
Mendelian randomization for binary disease outcomes

2SLS is for linear models, but disease outcomes in MR are mostly
dichotomous!

◮ two ways to define causal effect
◮ structural models by conditional on U
◮ Potential outcomes: causal risk difference, causal risk ratio, and

causal odds ratio

◮ 2SIV approximation methods for causal odds ratio when disease is
rare.

◮ Consistent estimation by double-logistic models: pros and cons

◮ the impact of case-control sampling

◮ estimation when some IV are not valid
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Structural models in econometrics

Structural models defining causal effect in the presence of unmeasured
confounding

g{E (Y |X ,U)} = θ0 + θ1X + θ2U

θ1 = g{E (Y |X = x ,U)} − g{E (Y |X = x − 1,U)}

◮ conditional on unknown U ???

◮ For linear or log-linear models, this is fine: population-average
causal effect is the same as the conditional effect θ1
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Pearl’s do operator

◮ The expectation of Y when X is manipulated (randomized) to x

E [Y |do(X = x)] 6= E [Y |X = x ]

◮ Population causal effect in risk difference is

E [Y |do(X = x)]− E [Y |do(X = x − 1)]

◮ If U includes all confounding, then

Pr(Y |X = x ,U) = Pr(Y |do(X = x),U)
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Linear, log-linear, logistic models

E [Y |do(X = x)] = EU{E [Y |do(X = x),U]} = θ∗0 + θ1x

E [Y |do(X = x)] =

∫
exp(θ0 + θ1x + θ2u)Pr(u)du = exp(θ∗0 + θ1x)

E [Y |do(X = x)] =

∫
exp(θ0 + θ1x + θ2u)

1 + exp(θ0 + θ1x + θ2u)
Pr(u)du 6=

exp(θ∗0 + θ1x)

1 + exp(θ∗0 + θ1x)

◮ The population causal odds ratio is not the same as the conditional
causal odds ratio due to non-collapsibility of logistic regression!

◮ we have no idea about what has been conditional upon, the stratum
is not well defined!

◮ The causal effect for odds ratio in the presence of U is not
well-defined!
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2SIV approximation for logistic regression

Data generating models

Xi = α0 + αGi + α2Ui + ǫi ,

Yi ∼ Bernoulli(pi ), log
pi

1− pi
= θ0 + θXi + θ2Ui

where U is the confounder and ǫ is random error

◮ Y is rare (most cancer endpoints), so that logistic model can be
approximated by log-linear model

◮ population average risk ratio is approximated by the conditional risk
ratio, and the conditional odds ratio
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2SIV approximation
◮ 2SLS still works approximately

Stage 1: E (Xi |Gi) = α∗
0 + α1Gi

Stage 2: logitE (Yi |X̂i) = θ∗0 + θ1X̂i

◮ COR ≈ OR(Y |G )1/δ where δ = E (X |G = 1)− E (X |G = 0).

As long as the error ǫ is independent of G given U

E (Y |G ) = EU|GEX |G ,UE (Y |X ,Z ,U)

≈ EUEX |G ,U exp(θ0 + θ1X + θ2U)

= EU exp(θ∗0 + θ2U + θ1α0 + θ1α1G + θ1α2U)

= exp {θ∗∗0 + θ1α1G} ,

ǫ does not have to be normal or parametric!

Palmer et al (2008); Didelez et al (2010) Statistical Science.
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2SIV provides a valid and consistent test for causal effect

Xi = α0 + α1Gi + α2Ui + ǫi , (1)

logit {pr(Yi = 1|Xi ,Ui )} = θ0 + θ1Xi + θ2Ui , (2)

Corollary in Dai et al (2014) AJE

Suppose data generating models are (1-2) and G is qualified as an
instrumental variable, then the 2SIV estimand θ∗1 = 0 if and only if the
true causal effect θ1 = 0, and θ∗1 has the same sign as θ1.

◮ Although the näıve 2SIV estimator for a causal odds ratio is generally not
consistent, the corresponding testing procedure is valid and consistent for
testing whether the causal effect θ1 = 0.

◮ This result holds regardless the disease is rare or not, thus establishes the
general utility of 2SIV in Mendelian randomization analyses.
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The control function (CF) estimator

The first stage regression error term contains some information about U,
so

Stage 1: ǫ̂i = Xi − X̂i

Stage 2: Logit(pi ) = θ∗0 + θ1X̂i + θ2ǫ̂i

◮ For linear models, the control function estimator is equivalent to
2SLS

◮ For non-linear models, it captures some variability contained in U,
thus reduce bias over the standard 2SIV estimator in last slide

◮ Sometimes called as “adjusted IV method” in the econ literature

Palmer et al (2008); Palmer et al (2011)
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Potential outcomes

◮ Potential outcomes framework: let Y (x) denote the potential
outcome of Y when X is experimentally altered to an arbitrary
value x within the set of all attainable values.

◮ define Yi(x = 0) and Yi(x = 1) for every subject

◮ average causal effect

E [Yi(x = 1)− Yi(x = 0)] = E [Yi (x = 1)]− E [Yi (x = 0)]

◮ Consistency assumption that Y (x) = Y if X = x , so
Pr(Y (x)|x) = Pr(Y |x)

◮ If X randomized, x ⊥ Y (x), we can derive the causal effect is the
ITT effect

E [Yi |Xi = 1]− E [Yi |Xi = 0]

9/25



Causal estimands in potential outcomes

◮ causal risk difference

E [Y (x)]− E [Y (x − 1)]

◮ causal risk ratio

E [Y (x)]

E [Y (x − 1)]

◮ causal odds ratio

E [Y (x)]/E [1 − Y (x)]

E [Y (x − 1)]/E [1 − Y (x − 1)]

10/25



The concept of Y (X = 0) for a subject with value

(Y=y,X=x)

◮ individual’s ”baseline” value (risk) for Y if X is altered to zero
value.

◮ Y (0) can be determined by other causal factors of Y than X

◮ confounding is introduced when observed X value is correlated with
Y (0): people with a higher “baseline” risk of colorectal cancer
because of other causal factors happened to be more likely taking
red meat.

◮ so Y (0) can be viewed as the totality of other unmeasured causal
effects on Y

◮ in RCT, X is orthogonal to individual ”baseline” value (risk)

◮ represent a mathematical language to describe the confounding
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Structural mean models (SMM)
Different from structural equation models, SMM does not assume data
generating models.

◮ Postulate the causal effect model only

Pr(Y = 1|X ,G )

Pr(Y (0) = 1|X ,G )
= exp(θX )

Odds(Y = 1|X ,G )

Odds(Y (0) = 1|X ,G )
= exp(θX )

◮ This is a conditional causal effect, that does not depend on G (no
interaction between G and X ).

◮ Does not condition on the unknown confounding U. The effect in
the well-defined, observed subset of the population

◮ Interpretation: if we are able to change X to zero, what would be
the change (in ratio) of the disease odds for the subject

Vansteelandt & Goetghebeur (2003) JRSSB
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Estimating equations for SMM

Use the independence between G and Y (0) to construct estimating
equation (GMM)

◮ Causal effect model

E (Y |X ,G )− E [Y (0) = 1|X ,G ] = θX

◮ estimating equation

0 =
n∑
i

Gi(Yi − θXi)

◮ Semiparametric, there is no data-generating model on Y , the error
distribution is not required.
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Causal relative risk

Pr(Y = 1|X ,G )

Pr(Y (0) = 1|X ,G )
= exp(θX )

◮ Use Y exp(−θX ) as predicted value of Y (0). So

Estimating function: 0 =

n∑
i

{Gi − E (G )}Yiexp(−θXi)

◮ derivation

E{Gi − E (G )}Yiexp(−θXi) = E{Gi − E (G )}EXi |Gi
Pr(Yi (0)|Xi ,Gi )

= E{Gi − E (G )}Pr(Yi(0)|Gi ) = 0

Vansteelandt & Goetghebeur (2003) JRSSB
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Double-logistic regression for causal odds ratio estimates

◮ Causal odds ratio

Odds(Y = 1|X ,G)

Odds(Y (0) = 1|X ,G)
= exp(θX )

◮ We cannot subtract or divide from Y to get Y (0) anymore

◮ logistic model for observed data

Odds(Y = 1|X ,G) = exp(β0 + β1X + β2G)

0 =

n∑
i

{Gi − E (G)}expit{β0 + (β1 − θ)Xi + β2G}

◮ the observed logistic function is preferably non-parametric, otherwise it
might be possible that no θ satisfy the GMM equation

Vansteelandt & Goetghebeur (2003) JRSSB; Vansteelandt 2011 SS
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The issues with SMM

◮ Is the association model compatible to the causal effect model?

◮ It can be fitted by R gmm function, but identifiability and
convergence are often problematic

◮ The problem is that the gradient of estimating equations is not
monotone.

◮ there is also issue of weak instrument

0 =

n∑
i

Gi(Yi − θXi)

0 =

n∑
i

{Gi − E (G )}Yiexp(−θXi)

0 =

n∑
i

{Gi − E (G )}expit{β0 + (β1 − θ)Xi + β2G}
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The issues with SMM

Burgess S et al (2014) AJE
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The impact of case-control sampling on two-stage IV

estimators
The samples are composed of cases and controls (Y ), intermediate
phenotypes (X ) and genotypes (G ) were collected after case-control
sampling.

E (Xi |Gi) = α∗
0 + α1Gi

2SLS: logitE (Yi |X̂i ) = θ0 + θX̂i

CF: logitE (Yi |Xi , ǫ̂i ) = θ∗0 + θX̂i + θ2(Xi − X̂i)

◮ The issue is to estimate X̂i use case-control samples in the first stage.

◮ If X is associated with Y , then X ∼ G is assessed in a biased sample

◮ The regression of X ∼ G becomes a secondary trait association problem:
see for example, Lin and Zeng (2009).

◮ If we correct for α̂ (and so X̂ ), then no adjustment is needed in the second
stage (prospective estimation under case-control sampling).

Dai J et al (2014) AJE18/25



Methods accounting for the case-control sampling in MR

◮ Use controls only (rare disease)
◮ inefficient

◮ Weighting estimating equation by inverse of sampling probability
(IPW): Jiang et al (2006); Monsees et al (2009)

◮ inefficient but robust

◮ Maximum likelihood estimator (MLE): Jiang et al (2006); Lin and
Zeng (2009); Dai et al (2014).

Prη(Y |X ,G )Prα(X |G )Prf (G )∫
X ,G Prη(Y |X ,G )Prα(X |G )Prf (G )dgdx

◮ efficient but not robust

Dai J et al (2014) AJE
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Correcting for case-control sampling in structural mean

models (SMM)

Bowden & Vansteelandt (2011) used inverse probability weighting

◮ Causal relative risk

0 =

n∑
i

{Gi − Êw (G)}Yiexp(−θ)

where Êw (G) is weighted estimate of the mean

◮ Causal odds ratio

Odds(Y = 1|X ,G) = exp(β0 + β1X + β2G)

0 =

n∑
i

Wi{Gi − ÊW (G)}expit{β0W + (β1 − θ)Xi + β2G}
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Estimation when some genetic variants have pleiotropic

effects
Suppose there are k genetic variants

X = α0 +

k∑
j=1

α1jGj + ε1,

Y = θ0 + θ1X +
k∑

j=1

γjGj + ε2,

then the reduce form Y ∼ G is

E (Y |Gj) = β0 +
k∑

j=1

β1jGj = β0 +
k∑

j=1

(θ1α1j + γj)Gj

This implies

β1j = θ1α1j + γj
Bowden et al (2015) IJE
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Weakened assumption: direct effects are not related to

genetic effects on the exposure

◮ If γj all cancels out, IV estimator would be consistent

◮ If γj is not correlated with α1j (Instrument strength Independent of
Direct Effect)

◮ Estimate the slope of γ̂j ∼ α̂1j , it should be still consistent

◮ Eggers test for small study bias in meta-analysis: assesses whether
the intercept term is different from zero. This will occur if the
estimates from small studies are more skewed towards either high or
low values compared with estimates from large studies.
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Egger regression
Regress β̂1j on α̂1j

◮ The intercept indicates whether there are averaged direct effects
(pleiotropy) .

◮ The slope is the causal effect estimate under potential pleiotropy.
◮ similar idea was used in Dai et al (2014) SIM

Bowden et al (2015) IJE

These developments are under linear models; Binary outcomes are not
applicable! 23/25



Other ways to handle invalid instrument: Overidentifying

conditions

◮ we are often dealing with one causal effect

◮ we have multiple instrumental potentially

◮ as long as 50% instruments are valid, then consistent estimation is
still possible

Kang et al (2014) JASA
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Summary

◮ Mendelian randomization studies can be useful to assess causality
from exposure to disease outcome, with careful examination of
assumptions.

◮ Important methodological works can be developed to further
address diagnosis of violation assumption, estimation under direct
effect, particularly for binary outcomes.
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