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ABSTRACT
It has recently become possible to experimentally measure the effects of all amino-
acid point mutations to proteins using deep mutational scanning. These experimental
measurements can inform site-specific phylogenetic substitution models of gene
evolution in nature. Here we describe software that efficiently performs analyses with
such substitution models. This software, phydms, can be used to compare the results
of deep mutational scanning experiments to the selection on genes in nature. Given
a phylogenetic tree topology inferred with another program, phydms enables rigorous
comparison of how well different experiments on the same gene capture actual natural
selection. It also enables re-scaling of deep mutational scanning data to account for
differences in the stringency of selection in the lab and nature. Finally, phydms can
identify sites that are evolving differently in nature than expected from experiments
in the lab. As data from deep mutational scanning experiments become increasingly
widespread, phydms will facilitate quantitative comparison of the experimental results
to the actual selection pressures shaping evolution in nature.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies
Keywords Deep mutational scanning, Phylogenetics, ExpCM, Codon substitution model,
Diversifying selection, Positive selection, dN/dS, Hemagglutinin, Beta lactamase, Amino acid
preferences

INTRODUCTION
It is widely appreciated that experiments in the lab can inform understanding of
protein evolution in nature (Dean & Thornton, 2007; Harms & Thornton, 2013). Efforts to
synthesize experiments with evolutionary data have typically involved generating protein
variants of interest, assaying their functionality in the lab, and qualitatively comparing
the measured functionality of each variant to its evolutionary fate in nature (Dean &
Thornton, 2007; Harms & Thornton, 2013). The recent advent of high-throughput deep
mutational scanning techniques (Fowler & Fields, 2014) has greatly expanded the potential
of such research. For instance, numerous recent papers have reported measuring the effects
of all amino-acid mutations on the functionality of a range of proteins (McLaughlin et
al., 2012; Roscoe et al., 2013; Firnberg et al., 2014; Olson, Wu & Sun, 2014; Melnikov et al.,
2014; Bloom, 2014a; Thyagarajan & Bloom, 2014; Stiffler, Hekstra1 & Ranganathan, 2015;
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Doud, Ashenberg & Bloom, 2015; Kitzman et al., 2015; Mishra et al., 2016; Doud & Bloom,
2016; Mavor et al., 2016; Haddox, Dingens & Bloom, 2016; Fernandes et al., 2016; Majithia
et al., 2016; Brenan et al., 2016). This flood of data necessitates newmethods for comparing
experimental measurements to evolution in nature, since simple qualitative inspection is
insufficient when measurements are available for tens of thousands of mutants.

A solution is provided by the methods of molecular phylogenetics. Longstanding
phylogenetic algorithms enable calculation of the statistical likelihood of an alignment
of naturally occurring gene sequences given a phylogenetic tree and a model for the
evolutionary substitution process (Felsenstein, 1973; Felsenstein, 1981). Deep mutational
scanning data can be incorporated into this statistical framework via the substitution
model (Bloom, 2014a). Such an experimentally informed codon model (ExpCM) of
substitution can be used to test whether a deep mutational scanning experiment provides
evolutionarily relevant information (Bloom, 2014a), compare the stringency of selection in
nature and the lab (Bloom, 2014b), assess how well different experiments describe natural
selection on the same gene (Doud, Ashenberg & Bloom, 2015), and identify sites that are
evolving differently in nature than expected from experiments in the lab (Bloom, 2017).

However, a hindrance to such analyses has been the lack of appropriate software. Prior
work using an ExpCM has re-purposed existing software such as HyPhy (Pond, Frost
& Muse, 2005) or Bio++ (Guéguen et al., 2013) to optimize the phylogenetic likelihood.
Because these existing software packages are not designed for such site-specific models, the
resulting analyses have been slow and cumbersome. Other software packages (Tamuri, Dos
Reis & Goldstein, 2012; Tamuri, Goldman & Dos Reis, 2014; Rodrigue, Philippe & Lartillot,
2010; Rodrigue & Lartillot, 2014) that handle site-specific codon substitution models are
designed to treat the effects of mutations as unknowns to be inferred rather than as values
that have been measured a priori.

Here we describe phydms, software for phylogenetics informed by deep mutational
scanning.We show that phydms is∼100-fold faster than existing alternatives for performing
analyses with an ExpCM, and demonstrate how it can be used to quantitatively relate
measurements from deep mutational scanning with selection in nature. Readers who are
interested in technical details of how phydms works should read the METHODS section;
readers who are primarily interested in simply using phydms may prefer to jump directly
to the ‘RESULTS’ section.

METHODS
Substitution models
Experimentally informed codon model (ExpCM)
The basic ExpCM implemented in phydms is identical to those in Bloom (2017). We recap
this ExpCM to introduce nomenclature needed to understand the extensions described in
the next few subsections.

In an ExpCM, rate of substitution Pr,xy of site r from codon x to y is written in
mutation-selection form Halpern & Bruno (1998), McCandlish & Stoltzfus (2014) and
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Spielman &Wilke (2015) as

Pr,xy =Qxy×Fr,xy (1)

where Qxy is proportional to the rate of mutation from x to y , and Fr,xy is proportional to
the probability that this mutation fixes. The rate of mutationQxy is assumed to be uniform
across sites, and takes an HKY85-like (Hasegawa, Kishino & Yano, 1985) form:

Qxy =


φw if x and y differ by a transversion to nucleotide w
κφw if x and y differ by a transition to nucleotide w
0 if x and y differ by > 1 nucleotide.

(2)

The κ parameter represents the transition-transversion ratio, and the φw values give the
expected frequency of nucleotidew in the absence of selection on amino-acid substitutions,
and are constrained by 1=

∑
wφw .

The deep mutational scanning data are incorporated into the ExpCM via the Fr,xy terms.
The experiments measure the preference πr,a of every site r for every amino-acid a (see the
‘RESULTS’ section for more details on these preferences). The Fr,xy terms are defined in
terms of these experimentally measured amino-acid preferences as

Fr,xy =


1 if A(x)=A

(
y
)

ω×

ln
[(
πr,A(y)/πr,A(x)

)β]
1−

(
πr,A(x)/πr,A(y)

)β if A(x) 6=A
(
y
) (3)

where A(x) is the amino-acid encoded by codon x , β is the stringency parameter, and
ω is the relative rate of nonsynonymous to synonymous substitutions after accounting
for the amino-acid preferences. As shown in Fig. 1, Eq. (3) implies that mutations to
more preferred amino acids are favored, and mutations to less preferred amino acids
are disfavored. The functional form in Eq. (3) was derived by Halpern & Bruno (1998)
and under certain (probably unrealistic) population-genetic assumptions; under these
assumptions, β is related to the effective population size. When β > 1, natural evolution
favors the same mutations as the experiments but with greater stringency. The ExpCM
has six free parameters (three φw values, κ , β, and ω). The preferences πr,a are not free
parameters since they are determined by an experiment independent of the sequence
alignment being analyzed.

ExpCM with empirical nucleotide frequency parameters
Phylogenetic substitution models commonly set the nucleotide frequency parameters
(φw in the case of an ExpCM) so that the model’s stationary state equals the empirical
frequencies of the characters in the alignment. Setting the frequency parameters in this
way reduces the number of parameters that must be optimized by maximum likelihood.
Empirically setting the nucleotide frequency parameters is easy for substitution models
where the stationary state only depends on these parameters.

However, the situation for an ExpCM is more complex. The φw values give the expected
nucleotide frequencies in the absence of selection on amino acids, but in an ExpCM there
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Figure 1 The ExpCM fixation term Fr,xy . In an ExpCM, the rate of fixation of a mutation from codon
x to codon y depends on the experimentally measured preferences of the amino acids A(x) and A

(
y
)
en-

coded by these codons. Mutations to preferred amino acids, with
πr,A(y)
πr,A(x)

> 1, result in a larger Fr,xy , and so
are anticipated to fix more often. The value of Fr,xy is modulated by re-scaling the preferences by a strin-
gency parameter β 6= 1 to reflect differences in selection between the lab and nature. When β > 1, the se-
lection for preferred amino acids is exaggerated. When β < 1, the selection for preferred amino acids is at-
tenuated.

is site-specific selection on amino acids. Therefore, the stationary state of an ExpCM also
depends on other quantities: the stationary state frequency pr,x of codon x at site r is
(Bloom, 2017)

pr,x =

(
πr,A(x)

)β
φx0φx1φx2∑

z
(
πr,A(z)

)β
φz0φz1φz2

, (4)

where xk indicates the nucleotide at position k in codon x . As this equation makes clear,
the stationary state of an ExpCM depends on the preferences πr,a and stringency parameter
β as well as the nucleotide frequency parameters φw .

So for an ExpCM, setting φw empirically means choosing their values such that the
alignment frequency gw of nucleotide w is as expected given the stationary state pr,x . This
will be the case if the following equation holds for all w :

gw =
1
L

∑
r

∑
x

1
3
Nw (x)pr,x (5)

where L is the length of the gene in codons, r ranges over all codon sites, x ranges over all
codon identities, and Nw (x) is the number of occurrences of nucleotide w in codon x . We
could not analytically solve this system of equations for φw in terms of gw , so we instead
used a non-linear equation solver to determine the values as detailed in File S1. Calculating
φw empirically in this fashion is the default for phydms. If you instead want to fit the φw
values, use the --fitphi option.
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ExpCM with gamma-distributed nonsynonymous-to-synonymous rate
parameter
A common extension to traditional non-site-specific codon substitution models is to allow
the dN/dS ratio ω to come from several discrete categories by making the overall likelihood
at each site a linear combination of the likelihood computed for each category (Nielsen &
Yang, 1998; Yang et al., 2000). Such models are not site-specific since sites are not assigned
to a category during likelihood optimization, but they do capture the idea that the strength
of selection on nonsynonymous mutations varies across sites.

One variant of this approach draws ω from a discrete gamma distribution. This variant
is referred to as the M5 variant (Yang et al., 2000) in PAML (Yang, 2007). We implemented
a similar approach for an ExpCM, following Yang (1994) to draw the ω in Eq. (3) from
the means of equally weighted gamma-distributed categories (by default there are four
categories). This option can be used via the --gammaomega switch to phydms, and adds one
free parameter, since there are two parameters controlling the gamma distribution (a shape
and inverse-scale parameter) rather than a single ω. This option increases the runtime by
∼5-fold.

Using a gamma-distributed ω may lead to less of an improvement in fit for an ExpCM
than for non-site-specific models, since much of the site-to-site variation in the selection
is already captured by the amino-acid preferences. However, it can still lead to substantial
improvements if a subset of sites are under diversifying selection or if the preferences do
not fully capture selection on nonsynonymous mutations.

Traditional YNGKP (or Goldman-Yang) models
To enable comparison of an ExpCM with non-site-specific substitution models, phydms
implements several of these more traditional models. Here these models are referred to
as YNGKP as they are variants of the Goldman-Yang style models described by Yang
et al. (2000). Note that sometimes in the literature these models are called GY94 rather
than YNGKP; however here we use the name YNGKP to explicitly emphasize that we are
using the model variants delineated by Yang et al. (2000) rather than the original variants
described in Goldman & Yang (1994). The M0 and M5 YNGKP models are implemented
in phydms. The M0 variant optimizes a single dN/dS ratio (ω) and so is comparable
with the basic ExpCM, while the M5 variant draws ω from a gamma distribution and
so is comparable to an ExpCM with the --gammaomega option. The equilibrium codon
frequencies are calculated empirically after correcting for stop codons as described by
Pond et al. (2010) (the CF3X4 method). The M0 variant has 11 parameters (nine empirical
nucleotide frequencies plusω and κ), while theM5 variant has 12 parameters (ω is replaced
by the two gamma-distribution parameters).

YNGKP models are less computationally expensive than an ExpCM since they are not
site-specific. Therefore, YNGKP models are faster than the ExpCM in phydms. However,
phydms is not optimized for maximal speed with YNGKP models, so if you are only using
those models then consider using PAML (Yang, 2007) or HyPhy (Pond, Frost & Muse, 2005).
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Gradient-based optimization of the likelihood
Given one of the substitution models described above and a fixed phylogenetic tree
topology, phydms numerically optimizes the model parameters and branch lengths to
their maximum likelihood values via the Felsenstein pruning algorithm (Felsenstein, 1981).
Numerical optimization generally requires fewer steps if the gradient of the objective
function with respect to free parameters is computed explicitly (Gill, Murray & Wright,
1982), although this advantage can be offset by the cost of computing the gradient. We were
unable to find clear published comparisons of the efficiency of phylogenetic optimization
with and without an explicit gradient, although Kenney & Gu (2012) describe how the
gradient (and Hessian matrix of second derivatives) can be computed.

We chose to use gradient-based optimization for phydms under the supposition that it
might be more efficient. The first derivatives with respect to branch lengths and virtually
all the model parameters can be computed analytically, propagated through the matrix
exponentials using the formula provided by Kalbeisch & Lawless (1985), and evaluated
along the tree by applying the chain rule to the Felsenstein pruning algorithm. For the
ExpCM empirical nucleotide frequencies φw and the gamma-distributed ω, we used the
numerical finite-difference method to compute small portions of the derivatives for which
we could not derive analytic results. File S1 details how phydms computes the likelihood
and its gradient.

For the optimization, we used the limited-memory BFGS optimizer with bounds (Byrd
et al., 1995; Zhu et al., 1997; Morales & Nocedal, 2011). This optimizer uses the gradient,
although this can be turned off with the --nograd option to phydms (doing so is not
recommended as the accuracy of phydms without gradients has not been extensively tested,
and the limited-memory BFGS optimizer may not perform well without gradients). Rather
than optimizing model parameters and branch lengths simultaneously, phydms takes an
iterative approach. First the model parameters are simultaneously optimized along with
a single scaling parameter that multiplies all branch lengths. After this optimization has
converged, all branch lengths are simultaneously optimized while holding the model
parameters constant. This process is repeated until further optimization leads to negligible
improvement in the likelihood. Note that simultaneous optimization of all branch lengths
appears to be the minority approach in phylogenetics software (Bryant, Galtier & Poursat,
2005) and is said by Yang (2000) to be less efficient than one-at-a-time optimization;
however, we found it to work effectively on the trees that we tested. The rationale for
iterating between model parameters and branch lengths is that optimization of the former
is more costly in terms of the gradient computation. If you simply want to scale branch
lengths by a single parameter rather than optimize them, you can use the --brlen scale

option. In other contexts, scaling but not individually optimizing branch lengths has been
shown to reduce runtime with little effect on final model parameters if the initial tree is
reasonably accurate (Yang, 2000; Pond & Frost, 2005).

Design and implementation of phydms
The phydms software is written in Python. Most of the numerical computation is performed
with numpy and scipy, and a few parts of the code are written in compiled C extensions
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created via cython. The limited-memory BFGS optimizer used by phydms is the one
provided with scipy.optimize. The most computationally costly part of the optimization
performed by phydms is the matrix-matrix multiplication performed when computing
exponentials of the transition matrix, and the second most costly part is the matrix–vector
multiplication performed while implementing the Felsenstein pruning algorithm. Both
these steps are performed using BLAS subroutines called via scipy.

In addition to the core phydms program, the software is distributed with auxillary
programs that make it easy to prepare alignments (phydms_prepalignment) and run
multiplemodels for comparison (phydms_comprehensive). Importantly, phydms currently
does not infer phylogenetic tree topologies, but rather optimizes branch lengths and model
parameters given a topology. The tree topology must therefore be inferred using another
program such as RAxML (Stamatakis, 2014) with a simpler substitution model.

Visualization of the results with logoplots
It is often instructive to visualize the amino-acid preferences that are used to inform an
ExpCM, as these preferences determine the unique properties of the models. In addition,
visualization can help understand how the stringency parameter β optimized by phydms
re-scales the preferences to increase concordance with natural selection. To aid such
visualizations, phydms comes with an auxiliary program (phydms_logoplot) that renders
the amino-acid preferences in the form of logoplots via the weblogo libraries (Crooks et
al., 2004). The ‘RESULTS’ section shows example logoplots.

Computer code
The phydms software is freely available on GitHub at https://github.com/jbloomlab/
phydms. Detailed documentation is at http://jbloomlab.github.io/phydms. Analyses in this
paper used versions of phydms ranging from 2.0.0 to 2.0.5.

RESULTS
Testing phydms on two different genes
In the next few subsections, we describe example applications of phydms to real-world data
sets. Specifically, we use phydms to compare deep mutational scanning measurements to
natural sequence evolution for two genes: influenza hemagglutinin (HA) and β-lactamase.
We choose these genes because there are multiple published deep mutational scanning
datasets for each.

Analysis with an ExpCM requires three pieces of input data: the experimentallymeasured
amino-acid preferences, an alignment of naturally occurring gene sequences, and a
phylogenetic tree topology. The tree topology can be inferred from the sequence alignment.
But like most other software for codon-based phylogenetic analyses (Pond, Frost & Muse,
2005; Yang, 2007), phydms is not designed to infer the tree topology. Instead, it provides
easy ways to infer the tree topology using RAxML (Stamatakis, 2014).

To prepare the required input data, we followed the workflow in Fig. 2. The deep
mutational scanning experiments on HA (Thyagarajan & Bloom, 2014; Doud & Bloom,
2016) directly reported amino-acid preferences. However, the two deep mutational
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Figure 2 Workflow for preparing input data to phydms. Analysis with phydms requires amino-acid pref-
erences measured by deep mutational scanning, a codon-level alignment of naturally occurring sequences,
and a phylogenetic tree topology. (A) Deep mutational scanning involves performing a functional selec-
tion on a library of mutant genes, and using deep sequencing to quantify the enrichment or depletion of
each mutation (relative to wildtype) after selection. (B) The amino-acid preferences used by the ExpCM
can be calculated by normalizing the enrichment ratios for mutations to sum to one at each site. (C) We
created a filtered, codon-level alignment of naturally occurring sequences using phydms_prepalignment.
(D) We used phydms_comprehensive to automatically generate a tree topology from the filtered align-
ment using RAxML.

scanning experiments on β-lactamase (Firnberg et al., 2014; Stiffler, Hekstra1 &
Ranganathan, 2015) reported enrichment ratios for each mutation rather than amino-
acid preferences. There is a simple relationship between enrichment ratios and amino-acid
preferences: the preferences are the enrichment ratios after normalizing the values to sum
to one at each site, enabling easy conversion between the two data representations (Fig. 2).

We also created codon-level alignments of naturally occurring HA and β-lactamase
sequences using phydms_prepalignment. The alignments were trimmed to contain only
sites for which amino-acid preferences were experimentally measured. Table 1 summarizes
basic information about these alignments.
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Table 1 Alignments and deepmutational scanning (DMS) studies for HA and β-lactamase.

Gene DMS studies Residues in
protein

Residues with
DMS data

Sequences in
alignment

HA Doud & Bloom (2016), Thyagarajan & Bloom (2014) 565 564 34
β-lactamase Stiffler, Hekstra1 & Ranganathan (2015), Firnberg et al. (2014) 285 263 50

Table 2 Fitting of an ExpCM informed by the HA preferences fromDoud & Bloom (2016) to natural sequences using phydms_comprehensive.
Full code, data, and results are in File S2.

Model 1AIC Log likelihood Number of parameters Parameter values

ExpCM 0.0 −4877.7 6 β = 2.11, κ = 5.14, ω= 0.52
ExpCM, averaged preferences 2090.6 −5922.9 6 β = 0.68, κ = 5.36, ω= 0.22
YNGKP_M5 2113.5 −5928.4 12 αω = 0.30, βω = 1.42, κ = 4.68
YNGKP_M0 2219.6 −5982.5 11 κ = 4.61, ω= 0.20

Test if deep mutational scanning is informative about natural
selection
A first simple test is whether the deep mutational scanning experiment provides any
information that is relevant to natural selection on the gene in question. This can be
determined by testing whether an ExpCM that uses the experimental data outperforms
a substitution model that is agnostic to the site-specific preferences measured in the
experiments.

To perform such a test, we used phydms_comprehensive to fit several substitution
models to the alignment of HA sequences. This program automatically generates a
phylogenetic tree topology from the alignment using RAxML (Stamatakis, 2014). It then fits
an ExpCM (in this case informed by the deep mutational scanning data in Doud & Bloom
(2016)) as well as several substitution models that do not utilize site-specific experimental
information. The analysis was performed by running the following command on the input
data in File S2:

phydms_comprehensive results/ HA_alignment.fasta HA_Doud_prefs.csv

Table 2 lists the four tested substitution models: the ExpCM, an ExpCM with the
amino-acid preferences averaged across sites, and the M0 and M5 variants of the standard
Goldman-Yang style substitution models (Yang et al., 2000). (Because these variants were
originally described by Yang, Nielsen, Goldman, and Krabbe-Pedersen, they are referred
to here as YNGKP models; note that other literature sometimes uses the alternative
acronym GY94.) The ExpCM with averaged preferences is a sensible control because
the averaging eliminates any experimental information specific to individual sites in the
protein. Because the models have different numbers of free parameters, they are best
compared using Akaike Information Criterion (AIC) (Posada & Buckley, 2004), which
compares log likelihoods after correcting for the number of free parameters. Table 2 shows
that the ExpCM has a much smaller AIC than the other models (1AIC > 2000 for all
other models). Therefore, the experimentally measured amino-acid preferences contain
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information about natural selection on HA, since a substitution model informed by these
preferences greatly outperforms models that do not utilize the experimental information.

Re-scale deep mutational scanning data to stringency of natural
selection
Even if a deep mutational scanning experiment measures the authentic natural selection on
a gene, the stringency of selection in the experiment is not expected to match the stringency
of selection in nature. Differences in the stringency of selection can be captured by the
ExpCM stringency parameter β. If selection in nature prefers the same amino acids as
the selection in lab but with greater stringency, β will be fit to a value > 1. Conversely, if
selection in nature does not prefer the lab-favored mutations with as much stringency as
the deep mutational scan, β will be fit to a value < 1. Table 2 shows that an ExpCM for
HA informed by the experiments in (Doud & Bloom, 2016) has β = 2.11, indicating that
natural selection favors the experimentally preferred amino acids with higher stringency
than selection in the lab.

The effect of this stringency re-scaling of the preferences can be visualized using
phydms_logoplot as shown in Fig. 3. Re-scaling by the optimal stringency parameter of
2.11 exaggerates the selection for experimentally preferred amino acids. Conversely, if the
analysis had fit a stringency parameter < 1, this would have flattened the experimental
measurements, and when β = 0 all information from the experiments is lost (Fig. 3).
Because selection in the lab can probably never be tuned to exactly match that in nature,
stringency re-scaling is a valuablemethod to standardizemeasurements across experiments.

Compare how well different experiments capture natural selection
The amino-acid preferences for HA and β-lactamase have each been measured by two
independent experiments. For each gene, which of these experiments better captures
natural selection?

We can address this question by comparing ExpCM’s informed by each experiment.
For β-lactamase, this means comparing the preferences measured by Stiffler, Hekstra1
& Ranganathan (2015) to those measured by Firnberg et al. (2014). We did this with
phydms_comprehensive by running the following command on the input data in File S4:

phydms_comprehensive results/ betaLactamase_alignment.fasta

betaLactamase_Stiffler_prefs.txt betaLactamase_Firnberg_prefs.txt

Table 3 shows that an ExpCM informed by the data of Stiffler, Hekstra1 & Ranganathan
(2015) outperform an ExpCM informed by the data of Firnberg et al. (2014), with a 1AIC
of 96.2. Therefore, the former experiment better reflects natural selection on β-lactamase.
However, both experiments are informative, as both greatly outperform traditional YNGKP
models.

We made a similar comparison of the two deep mutational scans of HA. As summarized
in Table 4 (and detailed in File S5), the deep mutational scanning of Doud & Bloom (2016)
better describes the natural evolution than the experiments of Thyagarajan & Bloom (2014)
(1AIC of 44.2). Again, both experiments are clearly informative, as both greatly outperform
the YNGKP models.
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Figure 3 Re-scaling of amino-acid preferences to reflect the stringency of selection in nature.
Analysis with phydms optimizes a stringency parameter β that relates the stringency of selection for
preferred amino acids in the deep mutational scanning experiment to that in nature. When β = 1,
the favored amino-acids are preferred in nature with the same stringency as during the experimental
selections in the lab. When β > 1, selection in nature prefers the same amino acids as selection in lab
but with greater stringency. When β < 1, selection in nature has less preference than the experiments
for mutations favored in the lab, and when β = 0 then all site-specific information is lost. The actual
optimized stringency parameter for HA reported in Table 2 is β = 2.11. We generated the logoplots
shown above from the input data in File S3 with the following commands: phydms_logoplot
HA_Doud_1.pdf --prefs HA_Doud_prefs_short.csv phydms_logoplot HA_Doud_2_11.pdf
--prefs HA_Doud_prefs_short.csv --stringency 2.11 phydms_logoplot HA_Doud_0.pdf
--prefs HA_Doud_prefs_short.csv --stringency 0.

Table 3 Comparison of multiple β-lactamase deep mutational scanning results using phydms_comprehensive. Full code, data, and results are
in File S4.

Model 1AIC Log likelihood Number of parameters Parameter values

ExpCM, Stiffler preferences 0.0 −2581.3 6 β = 1.31, κ = 2.67, ω= 0.72
ExpCM, Firnberg preferences 96.2 −2629.4 6 β = 2.42, κ = 2.60, ω= 0.63
YNGKP_M5 739.2 −2944.9 12 αω = 0.30, βω = 0.49, κ = 3.02
YNGKP_M0 841.0 −2996.8 11 κ = 2.39, ω= 0.28

Table 4 Comparison of multiple HA deepmutational scanning results using phydms_comprehensive. Full code, data, and results are in File S5.

Model 1AIC Log likelihood Number of parameters Parameter values

ExpCM, Doud preferences 0.0 −4877.7 6 β = 2.11, κ = 5.14, ω= 0.52
ExpCM, Thyagarajan preferences 44.2 −4899.7 6 β = 1.72, κ = 4.94, ω= 0.55
YNGKP_M5 2113.5 −5928.4 12 αω = 0.30, βω = 1.42, κ = 4.68
YNGKP_M0 2219.6 −5982.5 11 κ = 4.61, ω= 0.20

Identify sites of diversifying selection
In some cases, a few sites may evolve differently in nature than expected from the
experiments in the lab. For instance, sites under diversifying selection for amino-acid
change will experience more nonsynonymous substitutions than expected given the
experimentally measured amino-acid preferences. Such sites can be identified by using the
--omegabysite option to fit a parameter ωr that gives the relative rate of nonsynonymous
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Figure 4 Identifying sites of diversifying selection. The phydms option --omegabysite fits a site-specific value for ωr , which gives the relative rate
of non-synonymous to synonymous substitutions at site r after accounting for the selection due to the amino-acid preferences. This figure shows the
results of such an analysis for HA. The overlay bar represents the strength of evidence for ωr being greater (red) or less (blue) than one. Because this
approach accounts for the constraints due to the amino-acid preferences, it can identify sites evolving faster than (continued on next page. . . )
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Figure 4 (. . .continued)
expected even if their absolute relative rates of nonysnonymous to synonymous substitutions do not significantly differ from one. The logoplot
in this figure uses the stringency parameter value of β = 2.11, and was generated by running the following command on the data in File S3:
phydms_logoplot results/omegabysite.pdf --prefs HA_Doud_prefs.csv --omegabysite results/omegabysite.txt --stringency
2.11 --minP 0.001. In this figure, the HA sequence is numbered sequentially beginning with 1 for the first site with deep mutational scanning
data, which is the second residue in the protein.

to synonymous substitutions after accounting for the experimentally measured preferences
for each site r (Bloom, 2017). If the preferences capture all the selection on amino acids,
then we expect ωr = 1. Sites with ωr > 1 are under diversifying selection for amino-acid
change, while sites with ωr < 1 are under additional purifying selection not measured in
the lab.

We tested for diversifying selection in HA by running the following command on the
data in File S6:

phydms HA_alignment.fasta HA_RAxML_tree.newick ExpCM_HA_Doud_prefs.csv

results/ --omegabysite

The results are visualized in Fig. 4. While most sites are evolving withωr not significantly
different from one, some sites show evidence of ωr > 1. As described in Bloom (2017), these
sites may be under diversifying selection due to immune pressure. Overall, this analysis
shows how phydms can identify sites evolving differently in nature than expected from
experiments in the lab.

phydms has superior computational performance to existing
alternatives
Our rationale for developing phydms was to enable the analyses described above to be
performedmore easily thanwith existing software. To validate the improved computational
performance, we compared phydms (version 2.0.0) to alternative programs that have been
used to fit an ExpCM. The comparisons used the HA sequences described in Table 1 with
an ExpCM informed by the deep mutational scanning in Doud & Bloom (2016), and were
performed on a single core of a 2.6 GHz Intel Xeon CPU.

Table 5 shows the results. With default settings, phydms took 10 min to optimize the
model parameters and branch lengths. This runtime could be decreased by scaling the
branch lengths by a single parameter rather than optimizing them individually (--brlen
scale option); other work has shown that when the initial tree is reasonably accurate, this
approximation can improve runtime while only slightly affecting model fit (Yang, 2000;
Pond & Frost, 2005). Fitting the nucleotide frequency parameters φw (--fitphi option)
rather than determining them empirically doubled the runtime. The log likelihood and
values of the model parameters β and ω were nearly identical for all three of these settings.
The gradient-based optimization is important: using phydms without gradients (--nograd
option) increased the runtime over 5-fold while also yielding a poorer log likelihood.

Two alternative programs have previously been used to fit an ExpCM. Bloom (2014a)
and Bloom (2014b) used a Python program (phyloExpCM) to run HyPhy to optimize an
ExpCM similar to the ones used here. Bloom (2017) used an old version of phydms to fit
an ExpCM identical to the ones here using the Bio++ libraries (Guéguen et al., 2013). We
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Table 5 Comparison of phydms to alternative software for optimizing a tree of 34 HA sequences Hy-
Phy and Bio++ use models that fit φ, whereas by default phydms determines φw empirically. Log likeli-
hoods are not expected to be identical across software. Full code, data, and results are in File S7.

Software Runtime (min) Log likelihood β ω

phydms, scale branches 7.8 −4877.9 2.11 0.52
phydms, default settings 10.5 −4877.7 2.11 0.52
phydms, fit φ values 23.2 −4876.5 2.11 0.53
phydms, no gradient 52.8 −4894.0 2.13 0.57
Bio++ via old phydms 962.6 −4880.6 2.09 0.53
HyPhy via phyloExpCM 2102.0 −4908.4 2.11 0.57

Table 6 Comparison of parameter values and runtimes for HA alignments of different sizes using de-
fault phydms settings. The alignments are different than those used for the other HA analyses in this pa-
per thus explaining the slightly different parameter values. The alignments, full code, data, and results are
in File S8.

Sequences in alignment Runtime (min) β ω

34 14.5 1.97 0.42
62 37.2 1.92 0.45
85 41.0 1.87 0.48
104 51.2 1.87 0.49

ran both these programs on the HA data set, using phyloExpCM version 0.3 with HyPhy

version 2.22, and phydms version 1.3.0 with Bio++. Table 5 shows that these programs
were ∼100-fold and ∼200-fold slower than phydms with default settings. A small portion
of the slower runtime is because these earlier implementations cannot calculate empirical
nucleotide frequency φw parameters; however they remain much slower than phydms even
when these parameters are fit. Note that Table 5 may overestimate the computational
advantage of phydms over HyPhy in some situations, since HyPhy code but not phydms
can in principle be written to enable the use of multiple cores. Divining the reasons for
the performance differences was not possible, as the programs differ completely in their
implementations. But reassuringly, all programs yielded similar model parameters β and ω
despite independent implementations of the likelihood calculations and the optimization.

The analyses above used relatively small alignments of 34 or 50 sequences (Table 1).
To test how the performance of phydms changed with alignment size, we analyzed HA
alignments ranging from 34 to 108 sequences. As shown in Table 6, the runtime increased
with alignment size, but remained under an hour even for the largest alignment. The
inferred model parameter values also remained relatively constant as the size of the HA
alignment increased (Table 6).

DISCUSSION
We have described a new software package that facilitates efficient analyses with
phylogenetic substitutionmodels informed by deepmutational scanning experiments. This
software, phydms, can quantitatively compare deep mutational scanning measurements to
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selection on genes in nature. It can re-scale deep mutational scanning data to account for
differences in the stringency of selection between the lab and nature, identify sites evolving
differently in nature than expected from the experiments, and compare how well different
experiments on the same gene describe natural selection.

The ability to perform these comparisons is useful because the rationale for many deep
mutational scanning experiments is to provide information about the effects of mutations
on genes in nature. For instance, there are many ways to design an experiment, and it
is often not obvious which choice is best if the goal is to make the experiment reflect
natural selection. Using phydms, it is possible to quantitatively compare how well different
experiments describe natural selection. Likewise, it is often useful to know if specific sites
in a gene are evolving differently in nature than expected from experiments in the lab.
Algorithms implemented in phydmsmakes statistically rigorous identification of these sites
possible.

The speed and ease of use of phydms makes these analyses practical for real datasets. As
deepmutational scanning data become available for an increasing number of genes, phydms
will facilitate comparison of the experimental measurements to selection in nature.
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