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Review
Fluctuations in the ambient environment can trigger
chromatin disruptions, involving replacement of nucleo-
somes or exchange of their histone subunits. Unlike
canonical histones, which are available only during S-
phase, replication-independent histone variants are
present throughout the cell cycle and are adapted for
chromatin repair. The H2A.Z variant mediates responses
to environmental perturbations including fluctuations in
temperature and seasonal variation. Phosphorylation of
histone H2A.X rapidly marks double-strand DNA breaks
for chromatin repair, which is mediated by both H2A and
H3 histone variants. Other histones are used as weapons
in conflicts between parasites and their hosts, which
suggests broad involvement of histone variants in envi-
ronmental responses beyond chromatin repair.

Histone variants are available to respond
Eukaryotic organisms must respond to environmental
changes with changes in gene expression to survive. Al-
though we often think of environmental responses in terms
of whole-organism responses, including growth, move-
ment, learning, homeostasis, and immunity, ultimately
all of these involve changes in gene expression in the
relevant nuclei of the organism, and hence involve changes
to the epigenomic landscape that provide access to genes
that are packaged in nucleosomes. One mode of altering
chromatin is through the deployment of histone ‘variants’,
non-allelic paralogs of the four ‘canonical’ core histones
(H2A, H2B, H3, and H4) that package the genome into
nucleosomes at replication. Histone variants substitute for
their canonical counterparts, thereby changing the prop-
erties of nucleosomes. In recent years, histone variants
have been shown to be involved in several modes of envi-
ronmental responses.

Histone variants are distinguished from canonical his-
tones not only by their amino acid sequences and physical
properties but also by their incorporation into chromatin
outside of replication. This ability to use different deposi-
tion modes makes them adaptable to respond to environ-
mental stimuli, which typically are not synchronous with
replication. Indeed the term ‘variants’ is something of a
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misnomer because in many single-celled eukaryotes the
variants may be the sole or primary histones, and are
deployed throughout the cell cycle as these organisms
respond to their environments [1].

H2A.Z and responsiveness
Mediation of responsiveness to the environment is thought
to be a major role of the histone variant H2A.Z, a universal
variant with a single origin pre-dating the divergence of
modern eukaryotes [2]. H2A.Z has roles in a variety of
seemingly contradictory processes including gene activa-
tion, heterochromatic silencing, transcriptional memory,
and others. It is found surrounding the nucleosome-defi-
cient regions at gene transcription start-sites (TSSs), es-
pecially at the first (+1) nucleosome of genes, but also in
gene bodies ([3,4] for reviews).

Although H2A.Z is essential in many organisms, in the
budding yeast Saccharomyces cerevisiae, H2A.Z (also
known as Htz1 in Saccharomyces) is non-essential, but
an early study showed that htz1D mutants are sensitive to
heat and defective in the ability to grow on galactose,
indicating a failure to induce the GAL genes [5]. The
mutants failed to recruit efficiently RNA polymerase II
(PolII) and TATA-binding protein to the GAL 1-10 promot-
er, and had a global increase in DNA accessibility to
micrococcal nuclease when grown on galactose. In another
study htz1D mutants were found to be defective in growth
in oleate medium [6], which induces widespread activation
of genes involved in mitochondrial and peroxisomal lipid
metabolism. Acetylated H2A.Z is necessary for the full
induction of otherwise repressed oleate-responsive genes,
and for the efficient recruitment of TATA-binding protein
to oleate-responsive gene promoters. H2A.Z nucleosomes
are disassembled upon induction, and this is thought to
provide access for the transcriptional machinery because
in yeast the +1 nucleosome overlaps the TSS. In a meta-
analysis, a significant excess of genes with high levels of
H2A.Z in the coding region were also upregulated by
environmental stress in Saccharomyces, and in the fission
yeast Schizosaccharomyces pombe a significant excess of
genes enriched for H2A.Z in the coding region were in-
volved in meiosis and genotoxic stress [7].

The model plant Arabidopsis has three genes encoding
H2A.Z. Plants with mutations in two of these genes have
gene expression profiles in which 65% of the genes that are
differentially regulated from wild type overlap with those
from plants mutant in the PIE1 (photoperiod-independent
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Figure 1. H2A.Z in Arabidopsis. (A) H2A.Z/H2B dimers are exchanged for H2A/H2B

dimers by the PIE1 complex. Mutations (red X) in subunits (PIE1 or ARP6) of this

complex result in misregulation of immunity response genes. (B) Increasing

temperature results in reduced occupancy of H2A.Z at the +1 nucleosome and

increased expression of temperature-regulated genes. (C) H2A.Z is present in the

gene bodies of responsive genes, but is excluded by DNA methylation from

constitutive genes.
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early flowering 1) gene (Figure 1), which encodes the
homolog of the Swr1 ATPase subunit of the SWR1
(Swi/Snf2-related) complex of yeast that replaces canonical
H2A/H2B dimers with H2A.Z/H2B dimers [8]. The majori-
ty of these differentially regulated genes are related to
salicylic acid-dependent immunity, in which increased
salicylic acid levels trigger ‘systematic acquired resistance’
involving changes in expression of more than 1000 genes.
In another study, a genetic screen found that mutations in
the ARP6 (actin-related protein 6) gene, which encodes a
different subunit of the PIE1 complex, phenocopy double
H2A.Z mutants and control the ambient temperature re-
sponse in Arabidopsis [9]. With increasing temperature,
H2A.Z nucleosomes are depleted at the +1 nucleosome of
genes that are upregulated by temperature, suggesting
that they limit expression at lower temperatures. This
depletion is also seen in arp6 mutants, leading to consti-
tutive expression of temperature-inducible genes, suggest-
ing that H2A.Z may serve as a thermo-sensor in plants. A
third study found that H2A.Z enrichment in gene bodies is
correlated with lower expression and with higher gene
responsiveness [10,11]. Misregulated genes in triple
mutants lacking nearly all H2A.Z were enriched in gene
ontology terms related to immune response, temperature
response, and in other categories related to the perception
of external cues. In the H2A.Z triple mutant DNA meth-
ylation was little altered even in misregulated genes,
suggesting that the previously observed anti-correlation
between H2A.Z and DNA methylation [10] was primarily
due to the exclusion of H2A.Z by DNA methylation. The
authors proposed that H2A.Z facilitates regulation of re-
sponsive genes, whereas gene body methylation evolved to
stabilize constitutive expression of housekeeping genes by
excluding H2A.Z [11].

How might H2A.Z facilitate responsiveness? H2A.Z
helps to recruit PolII in yeast [5] and facilitates assembly
of both active and repressive chromatin complexes at
promoters and enhancers in mouse embryonic stem cells
[12]. Acetylation of H2A.Z is necessary for gene induction
[13], and induces a conformational change in H2A.Z
nucleosomes in vitro [14], suggesting that acetylation
might act as an activation switch. H2A.Z also increases
the activity of ISWI (imitation switch) family chromatin
remodelers [15], further suggesting that H2A.Z promotes
changes in chromatin accessibility. In addition, H2A.Z
increases the rate of elongation through a yeast fusion
gene [16]. Mapping of elongating and arrested PolII tran-
scripts in vivo at nucleotide resolution in Drosophila S2
cells revealed that entry into the +1 nucleosome presents a
significant barrier to transcription, whereas gene body
nucleosomes present lower barriers. H2A.Z nucleosomes
reduce the barrier to transcription, and anti-correlate with
nucleosome occupancy, PolII stalling, and H3/H4 turnover,
suggesting that H2A.Z/H2B dimers are more easily lost
than H2A/H2B dimers, facilitating PolII transit while
preserving H3/H4 tetramers [17]. Together these observa-
tions suggest that H2A.Z facilitates binding of both acti-
vating and repressive complexes by keeping key genome
regions accessible [18], making it ideally suited to regulate
responsive genes.

Histone variants in DNA damage and repair
H2A variants

Cells must constantly detect and repair damage to DNA
from both endogenous and environmental sources, a pro-
cess involving alterations to chromatin to provide access
for repair enzymes and subsequent restoration of the
chromatin state. Chromatin changes during the DNA
damage response and double-strand break (DSB) repair
have been reviewed extensively [19,20], and we will there-
fore focus on more recent results pertaining to histone
variants.

One of the most severe environmental challenges to
cells is repair of DSBs, which can be caused by ionizing
radiation (IR), environmental chemicals, or free radicals
generated by cellular processes (Figure 2A–D). The phos-
phorylation of the histone variant H2A.X in response to
DSBs is an early step in a process that includes checkpoint
activation and cell cycle arrest, recruitment of repair pro-
teins, and repair through non-homologous end-joining
(NHEJ) or homologous recombination (HR). H2A.X differs
from canonical H2A by the addition of the C-terminal motif
Ser-Gln-(Glu/Asp)-F (SGD/EF), where F represents a hy-
drophobic residue. It typically comprises about 10% of the
total H2A in chromatin in mammals, and is the primary
form of H2A in Saccharomyces. Within minutes after a
DSB, the serine in the SGD/EF motif is targeted by a
kinase of the phosphoinositide 3-kinase-like kinase (PIKK)
family, producing a phosphorylated form known as gH2A.X
[19]. In mammals gH2A.X is bound by the MDC1 protein
(mediator of DNA damage checkpoint protein 1), which
recruits the MRN (Mre11-Rad50-Nbs1) complex that binds
to the DSB and promotes resectioning, and recruits and
activates the PIKK family kinase ATM (ataxia telangiec-
tasia mutated). ATM phosphorylates a broad set of pro-
teins including checkpoint proteins, repair enzymes [21],
and additional H2A.X nucleosomes, producing a domain of
643



Key:

TRENDS in Cell Biology 

protein
NAD+

PAR-protein
Nico�namide

(A)

(B)

(C)

UV

(D)

Modifica�ons

PO4 acetyl PAR Pyrimidine
dimers

H2A        H2A.X     H2A.Z   macroH2A.1.1         H3.3    New H3.1

Nucleosomes

Chroma�n
regulators

(E)

(F)

(G)

ATM/
MRN

 PARP1      MDC1     Tip60      p400         HIRA      CAF1

X

X

Figure 2. Histone variant transitions in DNA repair. (A–D) H2A variants in double-strand break repair. (A) Double-strand breaks are detected by PARP1 and ATM, which bind

to DNA ends. (B) ATM autophosphorylates and targets H2A.X to form gH2A.X. Similarly, PARP1 undergoes auto-PARylation and targets histones and other proteins. (C)

PARylated histones loosen the chromatin. MCD1 binds to both gH2A.X and ATM/MRN, establishing a large gH2A.X domain. (D) MacroH2A.1.1 binds to PAR through

chromosome rearrangement. p400 exchanges H2A.Z/H2B dimers into chromatin by replacing H2A/H2B or H2A.X/H2B dimers. Through acetylation by Tip60, H2A.Z further

loosens the chromatin for repair. (E-G) H3 variants in nucleotide excision repair. (E) Upon formation of a pyrimidine dimer, transcription is arrested. (F) HIRA assembles H3.3

into the damage site; the pyrimidine dimers are excised. (G) New DNA synthesis is followed by CAF1-mediated assembly of H3.1 Transcription competency is restored.
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gH2A.X over 50 kb (Saccharomyces) or several hundred kb
(mammals) around the break, although gH2A.X is depleted
in the �1 kb proximal to the break [22,23]. This gH2A.X
domain is generally believed to concentrate cohesins as
well as repair and checkpoint factors near the break to
serve as a ‘toolkit’ for HR [19], although a proposed role in
recruiting chromatin regulators has been questioned [24].
H2A.X mutant mice are viable and are able to activate
checkpoints, but are growth-retarded, radiation-sensitive,
and have defects in repair by HR. Mutant embryonic
fibroblasts have a reduced mitotic index, poor proliferation,
and increased chromosomal abnormalities [25]. In combi-
nation with a p53 deficiency, haploinsufficiency for H2A.X
leads to increased tumor susceptibility [26]. H2A.X is
missing entirely in some organisms such as Caenorhabdi-
tis [2], which favors NHEJ over HR.

DSBs are also sites of incorporation of H2A.Z, which is
exchanged into chromatin by the p400 motor ATPase, a
mammalian counterpart of the yeast SWR1 complex [27]
and the PIE1 complex of Arabidopsis. p400 is part of the
Tip60 (Tat-interacting protein of 60 kDa) chromatin-remo-
deling complex, which acetylates H2A.Z and H4, creating a
644
more open chromatin structure. H2A.Z exchange is needed
for ubiquitylation of the chromatin by the RNF8 (RING
finger protein 8) ubiquitin ligase, and for recruiting down-
stream components of both the HR and NHEJ repair
pathways [28]. Vertebrates have two paralogous H2A.Z
genes, encoding H2A.Z.1 and H2A.Z.2, and in primates
H2A.Z.2 additionally has two splice variants [29,30]. In
chicken DT-40 cells, H2A.Z.2 but not H2A.Z.1 was mobi-
lized and rapidly incorporated into damaged chromatin at
DSBs, and H2A.Z.2-deficient cells were more sensitive to
radiation than wild type or H2A.Z.1-deficient cells [31].

In Saccharomyces, if a break cannot be repaired, it can
be relocated to the nuclear envelope in a process that
depends on H2A.Z sumoylated on its C-terminal tail
[32]. Cells will eventually overcome the checkpoint and
return to the cell cycle (checkpoint adaptation), but this
depends on the removal of H2A.Z by the chromatin remo-
deler INO80 (inositol-requiring 80) [33], which replaces
H2A.Z/H2B dimers with canonical dimers [34]. In an ino80
mutant, levels of gH2A.X are reduced and levels of H2A.Z
are increased around DSBs. Deletion of the SWR1 or
H2A.Z (HTZ1) genes alleviates the block to adaptation
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[33]. Furthermore, the sensitivity of ino80 mutants to DNA
damage agents and replication blocks is also alleviated by
H2A.Z in which the lysines in the N-terminal tail have
been mutated to glutamines to mimic acetylation, suggest-
ing that INO80 removes unacetylated H2A.Z [34]. Whether
through this activity or some other process, INO80
increases the mobility of chromatin, both at the DSB
and elsewhere, and this is thought to facilitate the search
for a donor sequence for HR [35].

Other H2A variants also are recruited to DSBs. The
variant macroH2A is characterized by a large ‘macro domain’
C-terminal to the histone-fold domain. As with H2A.Z var-
iants, vertebrates have two paralogous genes encoding
macroH2A.1 and macroH2A.2, and macroH2A.1 additionally
has two splice variants, macroH2A.1.1 and macroH2A.1.2 [1].
A very early event in DSB repair is the activation of poly-
ADP-ribose polymerase 1 (PARP1) by binding to DNA ends.
PARP1 is an enzyme that adds ADP-ribose moieties (ADPR)
from NAD+ to form poly-ADP-ribose (PAR) on a variety
of proteins including itself and histones [36]. Chromatin
around DSBs undergoes rapid PARylation, which is associ-
ated with relaxation of chromatin [37]. The macrodomain
of macroH2A.1.1, but not those of macroH2A.1.2 and
macroH2A.2, can bind to ADPR, and binds to PAR on PARP1
and other proteins [38]. Chromatin around DSBs accumu-
lates tagged macroH2A.1.1 co-extensive with gH2A.X phos-
phorylation. However, this macroH2A.1.1 is not exchanged
into chromatin, and is recruited to DSBs apparently only by
interaction of the macrodomain with PAR on chromatin
proteins [39]. When tagged macroH2A.1.1 was expressed
in HeLa cells with undetectable endogenous macroH2A.1.1,
microirradiated sites were PARylated, H2A.X was phosphor-
ylated (gH2A.X), and macroH2A.1.1 was recruited within
5 min. Because most macroH2A.1.1 is present in nucleo-
somes and is tightly associated with chromatin, recruitment
to DSBs by binding to PAR likely represents rearrangement
of macroH2A.1.1-containing chromatin to the DSB. This
interpretation was supported by a transient increase in
DNA density at DSBs. PARylation levels at the DSB decrease
over time and macroH2A.1.1 binding is lost while gH2A.X
still persists. The function of macroH2A.1.1-mediated chro-
matin rearrangement is unclear, but it is associated with
increased gH2A.X and reduced recruitment of Ku70 (named
from ‘Ku antigen’), a protein required for repair by NHEJ
[38]. Loss of macroH2A.1 results in increased sensitivity to
irradiation and an increase in NHEJ [39], suggesting a
possible role in promoting HR, perhaps by promoting chro-
matin rearrangement that facilitates homology searching.

In mouse embryonic fibroblasts, expression of GFP-
tagged H2A.B (H2A.Bbd), which wraps less DNA than
canonical H2A, transiently incorporates into sites of
DNA synthesis during S-phase and during DNA repair
[40]. The functional relevance to wild type cells of this
ectopic expression is uncertain, and may merely reflect
opportunistic but unstable assembly. However, the result-
ing shorter cell cycle and increased sensitivity to irradia-
tion resemble Hodgkins’ lymphoma cells, in which H2A.B
is overexpressed. Increased sensitivity to irradiation sug-
gests that H2A.B may interfere with DNA repair, whereas
the shorter cell cycle may give lymphoma cells a replicative
advantage over a normal host.
H3 variants

The role of H3 variants in DNA damage has been inves-
tigated primarily in human cells subjected to ultraviolet
(UVC) irradiation, which triggers nucleotide excision
repair (Figure 2E–G). Transcription is arrested to pre-
vent production of aberrant transcripts and interference
of PolII with repair enzymes. Following UVC irradiation,
transcription is inhibited for at least 5 h, during which
time histone chaperone HIRA (histone regulator A) [41],
which deposits the constitutive H3 variant H3.3 during
transcription [42], is quickly and transiently recruited to
the damage site and incorporates new H3.3 into the
chromatin. This recruitment depends not on transcrip-
tion but on ubiquitylation by the damage detection com-
plex, which ubiquitylates H3 and H4 and is thought to
destabilize nucleosomes [43], facilitating assembly of
H3.3 into damaged chromatin. HIRA is necessary for
transcriptional recovery, but it is gone from the damage
site long before transcription resumes at 20–24 h, sug-
gesting that the newly assembled H3.3 may act to ‘li-
cense’ the chromatin for eventual transcription after
repair is completed [41].

Following HIRA recruitment, the chaperone CAF-1
(chromatin assembly factor I), which is best known for
assembling the canonical histone H3.1 (and H3.2) into
chromatin during S-phase replication, is also recruited
to damage sites, dependent on its p150 subunit [44], which
is known to interact with the DNA polymerase clamp
PCNA (proliferating cell nuclear antigen) [45]. CAF-1 then
assembles H3.1 at the damage site independently of S-
phase. CAF-1-mediated assembly is dispensable for check-
point activation and DNA synthesis, suggesting that H3.1
packages DNA after repair [44]. Deposition of H3.1 is also
affected by HIRA depletion, indicating some dependence of
CAF-1-mediated assembly on prior HIRA activity [41].

Centromeric histone variants

Transient recruitment of the centromeric H3 variant
cenH3 (CENP-A in vertebrates) to several kinds of DNA
damage has also been reported [46], but reports are incon-
sistent, and cenH3 appears to be actively excluded from
DNA damage sites in Drosophila by the histone-fold pro-
tein CHRAC14 (chromatin accessibility complex 14) (Box
1). Although the role of cenH3 in DNA repair is uncertain,
two other histone-fold proteins found at centromeres have
a well-established role in the repair of interstrand cross-
links (ICLs) as part of the Fanconi anemia (FA) protein
complex. MHF1 (FANCM interacting histone-fold protein
1, also known as CENP-S) and MHF2 (CENP-X), which are
essential for ICL repair, dimerize to form a DNA-binding
MHF complex, which further complexes with the FA pro-
tein M (FANCM) and binds to ICLs [47,48]. MHF1, MHF2,
and FANCM are conserved in most eukaryotes, whereas
many other FANC proteins are restricted to vertebrates
[48]. In both vertebrates and ascomycetes, MHF1 and
MHF2 are also found at centromeres as CENP-S and
CENP-X, respectively. The roles of MHF1/CENP-S and
MHF2/CENP-X in centromeres and DNA repair are dis-
tinct (Box 2), involving complexes with different protein
partners and with different turnover times in chromatin
[49–51].
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Box 1. Does cenH3 have a role in DNA repair?

Vertebrate cenH3 (CENP-A) has been reported to be recruited

transiently to several kinds of DNA damage [46]. Expression of GFP-

linked CENP-A resulted in rapid localization to DSBs in human and

mouse cells. By contrast, in a study using SNAP-tag technology, new

CENP-A was not observed at DNA damage sites [41], and in another

study endogenous CENP-A was not detected at laser damage sites,

whereas GFP–CENP-A was only weakly recruited in a limited number

of cells [81]. A third study did not detect CENP-A by immunofluor-

escence at IR damage sites, but an interaction of CENP-A with ATM,

dependent on IR and remodeling and spacing factor 1 (RSF1), could

be detected after crosslinking. RSF1 has an IR-dependent association

with ATM and is required for DSB repair [81,82]. It also affects the

establishment of CENP-A at centromeres [83] and interacts with

CENP-A independent of IR [82], suggesting that some CENP-A might

be recruited to DSBs with RSF1. Alternatively, recruitment might

depend on HJURP, a CENP-A chaperone originally reported to be

involved in DSB repair through interaction with the MRN complex

[84]. The relevance of CENP-A recruitment to DNA damage sites is

unclear. Is it mislocalization, or a new function for cenH3 in repair?

Overexpression of CENP-A produces heterotypic H3.3/CENP-A

particles that mislocalize into sites of high nucleosome turnover on

chromosome arms by DAXX-dependent deposition. Interestingly, this

improves growth after DNA damage, although it is unclear why [85].

In Drosophila cenH3 mislocalization results in multiple kineto-

chores and mitotic errors [86]. CHRAC14 and its orthologs are

histone-fold proteins that dimerize with other histone-fold proteins

to form subunits of the nucleosome remodeling complex CHRAC

(chromatin accessibility complex) [87] and of DNA polymerase e [88].

Chrac14 mutant embryos are defective in DNA repair and form extra

cenH3 spots, whereas CHRAC14 depletion in S2 cells produces extra

cenH3 spots that assemble kinetochores, forming dicentric chromo-

somes and chromosome breaks. Drosophila cenH3 was recruited to

DNA damage sites in CHRAC14-depleted cells, but not in wild type

cells, indicating that CHRAC14 might prevent cenH3 mislocalization at

damage sites. The two proteins interact in glutathione S-transferase

(GST) pulldown assays and in protein extracts from irradiated (but

not unirradiated) embryos, suggesting that they form a heterodimer

that prevents cenH3 incorporation at DNA damage sites [89].

CHRAC17, the human ortholog of CHRAC14, promotes DSB repair,

but whether it interacts with CENP-A is not known [90].
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Other variants

H1 linker histones bind to linker DNA between nucleo-
somes and are believed to contribute to higher-order chro-
matin structure and gene regulation [52]. Of mutations in
the six H1 variants in chicken cells, only H1.R mutants
have increased sensitivity to DNA damage by the alkylat-
ing agent methyl methanesulfonate [53]. H1.R mutants
exhibit impaired sister chromatid exchange and reduced
gene targeting, suggesting a role in the HR pathway,
possibly through regulating global chromatin structure.

Some variants may have evolved specifically to protect
DNA from damage. Bdelloid rotifers, which are highly
resistant to IR, lack H2A, H2A.X, and H2A.Z, but have
H2A variants with extended C-terminal tails that have
been hypothesized to improve survival through dessication
and its attendant DNA damage [54]. In sperm, the paternal
genome of many animals undergoes an elaborate transi-
Box 2. Histone-fold proteins in DNA repair and centromeres

Dimers of MHF1 and MHF2 form a DNA-binding MHF complex with

FANCM [47,48]. This anchor complex then recruits a FANC protein

core complex that results in mono-ubiquitylation of FANCD2 and

FANCI, which in turn signals additional nucleases and repair

proteins to correct the ICL (reviewed in [91]). MHF binds DNA

synergistically with FANCM and stimulates the replication fork

reversal [48] and branch migration activity [47] of FANCM. Crystal

structures show that two MHF1/MHF2 dimers form a tetrameric MHF

complex resembling an (H3–H4)2 tetramer [92,93], to which the

MHF-interacting domain of FANCM binds [50,94]. These structures

have suggested models in which MHF–FANCM binds preferentially

to branched DNA [50,94].

In addition to their role in repairing ICLs, vertebrate MHF1 and

MHF2 are recruited to DSBs, dependent on direct interaction with

the C-terminal region of RSF1, which coprecipitates with ATM

following IR [81,82]. MFH1 and MFH2 are necessary to recruit and

mono-ubiquitylate FANCD2 and FANCI [82], most likely by recruiting

FANCM and the FA core complex.

In vertebrates and ascomycetes, MHF1/CENP-S and MHF2/CENP-

X are also found at centromeres. CENP-S and CENP-X deletion

mutants are viable in chicken DT-40 cells, but have defects in

kinetochore function [95]. CENP-S and CENP-X form a heterote-

trameric complex with the histone-fold proteins CENP-T and CENP-

W [50,93] that can form a nucleosome-like particle that induces

positive supercoils in DNA [96].
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tion in packaging from histones to protamines as the
surrounding cytoplasm is reduced for streamlined motility
[55]. One role of protamines, which evolved from H1 [56],
may be to protect the paternal genome from damage. In
support of this hypothesis, Drosophila sperm deficient in
protamines are viable but show increased sensitivity to IR
[57]. Sea urchin sperm lack protamines but utilize sperm-
specific H1 and H2B variants with SPKK motifs in their
tails that tightly bind to the minor groove of linker DNA,
increasing thermal stability [58].

The heat-shock response
Heat shock is a highly conserved transcriptional response
to an environmental stimulus. In heat shock, most of the
genome is transcriptionally repressed whereas heat-shock
protein (Hsp) genes become highly transcribed. Under heat
shock and other stresses, the heat-shock transcription
factor HSF trimerizes from an inactive monomer and binds
to the promoters of Hsp genes, releasing paused PolIIs,
resulting in rapid incorporation of H3.3 (reviewed in [59]).
This activation has been extensively studied in Drosophila,
where it can be visualized in polytene chromosomes (Box
3). In mammalian cells, as in Drosophila, heat-shock-in-
ducible genes undergo rapid PARylation, nucleosome loss,
and H3.3 deposition [60]. Unlike Drosophila, which has no
macroH2A, macroH2A.1.1 is enriched on the promoters of
inducible HSP70 genes, but not on a constitutive paralog.
At 5 min after heat shock, macroH2A.1.1 and H3 are
reduced at the promoter as PARylation increases, then
macroH2A.1.1, PARP1, and ADPR all decrease as H3.3
increases. This suggests a model in which macroH2A.1.1
sequesters PARP1 at the promoter and releases it upon
heat shock, whereupon it PARylates histones and associ-
ated proteins to open the chromatin.

Seasonal responses
Many organisms undergo profound changes in gene ex-
pression with the seasons. In the common carp, Cyprinus
carpio, a notable seasonal morphological change in the
nucleolus of hepatocytes correlates with changes in rRNA
transcription, which is highest in the summer. During



Box 3. Histone replacement during heat shock in

Drosophila

In Drosophila polytene chromosomes, the two Hsp70 loci expand as

large puffs following heat shock, dependent on PARP activity [97].

Within 30 seconds after instantaneous heat shock, nucleosomes are

lost throughout the Hsp70 gene, faster than RNA PolII can transit the

gene. More loss occurs by 2 min, the time by which PolII reaches the

30 end of the gene. The initial rapid loss is dependent on HSF, the

GAGA transcription factor, and the catalytic activity of PARP,

whereas the later loss is transcription-dependent and is affected

by a variety of elongation factors and chromatin remodelers [98].

Drosophila heat-shock puffs become dramatically enriched in

H3.3, dependent on RNA PolII transcription elongation [42]. Upon

heat shock in wild type cells, H3.3 chaperones HirA and XNP/ATRX

rapidly accumulate on the nucleosome-depleted puffs, and then

leave after heat shock ceases, but in H3.3-depleted cells they persist

even after loss of PolII from the loci and cessation of transcription,

suggesting that they bind to exposed DNA and are only displaced by

H3.3 nucleosome deposition. Single mutants of Xnp and HirA are

viable, and the proteins bind to puffs independently of each other,

but double mutants are lethal as larvae and are unable to assemble

H3.3 into chromatin [99].

Insight into global transcriptional repression during heat shock

comes from a study of nucleosome turnover and low-salt-soluble

‘active’ chromatin in Drosophila S2 cells [100]. At heat-shock-

induced genes, nucleosome turnover was increased as expected,

and subnucleosomal particles were reduced at promoters and

increased in the Hsp gene bodies, suggesting that these particles

represent the progressing transcriptional machinery. By contrast,

genome-wide loss of stalled PolII at active genes during heat shock

correlates with reduced nucleosome turnover and resembles

reduced turnover after inhibition of transcription elongation,

suggesting transcription can evict nucleosomes, and that loss of

stalled PolII mediates global transcription inhibition. Retention of

subnucleosomal particles that probably represent transcription

factors at the transcription start-site may allow efficient recovery

after heat shock.
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winter, downregulation of rRNA is accompanied by hyper-
methylation of the ribosomal cistron [61]. H2A.Z levels are
increased overall in these cells during winter, but at the
ribosomal cistron H2A.Z is increased during summer.
Ubiquitylation of H2A.Z, which is usually associated with
gene silencing [3,4], was also enriched at the ribosomal
cistron during summer. This suggests multiple layers of
seasonal regulation [62].

Similarly to other vertebrates, carp has two macroH2A
genes. MacroH2A.1 is enriched at the ribosomal cistron and
at the promoter of the L41 ribosomal protein gene during
winter [61,63]. Enrichment of macroH2A.1 at these sites
colocalizes with enrichment for H3K27 methylation, a mark
of repressed chromatin. Consistent with this, macroH2A.1
represses rDNA transcription in human cells [64].

In summer the ribosomal cistron and L41 are instead
enriched for macroH2A.2 and H3K4me3, a mark of active
chromatin, consistent with the increased transcription of
both loci. By contrast, no seasonal change is seen in
macroH2A.1 or macroH2A.2 at the prolactin gene promot-
er. Although the roles of macroH2A.1 and macroH2A.2 are
not well understood, these observations suggest that they
may have opposing or complementary roles in gene expres-
sion [61,63].

Drought response
Many plants have a structurally distinct H1 histone that is
specifically induced by drought. In Arabidopsis, H1.3 is
significantly shorter than variants H1.1 and H1.2, and is
induced by water stress or abcissic acid [65]. Under well-
watered conditions it is expressed primarily in the second-
ary roots, but under drought stress it becomes active in the
root meristem. Although changes in expression level of
H1.3 have little phenotypic effect, H1.3 immunoprecipi-
tates the drought-inducible gene RAB18 (RESPONSIVE
TO ABA 18) under drought stress but not under well-
watered conditions, whereas no change is seen in immu-
noprecipitation of RAB18 by H1.1 [66,67]. Antisense con-
structs of the orthologous H1.S in tomato exhibit increased
stomatal conductance and transpiration rates, indicating a
role in the regulation of stomata [68]. Differences in the
drought-inducible transcription level of the orthologous
H1.S gene in two cotton genotypes appear to underlie their
differences in drought tolerance [69]. In tobacco, however,
orthologous H1 variants show no evidence of induction by
prolonged drought, and antisense constructs knocking
down their expression have no phenotype [70]. Thus
‘drought-inducible’ H1s might have additional functions,
and accumulation of Arabidopsis H1.3 in older non-divid-
ing leaf tissue points to this same conclusion [52].

Histones as weapons
Histones are most commonly found in chromatin, but
histones and histone fragments enriched in basic residues
are surprisingly common as extracellular antimicrobial
peptides that function as part of the innate immune system
in both vertebrates and invertebrates (Box 4). Although
such secreted histones protect against external and
ingested bacteria, anti-microbial histones are also found
internally in hemocytes of the Pacific white shrimp (Lito-
penaeus vannamei) [71] and in lipid droplets in Drosophila
melanogaster embryos. Excess cytoplasmic histones are
commonly deleterious to cells [72], but the Drosophila
histones are stably bound to the lipid droplets, and are
released by bacterial envelope components [73]. Mutations
in the Drosophila histone receptor Jabba fail to localize
histones to lipid droplets, resulting in increased sensitivity
to killing by bacteria, suggesting that the histones in lipid
droplets contribute to the intracellular antibacterial re-
sponse [73]. Histones are also found in lipid droplets in
mammals, suggesting a conserved mechanism of antibac-
terial defense [74].

Some viruses also make use of histones to subdue
opponents. The Cotesia plutellae bracovirus (CpBV) is a
polydnavirus found in the braconid wasp Cotesia plutella,
which is an endoparasitoid of the diamondback moth
Plutella xylostella. CpBV has a segmented genome of some
27 parts integrated as a provirus into the genome of C.
plutella. Viral particles containing an episomal form of the
genome are coinjected into a Plutella larva along with a
Cotesia egg, and viral genes help to suppress the host
immune response [75,76]. CpBV encodes a viral H4 that
differs from typical insect H4 by the addition of a long
acetylated tail. This H4 is expressed in the nuclei of
hemocytes, and inhibits their spreading [76]. It also
reduces the expression of the host H4 and transferrin genes
[77,78]. The viral H4 can be assembled into nucleosomes in
vitro. Its transient expression in the beetle Tribolium
casteneum leads to numerous changes in gene expression
647



Box 4. Histone fragments as antimicrobial peptides

Several histone fragments with antimicrobial activity are derived

from canonical H2A (Figure I). The potent antimicrobial peptide

buforin I is produced in the stomach of the Korean toad Bufo bufo

gargarizans by cleavage of unacetylated canonical H2A by pepsin

isozymes, releasing a 39 amino acid N-terminal fragment [101,102].

This forms a protective coating on the surface of the stomach and

inhibits bacterial growth. Buforin II is a 21 amino acid antimicrobial

peptide derived from buforin I that is twice as potent as buforin I

[102]. Buforin II can penetrate bacterial cells without permeabilizing

them and is hypothesized to bind to DNA and RNA based on its ability

to do so in vitro [103]. Peptide analogs of buforin II have DNA-binding

affinities that correlate with their antimicrobial activity [104].

Unacetylated H2A is found in the cytoplasm of epithelial mucous

cells of the catfish Parasilurus asotus. In wounds, it is cleaved to form

the 19 amino acid antimicrobial peptide parasin I by the protease

cathepsin D, which derives from a proenzyme that is itself cleaved by

a metalloprotease upon wounding of the mucosa [105]. The N-

terminal lysine of parasin I is necessary to bind to the cell membrane

of Escherichia coli, whereas a region that can form an a helix

(residues 9–19) is necessary to permeabilize and kill the cell [106].

The Atlantic halibut (Hippoglossus hippoglossus) produces hippo-

sin, a 51 amino acid N-terminal H2A fragment that encompasses the

homologous sequences found in parasin I and the buforins [107].

Similarly to parasin I, it renders bacterial membranes permeable and

kills cells. The region identical to buforin II and a C-terminal region

can translocate into cells [108], and although only the buforin II region

seems to have antimicrobial activity, this is enhanced by the additions

of the parasin and C-terminal regions [108,109].

Not all antimicrobial histones are H2A fragments. Schlegel’s green

tree frog, Rhacophorus schlegelii, secretes intact H2B [110], which

becomes cleaved by E. coli outer-membrane protease OmpT to

generate a fragment that penetrates bacterial cells, and is thought to

act similarly to buforin II [111]. H2B has also been implicated in

antimicrobial activity in catfish [112] and in oyster gills [113]. In the

human placenta, H2A and H2B are found on the extracellular surfaces

of amnion epithelial cells, where they exhibit antibacterial activity

[114]. H1 has been implicated as an antimicrobial protein in salmon

[115], rainbow trout [116], and in human gastrointestinal epithelial

villi [117].
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Figure I. Antimicrobial peptides derived from H2A. Peptides derived from H2A

are used by several organisms to combat bacteria as part of the innate immune

response. Numerals indicate the number of residues in each peptide.
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that depend on the long tail [79]. Although the mechanism
by which viral H4 inhibits spreading of hemocytes in
Cotesia remains unclear, its potential for altering host
gene expression and immune response is apparent.

Concluding remarks and future directions
Nearly all histone variants seem to be involved in environ-
mental adaptation through mechanisms as diverse as
affecting nucleosome dynamics, carrying variant-specific
modifications, binding to PAR, mediating rearrangement
of chromosomes, promoting transcriptional competence or
silencing, attracting specific repair proteins, poisoning
bacteria, altering cell mobility, and probably others. Var-
iants substitute for their corresponding homologs in ca-
nonical nucleosomes, but there are a growing number of
combinations of histone proteins, as seen in interactions of
cenH3/CENP-A with H3.3 and CHRAC14, and even more
obviously in histone-fold proteins such as MHF1/CENP-S,
MHF2/CENP-X, and the CHRAC proteins.

Histones are not only chromatin proteins but are also
weapons in interorganismal conflict that can even be ac-
quired and deployed by viruses. The use of viral H4 against
a host organism invites comparison to the relationship of
cancer cells to their hosts. Overexpression or mutation of
several histone variants and their chaperones has been
implicated in cancers (reviewed in [80]), suggesting that
cancer cells have deployed histone variants to gain an
advantage over their host cells.

Although we still have much to learn about the biology
of histone variants in such well-studied processes as DNA
648
repair and heat shock, investigation of responses to sea-
sonal variation and to pathogens or parasites suggests a
future in which the roles of histones in a broad range of
environmental responses will be better understood.
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