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Review: Epidemiologic Studies for Complex Diseases

I Complex diseases are contributed by both genetic and
environmental risk factors

I Observational studies are powerful tools in studying these risk
factors. Investigators have no control over exposure
assignment. As a result, exposure of interest is often
confounded by a third factor that is associated with exposure
and the disease.



Genetic Factors

I Breakthroughs in high throughput genotyping and sequencing
technologies have allowed researchers to assess genome-wide
genetic effects on disease risk

I High-dimension
I Accurate measurements
I Confounding can be effectively accounted for by principal

components derived from genome-wide SNPs

I Areas that need further development: set-based association;
high-dimensional risk prediction; GxE (or GxG) interaction



Environmental Risk Factors

I Besides confounding, measurement error is an issue for
environmental risk factors

I Technologies such as wearable devices and metabolomics are
being developed to better quantify aspects of environmental
risk factors (e.g., diet and exercise)

I Becoming more and more high-dimensional
I Measurement error
I Confounding remains to be a tricky issue

I Areas that need further development: functional data analysis
to better characterize the effects of environmental covariates;
measurement error; Mendelian randomization/instrumental
variables



Study Designs

I Two commonly used study designs:
I Case-control studies

I Case-control studies are restrospective in nature, nevertheless
the data can be analyzed as if they were prospectively
collected using a logistic model and the odds ratio
approximates the relative risk if the disease prevalence is low
(Anderson 1972; Prentice and Pyke 1979)

I Baseline disease probability is not identifiable

I Cohort studies
I Follow a group of people over a period of time to study the

association of exposures with disease occurrences
I Baseline disease probability is identifiable, even with

subsampling designs (case-cohort and case-control)

I Areas that need further development: secondary phenotypes,
biomarker evaluation and validation, population screening and
monitoring



This week’s focus:

I Population attributable fraction

I Absolute risk estimation



Relative Risk

I Measure the strength of association based on (prospective)
cohort studies

Relative Risk(RR) =
Risk in exposed

Risk in non-exposed
=

Pr(Y = 1|Z = 1)

Pr(Y = 1|Z = 0)

I RR cannot be calculated directly in case-control studies.
Instead, one can use odds ratio (OR)

Odds Ratio =
Odds that an exposed subject develops disease

Odds that a non-exposed subject develops disease

=
Odds that a case was exposed

Odds that a control was exposed



When is the odds ratio a good estimate of relative risk

I When cases are representative of diseased population

I When controls are representative of non-diseased population

I When the disease is rare
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Attributable Risk or Population Attributable Fraction

I Amount of disease that can be attributed to an exposure
(Levin, 1953)

PAR =
Pr(Y = 1)− Pr(Y = 1|Z = 0)

Pr(Y = 1)

I It combines both the strength of association and the
prevalence of exposure in the population, and therefore
quantifies the population impact of risk factors

PAR =
Pr(Z = 1)(RR− 1)

1 + P(Z = 1)(RR− 1)



PAR

I Adjusted PAR is the reduction in incidence if a subset of risk
factors is eliminated from the population while the other risk
factors retain their actual levels (Whittemore 1982)

PARadj =
Pr(Y = 1)−

∑m
j=1 Pr(Y = 1|Z = 0,W = wj)Pr(W = wj)

Pr(Y = 1)

where w1, . . . ,wm are m levels of confounding variables

I It can also be formulated as

PAR =
m∑
j=1

Pr(Z = 1,W = wj |Y = 1)(1− 1

RRadj|W=wj

)

I Benichou(2001); Greenland (2001); Silverberg et al. (2004);
Graubard & Fears (2005)



A Case-Control Study of Prostate Cancer
 

  
OR 

 
PAR 

Family History 2.24 9.29% 
SNPs   

rs4430796 1.38 9.93% 
rs1859962 1.27 6.28% 
rs16901979 1.53 3.41% 
rs6984267 1.38 22.46% 
rs1447295 1.21 5.12% 

   
Combined SNPsa  40.02% 
Combined SNPs + Family History  45.59% 
  
a 0/1: indicator of presence of any one of the five SNPs 

 Zheng SL et al. N Engl J Med. 2008; 358(9):910-919

I A prominent property of the PAR is that PAR increases with
exposure prevalence

I Q: Shall we simply increase the prevalence of exposure by
including less risk alleles in genetic testing to make PAR look
greater?



A Companion Measure

I Increasing PAR would lower the potential gain of disease-free,
i.e., those who are not diseased, attributed to non-exposure.

Illustration of Population Attributable Risk and Population Attributable Benefit 
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Interpretation Fraction of excess risk of disease 
attributed to exposure 

 

 Fraction of excess gain of disease-free 
attributed to non-exposure 

 

Measure Public health impact on disease 
attributed to exposure 

 Public health impact on disease-free 
attributed to non-exposure 



Relationship of PAR with Other Measures

I PAR is linearly associated with NPV and PAB is linearly
associated with PPV.

PAR = −Pr(Y = 0)

Pr(Y = 1)
+

1

Pr(Y = 1)
× NPV

and

PAB =
Pr(Y = 1)

Pr(Y = 0)
+

1

Pr(Y = 0)
× PPV



Revisit the Prostate Cancer Study

 OR, PAR and PAB of the Prostate Cancer Study 

 All Five SNPs with 
 Family history included  Family history not included 
 OR PAR PAB  OR PAR PAB 
 
Least number of risky alleles in genetic profiling  

1 1.92 45.36% 6.81%  1.73 39.62% 5.98% 
2 1.72 28.71% 23.84%  1.54 22.22% 20.17% 
3 1.85 13.96% 40.50%  1.63 9.20% 34.39% 
4 2.35 4.23% 55.95%  1.97 2.03% 47.45% 

 



Some Thoughts

I PAB addresses the question:

How much benefit a prevention can gain to increase
disease-free in the population attributed to
non-exposure?

I PAR addresses the question

How much risk a prevention can lower to reduce
disease in the population attributed to exposure?

I Evan though PAB and PAR are tied in with PPV and NPV,
they can be easily estimated from all major types of
epidemiologic study designs (e.g., cohort and case-control);
but not PPV and NPV.

I Chen, Hsu, & Peters (2010, manuscript)



Time-to-event Data

I Time-to-event outcomes have important applications in
chronic disease application

I Y (t): at-risk process; N(t): counting process

I Hazard rate function

λ(t) = lim
∆t→0

1

∆t
Pr(t ≤ T < t + ∆t|T ≥ t)

I Cox proportional hazards model

λ(t|Z ) = λ0(t) exp(β′Z )



Time-Varying Attributable Risk

I Proportional reduction of probability of developing disease by
time t due to an exposure over a period [0, t]

Φ(t) =
Pr(T ≤ t)− Pr(T ≤ t|Z = 0)

Pr(T ≤ t)

I Proportional reduction of hazard function due to Z

φ(t) =
λ(t)− λ0(t)

λ(t)



Estimation of φ(t) from Cohort Data

I For time-to-event data, survival analysis techniques can be
used to estimate survival function S(t)

Φ̂(t) = 1− 1− Ŝ0(t)

1−
∑n

i=1 Ŝ(t|Zi )

I Attributable hazard function

φ(t) = 1−
∫

f (T ≥ t|z)f (z)dz∫ λ(t|z)
λ0(t) f (T ≥ t|z)f (z)dz

φ̂(t) = 1−
∑n

i=1 Ŝ(t|Zi )∑n
i=1 exp(β̂Zi )Ŝ(t|Zi )

I Chen et al. (2006, Biostatistics); Chen et al. (2010
Biometrika); Liu et al. (2014, JASA)



Estimation of φ(t)

I The time-varying attributable risk function can also be
represented:

φ(t) = 1−
∫

λ0(t)

λ(t|z)
f (z |T = t)dz

Or

φ(t) = 1−
{∫

λ(t|z)

λ0(t)
f (z |T ≥ t)dz

}−1

I φ(t) can be estimated from case or control data. E.g., a
kernel estimator based on cases data is

φ̂(t) = 1−
∑n

i=1 exp(−β̂Zi )YiKh(t − Xi )∑n
i=1 YiKh(t − Xi )

where K(·) is a kernel function and h is the bandwidth that
controls the spread of weighting window

I Wei Zhao (2014, PhD dissertation, Department of
Biostatistics, University of Washington)



Genetics and Epidemiology of Colorectal Cancer
Consortium (GECCO)

I GECCO includes 20+ population-based case-control and
nested case-control studies (n ≈ 75,000). This example
includes 2742 cases and 2756 controls from three
population-based case-control studies.

Cases Controls PAF
Variable (%) (%) OR (95% CI) (%)

Family history of CRC 17.6 15.1 1.21 (1.04, 1.40) 3.0
History of diabetes 7.5 4.7 1.65 (1.31, 2.07) 2.9
BMI(> 30kg/m2) 29.5 25.7 1.21 (1.07, 1.36) 5.1



Time-Varying PAF
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Summary: Relative Risk vs. Population Attributable Risk

I Relative risk and odds ratio are important measures of the
strength of association.

I Important for deriving causal inference.

I Attributable risk is a measure of how much disease risk is
attributable to a certain exposure

I Useful in determining how much disease can be prevented.

I Relative risk is valuable in etiologic studies of disease

I PAR (and/or PAB) is useful for public health guidelines and
planning.



Absolute Risk

I Policy making and public health

I Counseling and personal risk management



Jolie, in her NYT article (March 24, 2015), explained:

“TWO years ago I wrote about my choice to have a preventive
double mastectomy. A simple blood test had revealed that I carried
a mutation in the BRCA1 gene. It gave me an estimated 87
percent risk of breast cancer and a 50 percent risk of ovarian
cancer. I lost my mother, grandmother and aunt to cancer.”



Absolute Risk

-

Age t0

t �����1 Die before cancer

PPPPPq
Diagnosed with cancer

I Absolute risk or crude risk is the probability that a person with
a given set of risk factors, Z , and free of the disease of interest
at time t0 will develop disease before a subsequent age t0 + τ .

I Pure risk is the probability of disease if not competing causes
of mortality were present.



Illustration

Life table to compare crude with pure risk.
Age at start
of interval

# at risk # incident
breast cancer

# deaths from
other causes

60 1000 17 44
65 939 20 63
70 856 22 87
75 745 — —

I Crude risk by age 75 = 17+20+22
1000 = 5.9%

I Pure risk by age 75 = 1− (1− 17
1000 )(1− 20

939 )(1− 22
856 )

= 6.3%

I Pure risk > Crude risk because other causes of death are
hypothetically eliminated.



Absolute Risk versus Pure Risk

I Focusing on pure risk helps understand the effects of an
intervention on a particular outcome, regardless of its effect
on competing causes of mortality.

I However, for clinical purposes, absolute risk is more pertinent
because a patient is always subject to other causes of
mortality.

I For example, it makes little sense to ask the question: “What
would be your chance of developing breast cancer by age 80 if
you had no risk of dying of non–breast cancer causes during
the period?”



Survival Analysis and Competing Risks Framework

I Assume there are two types of events
I ε = 1: the disease of interest (e.g., breast cancer)
I ε = 2: competing causes (e.g., death from non–breast cancer

causes)

I Let T be the time at which the first of these events occur.

I Cause-specific hazard for the disease of interest, ε = 1

λ(t) = lim
∆t→0

Pr(t ≤ T < t + ∆t, ε = 1|T ≥ t)/∆t

I Cause-specific hazard for the competing causes, ε = 2

λ†(t) = lim
∆t→0

Pr(≤ T < t + ∆t, ε = 2|T ≥ t)/∆t

I If only one of the failure types occur, then

λoverall(t) = λ(t) + λ†(t)



Absolute Risk

I Absolute risk is defined as

R(t|t0; Z ) = Pr(t0 ≤ T ≤ t, ε = 1|T ≥ t0,Z )

=

∫ t

t0

λ(u|Z ) exp(−
∫ u

t0

{λ(s|Z ) + λ†(s|Z )}ds)du

I Integration of instantaneous probabilities of developing disease
between t0 and t.



Estimation

I For i = 1, · · · , n subjects

I Xi = min(Ti ,Ci ), where Ti is the minimum failure time of
competing causes and Ci is censoring time

I δik = I (Ti ≤ Ci , εi = k): disease indicator for causes k = 1, 2

I Nik(t) = I (Xi ≤ t, δik = 1)

I Yi (t) = I (Xi ≥ t)



Estimation

I The likelihood function is

L =
n∏

i=1

λ(Xi |Zi )
δi1λ†(Xi |Zi )

δi2 exp

(
−
∫ Xi

0
{λ(u|Zi ) + λ†(u|Zi )}du

)

=
n∏

i=1

λ(Xi |Zi )
δi1 exp

(
−
∫ Xi

0
λ(u|Zi )du)

)

X
n∏

i=1

(Xi |Zi )
δi2 exp

(
−
∫ Xi

0
λ†(u|Zi )du)

)
I Parameters can be estimated in a standard way by treating

failures from other causes as censoring if there are no common
parameters.



Estimation

I Breslow estimator is

Λ̃0k(t) =
∑
s≤t

∑n
i=1 Nik(∆s)∑n

i=1 Yi (s) exp(β̂Zi )

I Takes jumps at observed failure times, and hence it can be
efficient due to sparse events.



Efficiency
I Use external disease incidence rates, denoted by λ(t), from a

national registry or other large cohort studies to improve the
efficiency.

I Attributable hazard function

φ(t) =
λ(t)− λ0(t)

λ(t)
After rearrangement,

λ0(t) = λ(t)(1− φ(t))

I Recall

φ(t) = 1−
{∫

λ(t|Z )

λ0(t)
f (Z |T ≥ t)dZ

}−1

= 1−
∫

S(t|Z )S†(t|Z )f (Z )dZ∫
exp(βZ )S(t|Z )S†(t|Z )f (Z )dZ

I When the competing risks is non-differential, i.e., S†(t|Z )
= S†(t), the competing risk terms are canceled out.



External Incidence Rate

I When a suitable external cause-specific composite incidence
rate λ(t) is available, we can plug it in for λ(t) and estimate
λ0(t) = λ∗(t)(1− φ(t)).

I The incidence rate in the cohort may differ from the external
rate because of eligibility criteria and participant
characteristics such that cohort participants may not be
entirely representative of the population.



WHI and SEER’s Incidence Rates
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WHI and SEER’s Cumulative Incidence Rates
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Difference between Cohort and External Incidence Rate

I The difference may be accommodated by

λ0(t) = ρ0(1− φ(t))λ(t)

where ρ0 = 1 indicating no difference of disease incidence
rates between the cohort and the external source.

I An estimator for ρ is

ρ̂ =

∫ τ
0

∑n
i=1 Nik(du)∫ τ

0

∑n
i=1 Yi (u) exp(β̂Zi )φ̂(u)λ(u)du



Description of the WHI

I 1,073 (1.4%) developed CRC and 9,190(12%) died during the
follow-up.

I T : age at the diagnose of CRC
I Risk factors chosen based on Freedman et al. (2009).

I History of endoscopy (Endo) and polyps (Polyp) in last 5 years
I Family history of CRC in the first-degree relatives (FH)
I Current leisure-time vigorous activity (Exer, hours/week).
I Use of aspirin and other nonsteroidal anti-inflammatory drugs

(NSAIDs, nonuser, regular user)
I Vegetable consumption (Veg, median portion/day).
I BMI (kg/m2)
I Estrogen status



The hazad ratio (HR) estimates and the 95% CI of known risk
factors

Risk Factor HR 95% CI P-value
Endoscopy and polyp history in the last 5 years

Endoscopy and no history of polyps 1.00
No endoscopy 1.30 (1.14, 1.48) < .0001
Endoscopy and history of polyps 1.16 (0.95, 1.42) 0.0771
Endoscopy and polyps unknown 0.96 (0.66, 1.40) 0.4187

No. of relatives with CRC
0 1.00
≥ 1 1.23 (1.05, 1.43) 0.0051

Current vigorous leisure exercise, h/wk
0 1.00
> 0, ≤ 2 0.99 (0.83, 1.18) 0.4390
> 4 0.83 (0.68, 1.03) 0.0445

Aspirin/NSAID use
Nonuser 1.00
Regular user 0.76 (0.65, 0.90) 0.0005

Vegetable intake, medium portion per day
< 5 1.00
≥ 5 0.94 (0.83, 1.06) 0.1556

BMI, kg/m2

< 30 1.00
≥ 30 1.38 (1.21, 1.59) < .0001

Estrogen status within the last 2 years
Negative 1.00
Positive 0.87 (0.76,0.99) 0.0184



The 10-year CRC risk estimates and 95% CI

Estrogen 10-Year Risk
Age Endo Polyp FH Exer NSAIDs Veg BMI Status % 95%CI
50 Yes No 0 3 Yes 2.5 28 Pos 0.38 (0.29, 0.47)
50 Yes Yes 1 1 Yes 2.5 29 Neg 0.62 (0.44, 0.79)
50 No 2 0 No 1.3 32 Neg 1.59 (1.21, 1.98)

Breslow Estimator
50 Yes No 0 3 Yes 2.5 28 Pos 0.29 (0.15, 0.42)
50 Yes Yes 1 1 Yes 2.5 29 Neg 0.47 (0.22, 0.72)
50 No 2 0 No 1.3 32 Neg 1.22 (0.65, 1.79)

I ρ̂ = 1.18 (95% CI: 1.01-1.36) for age < 65, ρ̂ = 1.63 (95%
CI: 1.52, 1.73) for age ≥ 65.



WHI and SEER’s Cumulative Incidence Rates
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Case-Control Studies and Survival Analysis

I Assume failure time T follows the Cox model

λ(t; z) = λ0(t) exp(β′z).

I Suppose that n1 cases and n0 controls are sampled at time t.
Then the probability of z1, . . . , zn1 corresponding to cases
given z1, . . . , zn1+n0 is∏n1

i=1 Pr{zi |d = 1}
∏n1+n0

i=(n1+1) Pr{zi |d = 0}∑
l∈R(n1,n0)

∏
j∈l Pr{zj |d = 1}

∏
j /∈l Pr{zi |d = 0}

=

∏n1

i=1 exp(βzi )∑
l∈R(n1,n0)

∏
j∈l exp(βzj)

I Hazard ratio β can be estimated from (conditional) logistic
regression model based on case-control data (Prentice &
Breslow 1978)

I However, λ0(t) is eliminated from the conditional likelihood
function, and hence unidentifiable from case-control data.



Case-Control Studies

I Recall that PAR can be estimated from cases and controls
data (Wei et al. 2014), i.e.,

φ̂(t) = 1−
∑n

i=1 exp(−β̂Zi )YiKh(t − Xi )∑n
i=1 YiKh(t − Xi )

I We can estimate λ0(t) by

λ̂0(t) = {1− φ̂(t)}λ(t)

where λ(t) is external incidence rates.



Genetics and Epidemiology of Colorecal Cancer Consortium
(GECCO)

I 20+ population-based case-control and nested case-control
studies with n ≈ 75,000 GWAS, basic clinical, epidemiologic
& lifestyle data

I Build a risk prediction model based on age, sex, family history
of colorectal cancer (CRC), endoscopy, and genetic risk score
of 27 GWAS-identified CRC loci



Examples of 10-year absolute risk with selected risk profiles



Examples of 10-year absolute risk with selected risk profiles



Alternative Approach to Obtaining λ0(t): Family History

I Many case-control studies of inherited diseases collect family
history information including disease status (dk) and failure
time (xk) of the relative (yk), and in some cases, the relative’
risk factors zk .

~
{yk = (xk , dk), zk , k = 1, . . . ,K}~ ��� ���




�

{y0 = (x0, d0), z0}



Likelihood Function

I The likelihood function is

L =
∏

f (y1, z1, z0|y0)

=
∏

f (y1, z1|y0, z0)︸ ︷︷ ︸
relatives

f (z0|y0)︸ ︷︷ ︸
cases/controls

.

I The first term involves the joint distribution of failure times
for the family. This becomes a bivariate survival analysis
problem.

Pr(T0 > t0,T1 > t1|z1, z0) = h(S(t0|z0),S(t1|z1); θ),

where S(t|z) is univariate survival function given z and h is a
parametric function indexed by θ.



Estimation of Baseline Hazard Function

I Since the relatives’ failure times are random, it is natural to
formulate the hazard function for the relatives conditional on
the case-control sampling.

λ(t|y0, z0, z1) = λ0(t) exp(β′z1)Hθ(t, y0, z0, z1)︸ ︷︷ ︸
time-dependent risk score

I λ(t|y0, z0, z1) has some resemblance to the Cox model,
suggesting λ0(t) be estimated by a Breslow type estimator.

I However, Hθ(t, y0, z0, z1) may not be predictable at time t
because y0 > t.

I Use a two-stage estimator with the first stage limiting to
subjects whose relatives’ failure times are predictable followed
by the second stage to include all subjects (Gorfine, Zucker
and Hsu, 2009, Ann. Stat.)



Multiple Relatives

I When there are multiple relatives, the joint distribution of the
family is

Pr(T0 > t0, · · · ,TK > tK |z0, . . . , zK ) = h(S(t0|z0), . . . , S(tK |zK ); θ),

I Take the GEE approach by breaking down a family into
multiple relative-case/control pairs(Liang and Zeger 1986).
The approach has the advantage of simple computation and
robustness but the downside is potential efficiency loss.

I Or represent the copula model by the frailty model

λ(t|zk , ω) = λ0(t) exp(β′zk)ω,

where ω is a common (latent) frailty shared by the relatives of
the same relation.

I EM algorithm can be used to estimate the relevant
parameters.



BRCA1 Data Analysis

I A population-based case-control study was conducted within
the NICHD’s Womens Contraceptive and Reproductive
Experiences study (Marchbanks et al., 2002).

I A study of the BRCA1/2 genes was conducted to evaluate
their contribution to breast cancer risk (Malone et al., 2006).

I In total, 1603 cases and controls were tested for BRCA1
mutations.

I 4568 first-degree female relatives were included, among them
634 (14%) developed breast cancer.

# mutations

cases (n=1144) 42
controls (n=459) 1

Chen, Hsu and Malone (2009, Biometrics)



BRCA1 Data Analysis

I Cumulative probabilities of developing breast cancer by age for
BRCA1 mutations.

Probability of Developing BC (95% CI)
Age Noncarrier Carrier

50 0.021 (0.017, 0.027) 0.188 (0.082, 0.423)
60 0.041 (0.034, 0.050) 0.313 (0.143, 0.612)
70 0.072(0.060, 0.090) 0.454 (0.227, 0.743)
80 0.102 (0.084, 0.125) 0.549 (0.304, 0.814)

I The dependence parameter θ̂ = 0.733 (s.e. 0.208).

Chen, Hsu and Malone (2009, Biometrics)



Probability of Developing Breast Cancer by Age
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Independence vs Frailty
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Missing Covariates Information on Relatives

I Instead of modeling Pr(T0 > t0,T1 > t1|z0, z1), which is
difficult if the relatives are missing environmental covariates,
we can model Pr(T0 > t0,T1 > t1), i.e.,

Pr(T0 > t0,T1 > t1) = h(S∗(t0),S∗(t1); θ)

where S∗(t) = exp{−Λ∗(t)} is a marginal composite survival
function.

I We can again use the relationship

λ0(t) = λ(t)(1− φ(t))



Some Remarks

I Family history information is more than just a risk factor. We
can use it to estimate λ0(t) which would have not been
estimable from the case-controly data alone.

I Care must be taken on the accuracy of family history
information, particularly if the information is reported by the
cases and controls.

I For example, the NHLBI Family Heart Study shows that
sensitivity of cases and controls report on their spouse, parent,
and sibling was 87%, 85%, and 81% for coronary heart
disease, 83%, 87%, and 72% for diabetes, 77%, 76%, and
56% for hypertension, respectively (Bensen et al., 1999).
Most specificity values are above 90% .

I These results show that the accuracy may vary by the relative
type and disease, but by and large the family history
information is accurate.



More Remarks

I Two assumptions are worth noting:
I The relatives and cases/controls have the same marginal

hazard function, i.e., Pr(T1 > t) = Pr(T0 > t).
I Incorporate covariates (e.g., birth cohort).

I It requires a correct specification of the copula function h(·).
However, extensive simulations suggest that the marginal
hazard function estimator is very robust against
misspecification (Chatterjee et al. 2006; Hsu et al. 2007).

I A more flexible form of the Copula model e.g., multiple
parameters, flexible piece-wise constant cross ratio (Hougaard
2000; Hsu et al. 1999).

I Nonparametric estimator of Pr(T > t) from case-control data
(ongoing work).



Nonparametric estimation of S(t) = Pr(T > t)

I Consider binary outcome. Let (d0, d1) be the disease status of
the case-control and the relative.

d1 = 1 d1 = 0

d0 = 1 a b
d0 = 0 c d

Let P1|1 = Pr(d1 = 1|d0 = 1) and P1|0 = Pr(d1 = 1|d0 = 0),
which can be estimated empirically by a/(a + b) and
c/(c + d), respectively. By the law of total probability, we get

Pr(d1 = 1) = P1|1Pr(d0 = 1) + P1|0Pr(d0 = 0)

If p ≡ Pr(d0 = 1) = Pr(d1 = 1), then we have

p̂ = P̂1|0/(1 + P̂1|0 − P̂1|1)



Nonparametric estimation of S(t)

I Assume S(t) = Pr(T0 > t) = Pr(T1 > t)

I Let conditional survival functions
S0(t|s) = Pr(T1 > t|T0 > s) and
S1(t|s) = Pr(T1 > t|T0 = s). Both can be estimated by
kernel estimators.

I Let 0 < t1 < · · · < tQ < τ < t̄ be a grid of time points such
that S(t̄) > 0. For j = 1, . . .Q, we have

Pr(T1 > u,T0 > tj)+Pr(T1 > u,T0 = tj) = Pr(T1 > u,T0 ≥ tj).

We can write it in terms of the conditional and marginal
survival function,

S0(u|tj)S(tj) + S1(u|tj){S(tj−1)− S(tj)} = S0(u|tj−1)S(tj−1)



Nonparametric estimation of S(t)

I This gives a recursive estimator

S(tj) = S(tj−1)
S0(u|tj−1)− S1(u|tj)

S0(u|tj)− S1(u|tj)
.

I This estimator is not defined if there is no dependency among
relatives. However, if relatives are independent, we can simply
use the Kaplan-Meier estimator to estimate S(t).

I The formula holds for any u ≥ 0, which suggests we can
improve the estimator by pooling over u.

I S(t) does not take jumps at the observed failure times of the
relatives, but at pre-fixed grid points.



Simulation results

I Gamma frailty model (Kendall’s tau = 0.6)

I n=1500 cases and controls. A total of 1,000 datasets were
generated.

Naive KM estimator Proposed estimator
t S(t) mean SD 95%CI mean SD 95% CI

45 0.967 0.978 0.004 0.275 0.961 0.083 0.980
55 0.923 0.948 0.007 0.037 0.926 0.122 0.964
65 0.858 0.904 0.009 0.003 0.863 0.136 0.963
75 0.777 0.846 0.011 0.000 0.783 0.129 0.955

I It is a first attempt to provide a nonparametric survival
estimator for biased samples. The theory is still murky.



Generalizability

Can one project the risk estimates to the population? Studies can
differ from the population:

I Different hazard ratios

I Different risk factor distribution of Z

I Different baseline hazard function



Improving Risk Prediction: GWAS?

I Rich literature for the prediction (e.g., various machine
learning approaches)

I For GWAS data, currently a simple additive model is the most
popular.

I Using known GWAS hits (α = 5× 10−8)

S =
∑
m

β̂mGm

I Since many causal variants have very small effect sizes, they
wouldnt be significant at the genome-wide significance level. It
may be better to include more SNPs than just top few SNPs.



Polygenic Risk Score

I Simulation
Y =

∑
m∈causal

βmGm + ε

I 100,000 independent SNPs (MAF=0.2)
I Effect size follows an exp distribution
I 1000 causal variants
I Correlation of true score

∑
βjGij and estimated score

Ŝ =
∑
pj<α

β̂jGij





Polygenic Risk Score (Chatterjee et al. 2013, NG)

I Model :

logit(Pr(Y = 1)) = α +

M1∑
m=1

+
M∑

n=M1+1

0× Xm

I M: total number of variants
I M1: number of causal variants
I Xm: standardized genotype value

I Estimated prediction model

logit(Pr(Y = 1)) = α̂ +
M∑

m=1

β̂mγmXm

where γm is the indicator of whether the variable is selected



Polygenic Risk Score

I Let Û =
∑M

m=1 β̂mγmXm, CN =
∑M1

m=1 βmβ̂mγm = cov(Û,U)

and S2
N =

∑M
m=1 β̂

2
mγm.

Û|(Y = 0) ∼ N(0,S2
N) and Û|(Y = 1) ∼ N(CN ,S

2
N)

I AUC, i.e., the probability that risk-score will be greater for a
randomly selected case than that of a randomly selected
control, can be approximated by

AUC ≈ Φ(
RN√

2
),

where RN = CN/SN = cor(Y , Ŷ ).



Polygenic Risk Score

I Suppose the building algorithm is to include SNPs depending
on whether the corresponding marginal trend-test for
association achieves a specified significant level α or not.

I The expected value of RN for such a building algorithm is
approximated by

µN(α) =

∑M1
m=1 βmeN(βm)pow(N, βm, α)√∑M1

m=1 vN(βm)pow(N, βm, α) + (M −M1)αvN(0)

I pow(N, βm, α): power of the study of size N for detecting an
effect size of βm at α

I eN(βm) = E (β̂m||Zm| > Cα/2)

I vN(βm) = E (β̂2
m||Zm| > Cα/2)





Summary

I Models of absolute risk currently have a useful but limited role
in counseling and in prevention.

I Efforts to increase discriminatory accuracy can expand that
role. Will GWAS give us the boost we need for increasing the
accuracy?

I Increased success in disease prevention will depend on safer
and more effective interventions that may or may not need to
be used in conjunction with risk models.
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