was originally applied in the context of deep mutational scanning by Wu et al.

(2014), and the specific protocol used in our work is described in Doud and Bloom (2016) (see also

https://jbloomlab.github.io/dms-tools2/bcsubamp.html).

The primers used for BG505 are in Supplementary file 5. The primers used for BF520 are in

(Dingens et al., 2017). The data generated by the Illumina deep sequencing are on the Sequence

Read Archive under the accession numbers provided at the beginning of the Jupyter notebook in

Supplementary file 1 and 2.

Analysis of deep-sequencing data
We analyzed the deep-sequencing data using the dms_tools2 software package

(Bloom, 2015, https://jbloomlab.github.io/dms_tools2/, version 2.2.4). The algorithm that goes from

the deep-sequencing counts to the amino acid preferences is that described in (Bloom, 2015) (see

also https://jbloomlab.github.io/dms-tools2/prefs.html). A Jupyter notebook that performs the

entire analysis including generation of most of the figures in this paper is in Supplementary file 1.

An HTML rendering of this notebook is in Supplementary file 2. A repository containing all of this

code is also available at https://github.com/jbloomlab/EnvMutationalShiftsPaper (Haddox et al.,

2018, copy archived at https://github.com/elifesciences-publications/EnvMutationalShiftsPaper).

The Jupyter notebooks in Supplementary file 1 and 2 also contain numerous plots that summa-

rize relevant aspects of the deep sequencing such as read depth, per-codon mutation frequency,

mutation types, etc. Supplementary file 1 also contains text files and CSV files with the numerical

values shown in these plots.

Citations are also owed to weblogo (Crooks et al., 2004) and ggseqlogo (Wagih, 2017), which

were used in the generation of the logoplots.
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Alignments and phylogenetic analyses of Env sequences
A basic description of the process used to generate the clade A sequence alignment in tree-source

data 1, the alignment mask in tree-source data 1, and the phylogenetic tree in tree are provided in

the legend to that figure. An algorithmic description of how the alignment and tree were generated

are in Supplementary file 1 and 2.

For fitting of the phylogenetic substitution models, we used Table 1 (Hilton et al., 2017, http://

jbloomlab.github.io/phydms/, version 2.2.1) to optimize the substitution model parameters and

branch lengths on the fixed tree topology intree. The Goldman-Yang (or YNGKP) model used in

Table 1 is the M5 variant described by Yang et al. (2000), with the equilibrium codon frequencies

determined empirically using the CF3 � 4 method (Kosakovsky Pond et al., 2010). For the ExpCM

shown in Table 1, we extended the models with empirical nucleotide frequencies described in

Hilton et al. (2017) to also allow ! to be drawn from discrete gamma-distributed categories exactly

as for the M5 model. These ExpCM with gamma-distributed ! were implemented in Table 1 using

the equations provided by (Yang, 1994) (see also http://jbloomlab.github.io/phydms/implementa-

tion.html#models-with-a-gamma-distributed-model-parameter). The preferences were re-scaled by

the stringency parameters in Table 1 as described in Hilton et al. (2017). For both the M5 model

and the ExpCM with a gamma-distributed !, we used four categories for the discretized gamma

distribution.

Table 1—source data 1 shows the results for a wider set of models than those used in Table 1.

These include the M0 model of (Yang et al., 2000), ExpCM without a gamma-distributed !, and

ExpCM in which the amino acid preferences are averaged across sites as a control to ensure that the

improved performance of these models is due to their site-specificity. Note how for these Env align-

ments, using a gamma-distributed ! is very important in order for the ExpCMs to outperform the

M5 model—we suspect this is because there are many sites of strong diversifying selection.

For detection of sites with faster or slower than expected evolution, we used the approach in

(Bloom, 2017), which is exactly modeled on the FEL approach of (Kosakovsky Pond and Frost,

2005) but extended to ExpCM. This approach estimates a p-value that !r is not equal to one for

each site r using a likelihood-ratio test. The actual point estimates of !r are unreliable for individual

sites due to the limited number of observations, so we report the p-value that !r is not equal to one,

which is a better indication of the strength of the statistical evidence for faster or slower than

expected evolution (Kosakovsky Pond and Frost, 2005; Murrell et al., 2012). For the Q-values and

false discovery rate testing, we considered the tests for !r>1 and !r<1 separately.

Supplementary file 1 and 2 contains the code that runs Table 1 to reproduce all of these

analyses.

Re-scaling the preferences
The amino acid preferences that are directly extracted from the deep sequencing data essentially

give the enrichment/depletion of each mutation, normalized to sum to one at each site (Doud et al.,

2015, https://jbloomlab.github.io/dms_tools2/prefs.html). However, the extent that any mutation is

enriched or depleted is a combination of two factors: the inherent effect of that mutation, and the

‘stringency’ of the experimental selection. For instance, if the selection is weak, then deleterious

mutations will only be slightly depleted; conversely, if selection is strong, then deleterious mutations

will be greatly depleted. The fact that the preferences depend on the stringency of the experimental

selection is important if we want to compare results between Envs. The reason is that our goal is to

identify differences in the inherent effects of mutations between Envs, not simply find differences

due to variation in experimental stringency. Of course, we have done our best to perform the experi-

ments for BG505 and BF520 equivalently, but because these are different viruses with different

growth rates, it is impossible to exactly match the experimental stringencies. This can be seen in Fig-

ure 3—source data 1, which shows that stop codons were more depleted for BG505 than BF520,

indicating that selection in our experiments was more stringent for BG505.

How should we best re-scale the preferences? Raising them to a power is a sensible approach. To

see why, imagine a mutation that is depleted 3-fold after 2 rounds of viral growth. If our experiment

instead allowed 2
2 ¼ 4 rounds of viral growth, then the mutation would be depleted 3

2 ¼ 9 -fold.

More generally, if a mutation is enriched in frequency by f-fold after n rounds of viral growth, then it

will be enriched in frequency by fb-fold after b� n rounds of viral growth. Since the amino acid
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preferences are conceptually equivalent to the re-normalized enrichments of mutations

(Bloom, 2015) https://jbloomlab.github.io/dms-tools2/prefs.html, it therefore makes sense that the

re-scaled preference pr;a for amino acid a at site r should be related to the directly measured prefer-

ence p̂r;a by pr;a / p̂r;a

� �b
. And indeed, this is exactly the re-scaling scheme described in

(Hilton et al., 2017) that we use to re-scale our preferences for BG505 and BF520.

The last point is how to choose the re-scaling parameter b for each Env. It turns out that the fea-

tures that we have described above for our experiments are also a feature of natural evolution: the

expected frequency of a substitution during evolution depends not only on the inherent fitness

effect of that mutation, but also on the effective population size, which is conceptually somewhat

similar to the stringency of selection. It turns out that in a mutation-selection phylogenetic model of

evolution, if the amino acid preferences are taken to represent the ‘fitness effects’ of mutations,

then the exponential scaling parameter b is proportional to the effective population size

(Halpern and Bruno, 1998; McCandlish and Stoltzfus, 2014; Bloom, 2014b). Therefore, fitting the

b parameter using a phylogenetic approach enables standardization of the preferences for the two

Envs, and re-scales the preferences so that they best match with the actual stringency of selection

observed in nature (Hilton et al., 2017).

Note that in practice this re-scaling scheme is roughly equivalent to a more heuristic approach

that has been used by (Gray et al., 2017) and others. In this heuristic approach, the log-transformed

enrichment ratios from different experiments are adjusted so that the distributions have equal

spreads. Since multiplying log-transformed enrichment ratios is equivalent to exponentiating

amino acid preferences, these two re-scaling procedures apply the same mathematical

transformation.

Identifying sites of shifted amino acid preference
When identifying shifts in amino acid preferences between the two Envs, we needed a way to quan-

tify differences between the Envs while accounting for the fact that our measurements are noisy. The

approach we use is based closely on that of Doud et al. (2015) and is illustrated graphically in

Figure 6A. The RMSDcorrected value is our measure of the magnitude of the shift. Figure 6A, its leg-

end, and the associated text completely explains these calculations with the following exception:

they do not detail how the ‘distance’ between any two preference measurements was calculated.

The distance between preferences at each site was simply defined as half of the sum of absolute

value of the difference between preferences for each amino acid. Specifically, for a given site r, let

pi
r;a be the re-scaled preference for amino acid a in homolog i (e.g. BG505) and let pj

r;a be the re-

scaled preference for that same amino acid in homolog j (e.g. BF520). Then the distance between

the homologs at this site is simply Di;j
r ¼ 1

2

P

a jpi
r;a � pj

r;aj. The factor of 1

2
is used so that the maxi-

mum distance will always fall between zero and one.

Analysis of entrenchment
For the analysis in Figuer 8, the results are presented in terms of the mutational effects rather than

the amino acid preferences. If pr;a is the preference of site r for amino acid a and pr;a0 is the prefer-

ence for amino acid a0 (both re-scaled by the stringency parameters in Table 1), then the estimated

effect of the mutation from a to a0 is simply log
pr;a0

pr;a

� �

.

Data and code availability
All code and input data required to reproduce all analyses in this paper are in Supplementary file 1

(see also Supplementary file 2). A repository containing all of this code is also available at https://

github.com/jbloomlab/EnvMutationalShiftsPaper (Haddox et al., 2018; copy archived at https://

github.com/elifesciences-publications/EnvMutationalShiftsPaper). The deep sequencing data are on

the Sequence Read Archive with the accession numbers listed in Supplementary file 1 and 2.
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cally, this file contains a Jupyter notebook that performs the analysis, all required input data, and all

reasonably sized output files. The Jupyter notebook downloads the deep sequencing data, pro-

cesses it with the dms_tools2 software (Bloom, 2015, https://jbloomlab.github.io/dms_tools2/), and

also performs a variety of downstream analyses that generate most of the figures for this paper.

DOI: https://doi.org/10.7554/eLife.34420.035

. Supplementary file 2. An HTML rendering of the Jupyter notebook that performs the computa-

tional analysis. The actual notebook is in Supplementary file 1, but if you just want to look at the

analysis rather than run it, then you may prefer this file instead. In particular, the notebook contains

plots detailing the deep sequencing data analysis as generated using the dms_tools2 software

(Bloom, 2015, https://jbloomlab.github.io/dms_tools2/).

DOI: https://doi.org/10.7554/eLife.34420.036
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. Supplementary file 3. The sequence of the wildtype BG505 env used in our study is in FASTA for-

mat in the file BG505_env.fasta.

DOI: https://doi.org/10.7554/eLife.34420.037

. Supplementary file 4. The sequences of the primers used for the BG505 codon mutagenesis are in

the file BG505_codon_mutagenesis_primers.txt.

DOI: https://doi.org/10.7554/eLife.34420.038

. Supplementary file 5. The primers used for the BG505 barcoded-subamplicon sequencing are in

the file BG505_bcsubamp_primers.txt.

DOI: https://doi.org/10.7554/eLife.34420.039

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.34420.040

Major datasets

The following datasets were generated:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Dingens AS, Had-
dox HK, Overbaugh
J, Bloom JD

2017 Deep mutational scanning of BF520 https://www.ncbi.nlm.
nih.gov/sra?term=
SAMN06313000

Publicly available at
the NCBI Sequence
Read Archive
(accession no:
SAMN06313000)

Haddox HK, Din-
gens AS, Hilton SK,
Overbaugh J,
Bloom JD

2017 Deep mutational scanning of
BG505

https://www.ncbi.nlm.
nih.gov/sra?term=
SAMN07718028

Publicly available at
the NCBI Sequence
Read Archive
(accession no:
SAMN07718028)

References
Al-Mawsawi LQ, Wu NC, Olson CA, Shi VC, Qi H, Zheng X, Wu TT, Sun R. 2014. High-throughput profiling of
point mutations across the HIV-1 genome. Retrovirology 11:124. DOI: https://doi.org/10.1186/s12977-014-
0124-6, PMID: 25522661

Albert J, Abrahamsson B, Nagy K, Aurelius E, Gaines H, Nyström G, Fenyö EM. 1990. Rapid development of
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