
Review

We have covered so far:

I Single variant association analysis and effect size
estimation

I GxE interaction and higher order >2 interaction
I Measurement error in dietary variables (nutritional

epidemiology)
I Today’s lecture: set-based association

http://research.fhcrc.org/hsu/en/edu.html



Set-based association analysis

I i = 1, · · · , n

I m variants on a certain region

I Genotype Gi = (Gi1, Gi2, · · · , Gim)′, gij = 0, 1, 2

I Covariates Xi : intercept, age, sex, principal components
for population structure.

I Model:

g{E(yi)} = X ′i α +
m∑

j=1

Gijβj

where g(·) is a link function.

I No association for a set means β = (β1, · · · ,βm) = 0



Why?

I In gene expression studies, a list of differentially expressed
genes fails to provide mechanistic insights into the
underlying biology to many investigators

I Pathway analysis extracts meaning by grouping genes into
small sets of related genes

I Function databases are curated to help with this task, e.g.,
biological processes in which genes are involved in or
interact with each other.

I Analyzing high-throughput molecular measurements at the
functional or pathway level is very appealing

I Reduce complexity
I Improve explanatory power than a simple list of differentially

expressed genes



Why?

I Variants in a defined set (e.g. genes, pathways) may act
concordantly on phenotypes. Combining these variants
aggregates the signals; as a result, may improve power

I Power is particularly an issue when variants are rare.

I The challenge is that not all variants in a set are
associated with phenotypes and those who are associated
may have either positive or negative effects



Outline

I Burden test

I Variance component test

I Mixed effects score test



Burden Test
I If m is large, multivariate test β = 0 is not very powerful
I Population genetics evolutionary theory suggests that most

rare missense alleles are deleterious, and the effect is
therefore generally considered one-sided (Kryukov et al.,
2007)

I Collapsing: Suppose β1 = · · · = βm = η

g{E(yi)} = X ′i α + Biη

I Bi =
∑m

j=1 gij : genetic burden/score.

I With weight (adaptive burden test)

Bi =
m∑

j=1

wjGij .

I Test H0 : η = 0 (d.f.=1).



Weight
I Threshold-based method

wj(t) =

{
1 if MAFj ≤ t
0 if MAFj > t

I Burden score Bi(t) =
∑m

j=1 wj(t)gij , and the corresponding
Z-statistic is denoted by Z (t)

I Variable threshold (VT) test

Zmax = maxtZ (t)

I P-value can be calculated by permutation (Price et al
2010) or numerical integration using normal approximation.

P(Zmax ≥ z) = 1− P(Zmax < z)

= 1− P(Z (t1) < z, · · · , Z (tb) < z)

where {Z (t1), · · · , Z (tb)} follows a multivariate normal
distribution MVN(0, Σ).



Weight

I Variant effects can be positive or negative and the strength
can be different too.

I Fit the marginal model for each variant

g{E(yi)} = X ′i α + Gijγj



Weight

I Adaptive sum test (Han & Pan, Hum Hered 2010)

wj =

{
−1 if γ̂j < 0 and p-value < α0;

1 otherwise

I If α0 = 1, the weight is the sign of γ̂j , but the corresponding
weighted burden test has low power because the null
distribution has heavy tails.

I α0 is chosen such that only when H0 likely does not hold,
the sign is changed if γ̂j is negative.

I The authors suggest α0 = 0.1, but it is data dependent



Weight
I Estimated regression coefficient (EREC) test (Lin & Tang

Am J Hum Genet 2011)

wj = γ̂j + c, for c 6= 0

I Score statistic

TEREC =
1√
n

n∑
i=1

{(
m∑

j=1

(γ̂j + c)Gij)(yi − µi(α̂))} −→ N(0, Σ)

I µi (α̂) is estimated under the null of no association
I If c = 0, TEREC = 1√

n

∑n
i=1{(

∑m
j=1 γ̂jGij )(yi − µi (α̂))} is not

asymptotically normal

I c = 1 for binary traits, c = 2 for standardized quantitative
traits

I Compute p-values using permutation.



Burden Tests

I Burden tests lose a significant amount of power if there are
variants with different association directions or a large # of
variants are neutral.

I Adaptive burdent tests have robust power, but they rely on
resampling to compute p-values.

I Computationally intensive, not suitable for genome-wide
discovery.



Variance Component Test

I Model

g{E(yi)} = X ′i α +
m∑

j=1

Gijβj

I Burden tests are derived assuming β1 = · · · = βm.

I Variance component test
I Assume βj ∼ F (0, τ2), where F (·) is an arbitrary

distribution, and the mean of β′j s = 0.
I H0 : β1 = · · · = βp = 0⇔ H0 : τ2 = 0.



Derivation of Variance Component Test

I Suppose g(·) is linear and Y |X , G ∼ Normal. That is,

yi = Xiα +
m∑

j=1

Gijβj + ε, ε ∼ N(0,σ2)

I Suppose βj ∼ Normal (0, τ2), j = 1, ... , m

I Marginal model:

Yn×1 ∼ MVN(Xn×pα, τ2Gn×mG′m×n + σ2I)



Derivation of Variance Component Test

I Log likelihood

` =− (Y − Xα)′(τ2GG′ + σ2I)−1(Y − Xα)

2

− 1
2

log |τ2GG′ + σ2I| − n
2

log(2π)

I Let V (τ2) = τ2GG′ + σ2I

I Score function

∂`

∂τ2 =
(Y − Xα)′V (τ2)−1GG′V (τ2)−1(Y − Xα)

2

− tr(V (τ2)−1(GG′))

2



Derivation of Variance Component Test

I Score test statistic

Q =
∂`

∂τ2

∣∣∣∣
τ=0

=
1
2

(Y − Xα)′V−1GG′V−1(Y − Xα)

− 1
2

tr(V−1(GG′))

=
1
2

(Y − Xα)′M(Y − Xα)− 1
2

tr(V
1
2 MV

1
2 )

I M = V−1GG′V−1, V = σ2I



Derivation of Variance Component Test
I Q is not asymptotically normal

Q =
1
2

(Y − Xα)′M(Y − Xα)− 1
2

tr(V
1
2 MV

1
2 )

=
1
2

Ỹ ′(V
1
2 MV

1
2 )Ỹ − 1

2
tr(V

1
2 MV

1
2 )

where Ỹ = V−
1
2 (Y − Xα) ∼ N(0, I)

I Let {λj , uj , j = 1, ... , m} be the eigenvalues and
eigenvectors of V

1
2 MV

1
2 . Then

Q =
m∑

j=1

λj((u′j Ỹ )2 − 1) =
m∑

j=1

λj(Z 2
j − 1)

I Q is not asymptotically normal
I Zhang and Lin (2003) show that

Ỹ ′(V
1
2 MV

1
2 )Ỹ ∼

m∑
j=1

λjχ
2
1,j



Variance Component Test

I The exact probability associated with a mixture of χ2

distributions is difficult to calculate.

I Satterthwaite method to approximate the distribution by a
scaled χ2 distribution, κχ2

ν , where κ and ν are calculated
by matching the first and second moments of the two
distributions.

I To adjust for α̂, replace V−1 by projection matrix
P = V−1 − V−1X (X ′V−1X )−1X ′V−1.



General Form of Variance Component Test

I Linear model

yi = Xiα + h(Gi) + ε, ε ∼ N(0,σ2)

I h(·) is a centered unknown smooth function ∈ H generated
by a positive definite kernel function K (·, ·).

I K (·, ·) implicitly specifies a unique function space spanned
by a set of orthogonal basis functions {φj(G), j = 1, ... , J}
and any h(·) can be represented by linear combination of
these basis h(G) =

∑J
j=1 ζjφj(G)(the primal

representation)



General Form

I Equivalently, h(·) can also be represented using K (·, ·) as
h(Gi) =

∑n
j=1 ωjK (Gi , Gj) (the dual representation)

I For a multi-dimensional G, it is more convenient to specify
h(G) using the dual representation, because explicit basis
functions might be complicated to specify, and the number
might be high



Estimation

I Penalized likelihood function (Kimeldorf and Wahba, 1970)

l = −1
2

n∑
i=1

yi − X ′i α−
n∑

j=1

ωjK (Gi , Gj)


2

− 1
2
λω′Kω

where λ is a tuning parameter which controls the tradeoff
between goodness of fit and complexity of the model

α̂ =
{

X ′(I + λ−1K )−1X
}−1

X ′(I + λ−1K )−1y

and
ω̂ = λ−1(I + λ−1K )−1(y − X ′α̂)

ĥ = K ω̂



Connection with Linear Mixed Models

I The same estimators can be re-written as[
X ′V−1X X ′V−1

V−1X V−1 + (τK )−1

] [
α
h

]
=

[
X ′V−1y
V−1y

]
where τ = λ−1σ2 and V = σ2I

I Estimators α̂ and ĥ are best linear unbiased predictors
under the linear mixed model

y = X ′α + h + ε

where h is a n× 1 vector of random effects with distribution
N(0, τK ) and ε ∼ N(0, V )



General Form of Variance Component Test

I Testing H0 : h = 0 is equivalent to testing the variance
component τ as H0 : τ = 0 versus H1 : τ > 0

I The REML under the linear mixed model is

l = −1
2

log |V (τ2)| − 1
2
|X ′V−1(τ2)X |

−1
2

(y − X ′α)′V (τ2)−1(y − X ′α)

I Score statistic for H0 : τ2 = 0 is

Q = (Y − X α̂)′K (Y − X α̂)− tr(KP),

which follows a mixture of χ2
1 distribution.



Kernel

I Kernel function K (·, ·) measures similarity for pairs of
subjects

I Linear kernel: K (Gi , Gk ) =
∑m

j=1 GijGkj

I Something about K (·, ·)
I Ability to incorporate high-dimension and different types of

features (e.g., SNPs, expression, environmental factors)
I K (·, ·) is a symmetric semipositive definite matrix

I Eigenvalues are interpreted as % of the variation explained
by the corresponding eigenvectors, but a negative
eigenvalue implying negative variance is not sensible.

I No guarantee that the optimization algorithms that work for
positive semidefinite kernels will work when there are
negative eigenvalues

I Mathematical foundation moves from real numbers to
complex numbers



Some Kernels

I Some kernels
I K (Gi , Gk ) =

∑m
j=1 GijGkj =< Gi , Gk >

I K (Gi , Gk ) = 1
2m

∑m
j=1 IBS(Gij , Gkj ), where IBS is

identity-by-state
I K (Gi , Gk ) = (< Gi , Gk >)p: polynomial kernel, p > 0

I Modeling higher-order interaction

(< Gi ,Gk >)2 = (
m∑

j=1

GijGkj)
2 =

m∑
j=1

m∑
j′=1

(GijGij′)(GkjGkj′)

I K (Gi , Gk ) = exp(−‖Gi −Gj‖2/σ2): Gaussian kernel

I Schaid DJ. (2010) Genomic similarity and kernel methods I: advancements by
building on mathematical and statistical foundations. Hum Hered 70:109–31.

I Schaid DJ. (2010) Genomic similarity and kernel methods II: methods for

genomic information. Hum Hered 70:132–140.



Choice of Kernels

I An advantage of the kernel method is its expressive power
to capture domain knowledge in a general manner.

I Generally difficult to construct a good kernel for a specific
problem

I Basic operations to create new kernels from existing
kernels:

I multiplying by a positive scalar
I adding kernels
I multiplying kernels (element-wise).



Generalized Linear Model
I Observations for the linear model apply to the generalized

linear model
I Penalized log-likelihood function

l =
n∑

i=1

yi(X ′i α +
n∑

j=1

ωjK (Gi , Gj))

− log{1 + exp(X ′i α +
n∑

j=1

ωjK (Gi , Gj))}

− 1
2
λω′Kω

I The logistic kernel machine estimator[
X ′DX X ′D
DX D + (τK )−1

] [
α
h

]
=

[
X ′Dỹ
Dỹ

]
where τ = λ−1σ2, D = diag{E(yi)(1− E(yi))}, and
ỹ = Xα + Kω + var(y)−1(y − µ)



Generalized Linear Model

I The same estimators can be obtained from maximizing the
penalized quasilikelihood from a logistic mixed model

logitE(yi) = X ′i α + hi

where h = (h1, ... , hn) is a n × 1 vector of random effects
following h ∼ N(0, τK ) with τ = 1/λ

I The score statistic for τ is

Q = (y − X ′α̂)′K (y − X ′α̂),

which follows a mixture of χ2 distributions



Exponential Family

I Suppose yi follows a distribution in the exponential family
with density

p(yi ; θi ,φ) = exp{yiθi − a(θi)

φ
+ c(yi ,φ)},

where θi = X ′i α + h(Gi) is the canonical parameter, a(·)
and c(·) are known functions, φ is a dispersion parameter

I µi = E(yi) = a′(θi) and var(yi) = φa′′(θi)

I Gaussian: φ = σ2, a(θi) = θ2
i /2, and a′(θi) = θi

I Logistic: φ = 1, a(θi) = log(1 + exp(θi)), a′(θi) = exp(θi )
1+exp(θi )

I Other distributions: log-normal, Poisson, etc.



Summary

I Burden tests are more powerful when a large number of
variants are causal and all causal variants are harmful or
protective.

I Variance component test is more powerful when a small
number of variants are causal, or mixed effects exist.

I Both scenarios can happen across the genome and the
underlying biology is unknown in advance.



Combined Test

I SKAT (SNP-set/Sequence Kernel Association Test):
variance component test

I Combine the SKAT variance component and burden test
statistics (Lee et al. 2012)

Qρ = (1− ρ)QSKAT + ρQburden, 0 ≤ ρ ≤ 1

I ρ = 0: SKAT
I ρ = 1: Burden

I Instead of assuming {βj} are iid from F (0, τ2), assumeβ1
...
βm

 ∼ F


¯
0, τ2

1 ρ ... ρ
...

. . .
...

ρ ... 1






SKAT-O

I Qρ = (1− ρ)QSKAT + ρQburden, which is asymptotically
equivalent to

(1− ρ)κ+ a(ρ)η0,

where κ follows a mixture of χ2
1 and η0 ∼ χ2

1.
I Use the smallest P-value from different ρs:

T = inf0≤ρ≤1Pρ

I In practice, evaluate Qρ on a set of pre-selected grid points,

0 = ρ1 < · · · < ρB = 1
T = minρ∈{ρ1,··· ,ρB}Pρ



Summary

I Have robust power under a wide range of models

I QSKAT and Qburden are not independent.

I The underlying model for SKAT-O is not natural.



Mixed Effects Model

I Model

g{E(yi)} = X ′i α +
m∑

j=1

Gijβj (1)

I Burden: β1 = · · · = βm
I SKAT: βj ∼ F (0, τ2) independently
I SKAT-O: βj ∼ F (0, τ2) with pairwise correlation ρ

I Hierarchical model of β

βj = wjη + δj (2)

I wj : known features for the j th variant (e.g., wj = 1 for all j’s)
I δj ∼ F (0, τ2)



Mixed Effects Model

I Plug (2) into (1)

g{E(yi)} = X ′i α + (
m∑

j=1

wjGij)η +
m∑

j=1

Gijδj

I Some examples:
I If w = 0, δj = βj , the model becomes

g{E(yi )} = X ′i α +
m∑

j=1

Gijβj , βj ∼ F (0, τ2)

I If w = 1 and δj = 0, the model becomes

g{E(yi )} = X ′i α + (
m∑

j=1

Gij )η



Mixed Effects Model

I Some examples:
I wj = (wj1, wj2) where

wj1 = 1 for j = 1, · · · , m

wj2 =

{
1 if j th variant is a missense
0 otherwise

I
∑m

j=1 wjGij = (
∑m

j=1 Gij ,
∑m

j=1 wj2Gij )
I η1 : average effect of m variants
η2 : effect of missense variants relative to the average

I δj : residual variant specific effect ∼ F (0, τ2)



Mixed Effects Model-based Test

I Mixed effects model

g{E(yi)} = X ′i α + (
m∑

j=1

wjGij)η +
m∑

j=1

Gijδj

I Null hypothesis is H0 : η = 0 and τ2 = 0
I η: fixed effects; τ2: variance component

I The score test statistic for τ2 and η is

Sη = (Y − X α̃)′(GW )(GW )′(Y − X α̃),

and
Sτ2 =

(
Y − X α̃

)′
GG′

(
Y − X α̃

)
,

where α̃ is MLE of α under H0.
I However, Sτ2 and Sη are not independent.



Independence of score test statistics

I We made a minor (but important) modification

S∗τ2 =
(

Y − X α̂−GW η̂
)′

GG′
(

Y − X α̂−GW η̂
)

,

where (α̂T , π̂T ) are obtained under τ2 = 0.
I We can show that S∗

τ2 and Sη are independent.

E{(GW )′(Y − X α̃)((Y − X α̂−GW η̂
)′

G}

= σ2E{(GW )′(I − P1)(I − P2)G}
= 0,

where P1 is the projection onto X and P2 is the projection
onto (X , (GW )).



Combining independent statistics

MiST (Mixed effects Score Test)

I P-value combination
I Fisher’s combination: reject H0 at significance level α if
−2 log(Pτ2 )− 2 log(Pη) ≥ χ2

4,α
I Tippitt’s combination: reject H0 at significance level α if

min(Pτ2 , Pη) ≤ 1− (1− α)1/2

I Other combinations, e.g., linear combination

S = ρSη + (1− ρ)S∗τ2

I Jianping Sun, Yingye Zheng, and Li Hsu (2013). A Unified
Mixed-Effects Model for Rare-Variant Association in
Sequencing Studies. Genetic Epidemiology, 37: 334-44.



Power Comparison

I m=10 variants, n=1000 subjects, α = 0.01

Burden SKAT SKAT-O MiSTF MiSTT

βj = c/{pj (1− pj )}1/2, j = 1, ..., 10
0.866 0.435 0.818 0.780 0.811

β3 = 1.5c, β4 = −1.5c, β5 = c, β6 = −c;
0.014 0.507 0.397 0.417 0.455

β1 = β4 = β7 = c
0.283 0.578 0.551 0.652 0.515

β1 = c, β4 = 0.5c, β7 = 0.25c
0.288 0.415 0.427 0.583 0.429



Dallas Heart Study
I Dallas Heart Study (Victor et al. 2004). n=3409 subjects, 3

genes (ANGPTL3, ANGPTL4 and ANGPTL5) were sequencied.

I We analyzed these genes in association with log(triglyceride).

ANGPTL3 ANGPTL4 ANGPTL5
Burden 0.83 0.76 0.001
SKAT 0.40 0.31 0.38

SKAT-O 0.57 0.47 0.35
EREC 0.36 0.38 0.09
MiSTF 0.36 0.06 0.05
MiSTT 0.40 0.06 0.06

MiSTF(Z ) 0.25 0.77 0.00005
MiSTT(Z ) 0.27 0.32 0.0001

I The component p-values of ANGPTL5: pπ = 5x10−6 and pτ2 =
0.53. Furthermore, p = 0.004 for nonsense variants and p=0.24
for frame shift variants.



Summary

I MiST (Mixed effects Score Test) is based on hierarchical
models for a set of variants

I The model includes the usual appealing features for
regression models such as adjusting for confounders and
being able to accommodate different types of outcomes by
using appropriate link functions.

I It models the variant effects as a function of (known)
variant characteristics to leverage information across loci
while still allowing for individual variant effects.



Combining K studies

We have discussed for single variant analysis:

I Pooling the data from K studies. Since all score statistics
are derived from regression models, it is easy to account
for the differences between studies by adjusting for study
and/or study × covariates

I Pooling the data ensures consistency in data QC and
model fitting

I Pooling can be logistically difficult and time consuming
I Sometimes protection of human subjects prohibit sharing

the data

I Meta-analysis of combining summary statistics from K
studies is still a viable alternative



Revisit Score Statistics

I Weighted burden test

Uburden =
n∑

i=1

 m∑
j=1

wjGij

 (yi − X ′i α̂)

=
m∑

j=1

wj

n∑
i=1

Gij(yi − X ′i α̂)︸ ︷︷ ︸
Uj : Score of single variant model

I Uj =
∑n

i=1 Gij(Yi − Xi α̂) is a score function of a single
variant model.

yi = Xiα + Gijβj + εi , ε ∼ N(0,σ2)



Variance Component test

I QSKAT is a weighted sum of squared score statistics of the
single SNP marginal model.

QSKAT = (Y − X α̂)′GG′m×n(Y − X α̂)n×1

=
m∑

j=1

{
n∑

i=1

Gij(Yi − Xi α̂)}2

=
m∑

j=1

U2
j



Key Elements

I A vector of single variant score statistics, U ′ = (U1, ... , Um)
with covariance V = cov(U)

I Burden score statistic

Uburden = W ′U , var(Uburden) = W ′VW

I Variance component score statistic

QSKAT = U ′U,

which follows a mixture of chi2 distribution with weights
being the eigenvalues of V



Fixed effects model

I For k = 1, · · · , K , let Uk and Vk denote the score statistics
and covariance for the k th study.

I Score statistic over K studies is

U =
k∑

k=1

Uk V =
k∑

k=1

Vk

I Burden test

Uburden = W ′U var(Uburden) = W ′VW

U ′burdenvar(Uburden)−1Uburden ∼ χ2
p



Fixed effects model

I Variance component test

QSKAT = U ′U ∼
m∑

j=1

λjχ
2
1,j

where λj is the j th eigenvalue of V =
∑K

k=1 Vk

I Combination of burden and score statistics

Qρ = (1− ρ)QSKAT + ρQburden

where ρ is adaptively chosen and the p-value can be
obtained by one-dimensional numerical integration



Fixed effects model

I Summary of single variant score statistic may not enough
for MiST score statistics

Sη = (Y − X α̃)′(GW )(GW )′(Y − X α̃),

S∗τ2 =
(

Y − X α̂−GW η̂
)′

GG′
(

Y − X α̂−GW η̂
)

,

where (α̂T , η̂T ) are obtained under τ2 = 0.



Random Effects Model

I For k = 1, · · · , K , β′k = (βk1, · · · ,βkm) is the effect of m
variants for the k th study.

I Random effects model

βk = β0 + ξk

where β0 = (β01, · · · ,β0m) represents the average effect
among the studies, ξk is a set of random effects
representing the deviation of the k th study from the
average effect ξk ∼ N(0, Σ)



Heterogeneity

I Assume Σ = σ2B, where B is a pre-specified matrix to
constrain the potential many parameters in Σ.

I A choice of B is

B =


b2

1 b1b2r · · · b1bmr

b2b1r
. . .

...
...

. . .
...

bmb1r . . . . . . . . . . b2
m


I (b1, · · · bm) controls the relative degrees of heterogeneity

for the m variates (e.g., MAF), and r specifies the
correlation of heterogeneity.

I Choice of B has no effect on the type I error but may affect
the power.



New Random Effects Burden Test

I The null hypothesis H0 : β0 = 0,σ2 = 0

I For k = 1, ... , K , β̂k ∼ N(β0, Ωk = V−1
k + σ2B). The

log-likelihood function is

l = −1
2

K∑
k=1

(β̂k − β0)′Ω−1
k (β̂k − β0)− 1

2

K∑
k=1

log |Ωk |

I Let β̂k ≈ V−1
k Uk , the random effects (RE) test for fixed effects

URE
burden = U ′V−1U +

U2
σ

Vσ

where Uσ = 1
2

∑K
k=1 U ′k BUk − 1

2 tr(VB), Vσ = 1
2 tr(
∑K

k=1 Vk BVk B)

I For burden test, replace U by W ′U, and V by W ′VW .



New Random Effects Variance Component Test

I β0 ∼ N(0, τ2W ), where W is a pre-specified matrix, e.g.,

W =


w2

1 w1w2ρ · · ·

w2w1ρ
. . .

... w2
d


where (w1, · · · , wd ) controls the relative magnitude of the d
average genetic effects, and ρ indicates the correlation.

I The null hypothesis H0 : τ2 = 0,σ2 = 0

I Let β̂′ = (β̂1, ... , β̂K ), then

β̂ ∼ MVN
(

0, τ2(JK ⊗W ) + σ2(IK ⊗ B) + diag(V−1
1 , · · · , V−1

K )
)

where ⊗ denotes Kronecker product

I {β̂k ≈ V−1
k Uk}, the score statistic is a function of Uk , Vk ,

k = 1, ... , K .



Summary

I Pooled- vs meta-analysis

I For meta-analysis rare variant association tests can be
constructed from multivariate summary statistics, i.e., the
score vector U and information matrix V

I Fixed vs random effects model



Set-based gene-environment interaction

I m variants, Gi = (Gi1, · · · , Gim)′

I Ei : environmental covariate
I Xi : covariates
I Gene-environment interaction (GxE) model

g{E(yi )} =X ′i α + Eiβ
E +

m∑
j=1

Gijβ
G
j +

m∑
j=1

(EiGij )β
GE
j

I No interaction means β = (βGE
1 , · · · ,βGE

m ) = 0



Hierarchical model for βGE

I Model the interaction effect

βGE
j = wjη + δj

I wj : a vector of known features
I δj ∼ F (0, τ2)

I The interaction effect term

m∑
j=1

(EiGij)β
GE
j =

( m∑
j=1

EiGijwj

)
η +

m∑
j=1

EiGijδj

= Ei(
m∑

i=1

Gijwj)η +
m∑

j=1

(EiGij)δj

I No interaction means H0 : η = 0, τ2 = 0



Challenges

I Main effects {βG
1 , · · · ,βG

m} may not be estimated reliably if
m is large or variants are rare.

I Assume the main effects {βG
j } are random effects such

that
βG

j ∼ F (0, ν2)

I Need to derive score statistics for the mixed GxE effects
(η, τ2) in the presence of another random effects βG

j .



Estimation

I βG can be estimated by maximum posterior approach (or
best linear unbiased prediction, in the linear mixed effects
model), but the computation is intensive under a
generalized linear model due to m-dimensional integration
with no closed form.

I β̂G
j minimizes ridge regression

β̂ridge = argmin


n∑

i=1

(yi − X ′i α− Eiβ
E −Giβ

G)2 + λ

m∑
j=1

β2
j


where λ = σ2/ν2



Some nice properties about ridge

I Knight and Fu (2000) states that if λ = o(
√

n) then β̂λ is a
√

n
consistent estimator of β0

I Score statistics for the fixed effects under H0 : η = 0, τ2 = 0

uη = (D − µ̃)′
(
E(

m∑
j=1

Gjwj )
)′V(E(

m∑
j=1

Gj · wj )
)
(D − µ̃)

where µ̃ = Ê(D|G, E) under η = 0, τ2 = 0

I Score statistic for the variance component under H0 : τ2 = 0

uτ2 = (D − û)(GE)(GE)′(D − µ̂)

where û = Ê(D|G, E) under τ2 = 0



Combination of score statistics
I P-value based, Zη = −2 log Pη and Zτ2 = −2 log Pτ2

Tf = Zη + Zτ2 ∼ χ2
4

I Grid-search based optimal linear combination

To = max
ρ∈[0,1]

(ρUη + (1− ρ)Uτ2 )

where ρ is restricted on a set of pre-specified grid points
{0 = ρ0, ρ1, ... , ρd = 1}

I Adaptive-weighted linear combination

Ta = Z 2
η + Z 2

τ2

I Give more weight to either burden or variance component if
the evidence comes mainly from one

I Su YR, Di C and Hsu L (2015). A unified powerful set-based test
for sequencing data analysis of GxE interactions. Submitted.



Power comparison

I m = 25 variants

To Ta Tf Burden Var Comp

Ha : 30% variants β = c
0.541 0.620 0.672 0.473 0.533

Ha : Half β = c, other half β = −c
0.544 0.542 0.516 0.021 0.632

Ha : All β = c
0.768 0.770 0.740 0.848 0.050



Weight

I Choices of weight
I Functioncal characteristics (e.g., missense, nonsense)

I Screening statistics, Mj and Cj are the Z statistics from
marginal association screening and correlation of G and E
screening

wj =

{
Mj if |Mj | > |Cj |
Cj otherwise

Since the screening statistics are independent of GxE test,
no need to use permutation to calculate the p-values

I Jiao S, Hsu L, et al. (2013, 2015)



Summary

I Set-based association testing
I Mixed effects model that accounts for both burden genetic

risk score and variance component
I Meta-analysis
I GxE interaction between a set of variants and

environmental factor
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