Review

We have covered so far:

- Single variant association analysis and effect size estimation
- GxE interaction and higher order >2 interaction
- Measurement error in dietary variables (nutritional epidemiology)
- Today's lecture: set-based association

http://research.fhcrc.org/hsu/en/edu.html

Set-based association analysis

- *m* variants on a certain region
- Genotype $G_i = (G_{i1}, G_{i2}, \cdots, G_{im})', g_{ij} = 0, 1, 2$
- Covariates X_i : intercept, age, sex, principal components for population structure.
- Model:

$$g{E(y_i)} = X'_i \alpha + \sum_{j=1}^m G_{ij}\beta_j$$

where $g(\cdot)$ is a link function.

▶ No association for a set means $\beta = (\beta_1, \cdots, \beta_m) = 0$

Why?

- In gene expression studies, a list of differentially expressed genes fails to provide mechanistic insights into the underlying biology to many investigators
- Pathway analysis extracts meaning by grouping genes into small sets of related genes
- Function databases are curated to help with this task, e.g., biological processes in which genes are involved in or interact with each other.
- Analyzing high-throughput molecular measurements at the functional or pathway level is very appealing
 - Reduce complexity
 - Improve explanatory power than a simple list of differentially expressed genes

Why?

- Variants in a defined set (e.g. genes, pathways) may act concordantly on phenotypes. Combining these variants aggregates the signals; as a result, may improve power
- Power is particularly an issue when variants are rare.
- The challenge is that not all variants in a set are associated with phenotypes and those who are associated may have either positive or negative effects

Outline

- Burden test
- Variance component test
- Mixed effects score test

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Burden Test

- If *m* is large, multivariate test $\beta = 0$ is not very powerful
- Population genetics evolutionary theory suggests that most rare missense alleles are deleterious, and the effect is therefore generally considered one-sided (Kryukov et al., 2007)
- Collapsing: Suppose $\beta_1 = \cdots = \beta_m = \eta$

$$g{E(y_i)} = X'_i \alpha + B_i \eta$$

- $B_i = \sum_{j=1}^m g_{ij}$: genetic burden/score.
- With weight (adaptive burden test)

$$B_j = \sum_{j=1}^m w_j G_{ij}.$$

• Test $H_0: \eta = 0$ (d.f.=1).

Threshold-based method

$$w_j(t) = \begin{cases} 1 & \text{if } MAF_j \le t \\ 0 & \text{if } MAF_j > t \end{cases}$$

- Burden score $B_i(t) = \sum_{j=1}^m w_j(t)g_{ij}$, and the corresponding Z-statistic is denoted by Z(t)
- Variable threshold (VT) test

$$Z_{\max} = \max_t Z(t)$$

 P-value can be calculated by permutation (Price et al 2010) or numerical integration using normal approximation.

$$P(Z_{\max} \ge z) = 1 - P(Z_{\max} < z)$$

= 1 - P(Z(t_1) < z, ..., Z(t_b) < z)

where $\{Z(t_1), \dots, Z(t_b)\}$ follows a multivariate normal distribution MVN $(0, \Sigma)$.

- Variant effects can be positive or negative and the strength can be different too.
- Fit the marginal model for each variant

$$g\{E(y_i)\} = X'_i \alpha + G_{ij} \gamma_j$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Adaptive sum test (Han & Pan, Hum Hered 2010)

$$w_j = egin{cases} -1 & ext{ if } \widehat{\gamma}_j < 0 ext{ and } p ext{-value} < lpha_0; \ 1 & ext{ otherwise} \end{cases}$$

- If α₀ = 1, the weight is the sign of ŷ_j, but the corresponding weighted burden test has low power because the null distribution has heavy tails.
- α₀ is chosen such that only when H₀ likely does not hold, the sign is changed if ŷ_i is negative.

(日) (日) (日) (日) (日) (日) (日)

• The authors suggest $\alpha_0 = 0.1$, but it is data dependent

 Estimated regression coefficient (EREC) test (Lin & Tang Am J Hum Genet 2011)

$$w_j = \widehat{\gamma}_j + c$$
, for $c
eq 0$

Score statistic

$$T_{EREC} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \{ (\sum_{j=1}^{m} (\widehat{\gamma}_{j} + c) G_{ij}) (y_{i} - \mu_{i}(\widehat{\alpha})) \} \longrightarrow N(0, \Sigma)$$

- $\mu_i(\widehat{\alpha})$ is estimated under the null of no association
- If c = 0, $T_{EREC} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \{ (\sum_{j=1}^{m} \hat{\gamma}_j G_{ij}) (y_i \mu_i(\hat{\alpha})) \}$ is not asymptotically normal

- c = 1 for binary traits, c = 2 for standardized quantitative traits
- Compute *p*-values using permutation.

Burden Tests

- Burden tests lose a significant amount of power if there are variants with different association directions or a large # of variants are neutral.
- Adaptive burdent tests have robust power, but they rely on resampling to compute *p*-values.
 - Computationally intensive, not suitable for genome-wide discovery.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Variance Component Test

Model

$$g{E(y_i)} = X'_i \alpha + \sum_{j=1}^m G_{ij}\beta_j$$

(日) (日) (日) (日) (日) (日) (日)

- Burden tests are derived assuming $\beta_1 = \cdots = \beta_m$.
- Variance component test
 - Assume β_j ~ F(0, τ²), where F(·) is an arbitrary distribution, and the mean of β'_is = 0.
 - $H_0: \beta_1 = \cdots = \beta_p = 0 \Leftrightarrow H_0: \tau^2 = 0.$

Suppose $g(\cdot)$ is linear and $Y|X, G \sim$ Normal. That is,

$$y_i = X_i \alpha + \sum_{j=1}^m G_{ij} \beta_j + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$$

- Suppose $\beta_j \sim \text{Normal } (0, \tau^2), j = 1, ..., m$
- Marginal model:

$$Y_{n \times 1} \sim MVN(X_{n \times p} \alpha, \tau^2 G_{n \times m} G'_{m \times n} + \sigma^2 I)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Log likelihood

$$\ell = -\frac{(Y - X\alpha)'(\tau^2 G G' + \sigma^2 I)^{-1}(Y - X\alpha)}{2}$$
$$-\frac{1}{2}\log|\tau^2 G G' + \sigma^2 I| - \frac{n}{2}\log(2\pi)$$

• Let
$$V(\tau^2) = \tau^2 G G' + \sigma^2 I$$

Score function

$$\frac{\partial \ell}{\partial \tau^2} = \frac{(Y - X\alpha)' V(\tau^2)^{-1} GG' V(\tau^2)^{-1} (Y - X\alpha)}{2} - \frac{tr(V(\tau^2)^{-1} (GG'))}{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Score test statistic

$$Q = \frac{\partial \ell}{\partial \tau^2} \bigg|_{\tau=0}$$

= $\frac{1}{2} (Y - X\alpha)' V^{-1} GG' V^{-1} (Y - X\alpha)$
 $- \frac{1}{2} tr(V^{-1} (GG'))$
= $\frac{1}{2} (Y - X\alpha)' M(Y - X\alpha) - \frac{1}{2} tr(V^{\frac{1}{2}} MV^{\frac{1}{2}})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

•
$$M = V^{-1} G G' V^{-1}, V = \sigma^2 I$$

Q is not asymptotically normal

$$\begin{split} Q &= \frac{1}{2} (Y - X\alpha)' M(Y - X\alpha) - \frac{1}{2} tr(V^{\frac{1}{2}} M V^{\frac{1}{2}}) \\ &= \frac{1}{2} \widetilde{Y}'(V^{\frac{1}{2}} M V^{\frac{1}{2}}) \widetilde{Y} - \frac{1}{2} tr(V^{\frac{1}{2}} M V^{\frac{1}{2}}) \\ \end{split}$$
where $\widetilde{Y} = V^{-\frac{1}{2}} (Y - X\alpha) \sim N(0, I)$

Let {λ_j, u_j, j = 1, ..., m} be the eigenvalues and eigenvectors of V¹/₂MV¹/₂. Then

$$Q = \sum_{j=1}^{m} \lambda_j ((u'_j \widetilde{Y})^2 - 1) = \sum_{j=1}^{m} \lambda_j (Z_j^2 - 1)$$

Q is not asymptotically normal

Zhang and Lin (2003) show that

$$\widetilde{Y}'(V^{\frac{1}{2}}MV^{\frac{1}{2}})\widetilde{Y} \sim \sum_{j=1}^{m} \lambda_j \chi_{1,j}^2$$

Variance Component Test

- The exact probability associated with a mixture of χ² distributions is difficult to calculate.
- Satterthwaite method to approximate the distribution by a scaled χ^2 distribution, $\kappa \chi^2_{\nu}$, where κ and ν are calculated by matching the first and second moments of the two distributions.

(日) (日) (日) (日) (日) (日) (日)

► To adjust for $\hat{\alpha}$, replace V^{-1} by projection matrix $P = V^{-1} - V^{-1}X(X'V^{-1}X)^{-1}X'V^{-1}$.

General Form of Variance Component Test

Linear model

$$y_i = X_i \alpha + h(G_i) + \varepsilon$$
, $\varepsilon \sim N(0, \sigma^2)$

- *h*(·) is a centered unknown smooth function ∈ H generated by a positive definite kernel function *K*(·, ·).
- ► $K(\cdot, \cdot)$ implicitly specifies a unique function space spanned by a set of orthogonal basis functions { $\phi_j(G), j = 1, ..., J$ } and any $h(\cdot)$ can be represented by linear combination of these basis $h(G) = \sum_{j=1}^J \zeta_j \phi_j(G)$ (the primal representation)

(日) (日) (日) (日) (日) (日) (日)

General Form

- Equivalently, $h(\cdot)$ can also be represented using $K(\cdot, \cdot)$ as $h(G_i) = \sum_{j=1}^{n} \omega_j K(G_i, G_j)$ (the dual representation)
- For a multi-dimensional G, it is more convenient to specify h(G) using the dual representation, because explicit basis functions might be complicated to specify, and the number might be high

Estimation

Penalized likelihood function (Kimeldorf and Wahba, 1970)

$$I = -\frac{1}{2}\sum_{i=1}^{n} \left\{ y_i - X'_i \alpha - \sum_{j=1}^{n} \omega_j K(G_i, G_j) \right\}^2 - \frac{1}{2} \lambda \omega' K \omega$$

where λ is a tuning parameter which controls the tradeoff between goodness of fit and complexity of the model

$$\widehat{\alpha} = \left\{ X'(\mathbf{I} + \lambda^{-1}K)^{-1}X \right\}^{-1} X'(\mathbf{I} + \lambda^{-1}K)^{-1}y$$

and

$$\widehat{\omega} = \lambda^{-1} (\mathbf{I} + \lambda^{-1} \mathbf{K})^{-1} (\mathbf{y} - \mathbf{X}' \widehat{\alpha})$$
$$\widehat{\mathbf{h}} = \mathbf{K} \widehat{\omega}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Connection with Linear Mixed Models

The same estimators can be re-written as

$$\begin{bmatrix} X'V^{-1}X & X'V^{-1} \\ V^{-1}X & V^{-1} + (\tau K)^{-1} \end{bmatrix} \begin{bmatrix} \alpha \\ h \end{bmatrix} = \begin{bmatrix} X'V^{-1}y \\ V^{-1}y \end{bmatrix}$$

where $\tau = \lambda^{-1} \sigma^2$ and $V = \sigma^2 I$

$$\mathbf{y} = \mathbf{X}' \alpha + \mathbf{h} + \varepsilon$$

where *h* is a $n \times 1$ vector of random effects with distribution $N(0, \tau K)$ and $\varepsilon \sim N(0, V)$

(日) (日) (日) (日) (日) (日) (日)

General Form of Variance Component Test

- Testing H₀: h = 0 is equivalent to testing the variance component τ as H₀: τ = 0 versus H₁: τ > 0
- The REML under the linear mixed model is

$$I = -\frac{1}{2} \log |V(\tau^2)| - \frac{1}{2} |X'V^{-1}(\tau^2)X| -\frac{1}{2} (y - X'\alpha)' V(\tau^2)^{-1} (y - X'\alpha)$$

• Score statistic for H_0 : $\tau^2 = 0$ is

$$Q = (Y - X\widehat{\alpha})'K(Y - X\widehat{\alpha}) - tr(KP),$$

which follows a mixture of χ_1^2 distribution.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

Kernel

- ► Kernel function K(·, ·) measures similarity for pairs of subjects
 - Linear kernel: $K(G_i, G_k) = \sum_{j=1}^m G_{ij}G_{kj}$
- Something about $K(\cdot, \cdot)$
 - Ability to incorporate high-dimension and different types of features (e.g., SNPs, expression, environmental factors)
 - $K(\cdot, \cdot)$ is a symmetric semipositive definite matrix
 - Eigenvalues are interpreted as % of the variation explained by the corresponding eigenvectors, but a negative eigenvalue implying negative variance is not sensible.
 - No guarantee that the optimization algorithms that work for positive semidefinite kernels will work when there are negative eigenvalues
 - Mathematical foundation moves from real numbers to complex numbers

Some Kernels

Some kernels

$$\blacktriangleright K(G_i, G_k) = \sum_{j=1}^m G_{ij}G_{kj} = \langle G_i, G_k \rangle$$

- ► $K(G_i, G_k) = \frac{1}{2m} \sum_{j=1}^m \text{IBS}(G_{ij}, G_{kj})$, where IBS is identity-by-state
- $K(G_i, G_k) = (\langle G_i, G_k \rangle)^p$: polynomial kernel, p > 0
 - Modeling higher-order interaction

$$(< G_i, G_k >)^2 = (\sum_{j=1}^m G_{ij}G_{kj})^2 = \sum_{j=1}^m \sum_{j'=1}^m (G_{ij}G_{ij'})(G_{kj}G_{kj'})$$

(ロ) (同) (三) (三) (三) (○) (○)

•
$$K(G_i, G_k) = \exp(-\|G_i - G_j\|^2/\sigma^2)$$
: Gaussian kernel

- Schaid DJ. (2010) Genomic similarity and kernel methods I: advancements by building on mathematical and statistical foundations. *Hum Hered* 70:109–31.
- Schaid DJ. (2010) Genomic similarity and kernel methods II: methods for genomic information. *Hum Hered* 70:132–140.

Choice of Kernels

- An advantage of the kernel method is its expressive power to capture domain knowledge in a general manner.
- Generally difficult to construct a good kernel for a specific problem

(ロ) (同) (三) (三) (三) (○) (○)

- Basic operations to create new kernels from existing kernels:
 - multiplying by a positive scalar
 - adding kernels
 - multiplying kernels (element-wise).

Generalized Linear Model

- Observations for the linear model apply to the generalized linear model
- Penalized log-likelihood function

$$I = \sum_{i=1}^{n} \left[y_i(X'_i \alpha + \sum_{j=1}^{n} \omega_j K(G_i, G_j)) - \log\{1 + \exp(X'_i \alpha + \sum_{j=1}^{n} \omega_j K(G_i, G_j))\} \right] - \frac{1}{2} \lambda \omega' K \omega$$

The logistic kernel machine estimator

$$\begin{bmatrix} X'DX & X'D \\ DX & D + (\tau K)^{-1} \end{bmatrix} \begin{bmatrix} \alpha \\ h \end{bmatrix} = \begin{bmatrix} X'D\tilde{y} \\ D\tilde{y} \end{bmatrix}$$

where $\tau = \lambda^{-1}\sigma^2$, $D = diag\{E(y_i)(1 - E(y_i))\}$, and $\tilde{\mathbf{y}} = \mathbf{X}\alpha + \mathbf{K}\omega + \mathbf{var}(\mathbf{y})^{-1}(\mathbf{y}-\mu)$

Generalized Linear Model

The same estimators can be obtained from maximizing the penalized quasilikelihood from a logistic mixed model

$$logit E(y_i) = X'_i \alpha + h_i$$

where $h = (h_1, ..., h_n)$ is a $n \times 1$ vector of random effects following $h \sim N(0, \tau K)$ with $\tau = 1/\lambda$

• The score statistic for τ is

$$Q = (y - X'\widehat{\alpha})'K(y - X'\widehat{\alpha}),$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

which follows a mixture of χ^2 distributions

Exponential Family

Suppose y_i follows a distribution in the exponential family with density

$$p(\mathbf{y}_i; \theta_i, \phi) = \exp\{\frac{\mathbf{y}_i \theta_i - \mathbf{a}(\theta_i)}{\phi} + \mathbf{c}(\mathbf{y}_i, \phi)\},\$$

where $\theta_i = X'_i \alpha + h(G_i)$ is the canonical parameter, $a(\cdot)$ and $c(\cdot)$ are known functions, ϕ is a dispersion parameter

•
$$\mu_i = E(y_i) = a'(\theta_i)$$
 and $var(y_i) = \phi a''(\theta_i)$

- Gaussian: $\phi = \sigma^2$, $a(\theta_i) = \theta_i^2/2$, and $a'(\theta_i) = \theta_i$
- ► Logistic: $\phi = 1$, $a(\theta_i) = \log(1 + \exp(\theta_i))$, $a'(\theta_i) = \frac{\exp(\theta_i)}{1 + \exp(\theta_i)}$
- Other distributions: log-normal, Poisson, etc.

Summary

- Burden tests are more powerful when a large number of variants are causal and all causal variants are harmful or protective.
- Variance component test is more powerful when a small number of variants are causal, or mixed effects exist.
- Both scenarios can happen across the genome and the underlying biology is unknown in advance.

(ロ) (同) (三) (三) (三) (○) (○)

Combined Test

- SKAT (SNP-set/Sequence Kernel Association Test): variance component test
- Combine the SKAT variance component and burden test statistics (Lee et al. 2012)

$$m{Q}_{
ho} = (\mathbf{1}-
ho)m{Q}_{\mathsf{SKAT}} +
hom{Q}_{\mathsf{burden}}$$
, $m{0} \leq
ho \leq \mathbf{1}$

• Instead of assuming $\{\beta_i\}$ are iid from $F(0, \tau^2)$, assume

$$\begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix} \sim \mathcal{F} \left(\underbrace{\mathbb{Q}}_{,} \quad \tau^2 \begin{pmatrix} 1 & \rho \dots & \rho \\ \vdots & \ddots & \vdots \\ \rho & \dots & 1 \end{pmatrix} \right)$$

SKAT-O

► Q_ρ = (1 − ρ)Q_{SKAT} + ρQ_{burden}, which is asymptotically equivalent to

$$(1-\rho)\kappa + a(\rho)\eta_0$$
,

where κ follows a mixture of χ_1^2 and $\eta_0 \sim \chi_1^2$.

Use the smallest *P*-value from different *ρ*s:

$$T = \inf_{0 \le \rho \le 1} P_{\rho}$$

In practice, evaluate Q_ρ on a set of pre-selected grid points,

$$0 = \rho_1 < \dots < \rho_B = 1$$
$$T = \min_{\rho \in \{\rho_1, \dots, \rho_B\}} P_{\rho}$$

Summary

- Have robust power under a wide range of models
- Q_{SKAT} and Q_{burden} are not independent.
- ► The underlying model for SKAT-O is not natural.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Mixed Effects Model

Model

$$g\{E(y_i)\} = X'_i \alpha + \sum_{j=1}^m G_{ij}\beta_j$$
(1)

• Burden:
$$\beta_1 = \cdots = \beta_m$$

- SKAT: $\beta_j \sim F(0, \tau^2)$ independently
- SKAT-O: $\beta_j \sim F(0, \tau^2)$ with pairwise correlation ρ
- Hierarchical model of β

$$\beta_j = \mathbf{w}_j \eta + \delta_j \tag{2}$$

w_j: known features for the *j*th variant (e.g., w_j = 1 for all j's)
 δ_j ~ F(0, τ²)

Mixed Effects Model

Plug (2) into (1)

$$g\{E(\mathbf{y}_i)\} = X'_i \alpha + (\sum_{j=1}^m w_j G_{ij})\eta + \sum_{j=1}^m G_{ij}\delta_j$$

Some examples:

• If w = 0, $\delta_j = \beta_j$, the model becomes

$$g\{E(y_i)\} = X'_i lpha + \sum_{j=1}^m G_{ij}eta_j, \qquad eta_j \sim F(0, \tau^2)$$

• If w = 1 and $\delta_j = 0$, the model becomes

$$g\{E(y_i)\} = X'_i \alpha + (\sum_{j=1}^m G_{ij})\eta$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Mixed Effects Model

Some examples:

•
$$w_j = (w_{j1}, w_{j2})$$
 where

$$w_{j1} = 1 \text{ for } j = 1, \cdots, m$$

$$w_{j2} = \begin{cases} 1 & \text{if } j \text{th variant is a missense} \\ 0 & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•
$$\sum_{j=1}^{m} w_j G_{ij} = (\sum_{j=1}^{m} G_{ij}, \sum_{j=1}^{m} w_{j2} G_{ij})$$

- η_1 : average effect of *m* variants
 - η_2 : effect of missense variants relative to the average
- δ_j: residual variant specific effect ~ F(0, τ²)

Mixed Effects Model-based Test

Mixed effects model

$$g\{E(y_i)\} = X'_i \alpha + (\sum_{j=1}^m w_j G_{ij})\eta + \sum_{j=1}^m G_{ij}\delta_j$$

- Null hypothesis is $H_0: \eta = 0$ and $\tau^2 = 0$
 - η : fixed effects; τ^2 : variance component
- The score test statistic for τ^2 and η is

$$\mathcal{S}_\eta = (\mathbf{Y} - \mathbf{X}\widetilde{lpha})'(\mathbf{GW})(\mathbf{GW})'(\mathbf{Y} - \mathbf{X}\widetilde{lpha}),$$

and

$$S_{\tau^2} = (Y - X\widetilde{lpha})' GG' (Y - X\widetilde{lpha}),$$

where $\widetilde{\alpha}$ is MLE of α under H_0 .

• However, S_{τ^2} and S_{η} are not independent.

Independence of score test statistics

We made a minor (but important) modification

$$S_{\tau^2}^* = \left(Y - X\widehat{\alpha} - GW\widehat{\eta}\right)' GG' \left(Y - X\widehat{\alpha} - GW\widehat{\eta}\right),$$

where $(\widehat{\alpha}^T, \widehat{\pi}^T)$ are obtained under $\tau^2 = 0$.

• We can show that $S^*_{\tau^2}$ and S_{η} are independent.

$$\mathcal{F}\{(GW)'(Y - X\tilde{\alpha})((Y - X\hat{\alpha} - GW\hat{\eta})'G$$

= $\sigma^2 E\{(GW)'(I - P_1)(I - P_2)G\}$
= 0,

where P_1 is the projection onto X and P_2 is the projection onto (X, (GW)).

Combining independent statistics

MiST (Mixed effects Score Test)

- P-value combination
 - Fisher's combination: reject H₀ at significance level α if -2 log(P_{τ²}) - 2 log(P_η) ≥ χ²_{4,α}
 - Tippitt's combination: reject H₀ at significance level α if min(P_{τ²}, P_η) ≤ 1 − (1 − α)^{1/2}
- Other combinations, e.g., linear combination

$$S = \rho S_{\eta} + (1 - \rho) S_{\tau^2}^*$$

 Jianping Sun, Yingye Zheng, and Li Hsu (2013). A Unified Mixed-Effects Model for Rare-Variant Association in Sequencing Studies. Genetic Epidemiology, 37: 334-44.

Power Comparison

• m=10 variants, n=1000 subjects, $\alpha = 0.01$

	Burden	SKAT	SKAT-O	MiST _F	MiST _T	
		/ (.) (1 − <i>p_j</i>)} ^{1/2} 0.818	•		
			= -1.5 <i>c</i> , β 0.397			
0.014 0.507 0.397 0.417 0.455 $eta_1=eta_4=eta_7=m{c}$						
			0.551			
	,	. ,	4 = 0.5 <i>c</i> , ⊭ 0.427		0.429	

Dallas Heart Study

- Dallas Heart Study (Victor et al. 2004). n=3409 subjects, 3 genes (ANGPTL3, ANGPTL4 and ANGPTL5) were sequencied.
- We analyzed these genes in association with log(triglyceride).

	ANGPTL3	ANGPTL4	ANGPTL5
Burden	0.83	0.76	0.001
SKAT	0.40	0.31	0.38
SKAT-O	0.57	0.47	0.35
EREC	0.36	0.38	0.09
MiST _F	0.36	0.06	0.05
MiST _T	0.40	0.06	0.06
MiST _F (Z)	0.25	0.77	0.00005
$MiST_T(Z)$	0.27	0.32	0.0001

► The component p-values of *ANGPTL*5: $p_{\pi} = 5x10^{-6}$ and $p_{\tau^2} = 0.53$. Furthermore, p = 0.004 for nonsense variants and p=0.24 for frame shift variants.

Summary

- MiST (Mixed effects Score Test) is based on hierarchical models for a set of variants
- The model includes the usual appealing features for regression models such as adjusting for confounders and being able to accommodate different types of outcomes by using appropriate link functions.
- It models the variant effects as a function of (known) variant characteristics to leverage information across loci while still allowing for individual variant effects.

・ロト・日本・日本・日本・日本

Combining K studies

We have discussed for single variant analysis:

- Pooling the data from K studies. Since all score statistics are derived from regression models, it is easy to account for the differences between studies by adjusting for study and/or study × covariates
 - Pooling the data ensures consistency in data QC and model fitting
 - Pooling can be logistically difficult and time consuming
 - Sometimes protection of human subjects prohibit sharing the data

(ロ) (同) (三) (三) (三) (○) (○)

 Meta-analysis of combining summary statistics from K studies is still a viable alternative

Revisit Score Statistics

Weighted burden test

$$U_{\text{burden}} = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} w_j G_{ij} \right) (y_i - X'_i \widehat{\alpha})$$
$$= \sum_{j=1}^{m} w_j \sum_{i=1}^{n} G_{ij} (y_i - X'_i \widehat{\alpha})$$

 U_j : Score of single variant model

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

U_j = ∑ⁿ_{i=1} G_{ij}(Y_i − X_i α̂) is a score function of a single variant model.

$$y_i = X_i lpha + G_{ij} eta_j + arepsilon_i, \qquad arepsilon \sim N(0, \sigma^2)$$

Variance Component test

 Q_{SKAT} is a weighted sum of squared score statistics of the single SNP marginal model.

$$Q_{\text{SKAT}} = (Y - X\widehat{\alpha})' GG'_{m \times n} (Y - X\widehat{\alpha})_{n \times 1}$$
$$= \sum_{j=1}^{m} \{\sum_{i=1}^{n} G_{ij} (Y_i - X_i \widehat{\alpha})\}^2$$
$$= \sum_{j=1}^{m} U_j^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Key Elements

- ► A vector of single variant score statistics, U' = (U₁, ..., U_m) with covariance V = cov(U)
- Burden score statistic

$$U_{ ext{burden}} = W'U$$
 , $ext{var}(U_{ ext{burden}}) = W'VW$

Variance component score statistic

$$Q_{\mathsf{SKAT}} = U'U,$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

which follows a mixture of chi^2 distribution with weights being the eigenvalues of *V*

Fixed effects model

- For k = 1, · · · , K, let U_k and V_k denote the score statistics and covariance for the kth study.
- Score statistic over K studies is

$$U = \sum_{k=1}^{k} U_k \quad V = \sum_{k=1}^{k} V_k$$

Burden test

$$egin{aligned} & U_{ ext{burden}} = W'U & ext{var}(U_{ ext{burden}}) = W'VW \ & U'_{ ext{burden}} ext{var}(U_{ ext{burden}})^{-1}U_{ ext{burden}} \sim \chi^2_{
ho} \end{aligned}$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Fixed effects model

Variance component test

$$Q_{\mathsf{SKAT}} = U'U \sim \sum_{j=1}^m \lambda_j \chi_{1,j}^2$$

where λ_j is the *j*th eigenvalue of $V = \sum_{k=1}^{K} V_k$

Combination of burden and score statistics

$$m{Q}_{
ho} = (1-
ho)m{Q}_{
m SKAT} +
hom{Q}_{
m burden}$$

where ρ is adaptively chosen and the p-value can be obtained by one-dimensional numerical integration

Fixed effects model

 Summary of single variant score statistic may not enough for MiST score statistics

$$egin{aligned} & m{S}_\eta = (m{Y} - m{X} \widetilde{lpha})'(m{GW})(m{GW})'(m{Y} - m{X} \widetilde{lpha}), \ & m{S}_{ au^2}^* = \left(m{Y} - m{X} \widehat{lpha} - m{GW} \widehat{\eta}
ight)'m{GG}'igg(m{Y} - m{X} \widehat{lpha} - m{GW} \widehat{\eta}igg), \ & m{S}_{ au^2}^* = igg(m{Y} - m{X} \widehat{lpha} - m{GW} \widehat{\eta}igg)'m{GG}'igg(m{Y} - m{X} \widehat{lpha} - m{GW} \widehat{\eta}igg), \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where $(\hat{\alpha}^T, \hat{\eta}^T)$ are obtained under $\tau^2 = 0$.

Random Effects Model

For $k = 1, \dots, K$, $\beta'_k = (\beta_{k1}, \dots, \beta_{km})$ is the effect of *m* variants for the *k*th study.

Random effects model

$$\beta_k = \beta_0 + \xi_k$$

where $\beta_0 = (\beta_{01}, \dots, \beta_{0m})$ represents the average effect among the studies, ξ_k is a set of random effects representing the deviation of the *k*th study from the average effect $\xi_k \sim N(0, \Sigma)$

(日) (日) (日) (日) (日) (日) (日)

Heterogeneity

- Assume Σ = σ²B, where B is a pre-specified matrix to constrain the potential many parameters in Σ.
- A choice of B is

$$B = \begin{pmatrix} b_1^2 & b_1 b_2 r & \cdots & b_1 b_m r \\ b_2 b_1 r & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ b_m b_1 r & \cdots & & b_m^2 \end{pmatrix}$$

- ► (b₁, ··· b_m) controls the relative degrees of heterogeneity for the *m* variates (e.g., MAF), and *r* specifies the correlation of heterogeneity.
- Choice of B has no effect on the type I error but may affect the power.

New Random Effects Burden Test

- The null hypothesis H_0 : $\beta_0 = 0$, $\sigma^2 = 0$
- For k = 1, ..., K, β_k ~ N(β₀, Ω_k = V_k⁻¹ + σ²B). The log-likelihood function is

$$I = -\frac{1}{2}\sum_{k=1}^{K} (\widehat{\beta}_k - \beta_0)' \Omega_k^{-1} (\widehat{\beta}_k - \beta_0) - \frac{1}{2}\sum_{k=1}^{K} \log |\Omega_k|$$

• Let $\hat{\beta}_k \approx V_k^{-1} U_k$, the random effects (RE) test for fixed effects

$$U^{ extsf{RE}}_{ extsf{burden}} = U' V^{-1} U + rac{U^2_\sigma}{V_\sigma}$$

where $U_{\sigma} = \frac{1}{2} \sum_{k=1}^{K} U'_{k} B U_{k} - \frac{1}{2} \operatorname{tr}(VB), V_{\sigma} = \frac{1}{2} \operatorname{tr}(\sum_{k=1}^{K} V_{k} B V_{k} B)$

► For burden test, replace U by W'U, and V by W'VW.

New Random Effects Variance Component Test

▶ $\beta_0 \sim N(0, \tau^2 W)$, where W is a pre-specified matrix, e.g.,

$$W = \begin{pmatrix} w_1^2 & w_1 w_2 \rho & \cdots \\ w_2 w_1 \rho & \ddots & \\ \vdots & & w_d^2 \end{pmatrix}$$

where (w_1, \dots, w_d) controls the relative magnitude of the *d* average genetic effects, and ρ indicates the correlation.

• The null hypothesis $H_0: \tau^2 = 0, \sigma^2 = 0$

• Let
$$\widehat{\beta}' = (\widehat{\beta}_1, \dots, \widehat{\beta}_K)$$
, then

$$\widehat{\beta} \sim MVN\left(0, \tau^2(J_K \otimes W) + \sigma^2(I_K \otimes B) + \operatorname{diag}(V_1^{-1}, \cdots, V_K^{-1})\right)$$

where \otimes denotes Kronecker product

• {
$$\hat{\beta}_k \approx V_k^{-1} U_k$$
}, the score statistic is a function of U_k , V_k , $k = 1, ..., K$.

Summary

- Pooled- vs meta-analysis
- For meta-analysis rare variant association tests can be constructed from multivariate summary statistics, i.e., the score vector U and information matrix V

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Fixed vs random effects model

Set-based gene-environment interaction

- *m* variants, $G_i = (G_{i1}, \cdots, G_{im})'$
- E_i: environmental covariate
- X_i: covariates
- Gene-environment interaction (GxE) model

$$g\{E(y_i)\} = X'_i \alpha + E_i \beta^E + \sum_{j=1}^m G_{ij} \beta^G_j + \sum_{j=1}^m (E_i G_{ij}) \beta^G_j$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

▶ No interaction means $\beta = (\beta_1^{GE}, \cdots, \beta_m^{GE}) = 0$

Hierarchical model for β^{GE}

Model the interaction effect

$$\beta_j^{GE} = \mathbf{w}_j \eta + \delta_j$$

- w_j: a vector of known features
- $\delta_j \sim F(0, \tau^2)$
- The interaction effect term

$$\sum_{j=1}^{m} (E_i G_{ij}) \beta_j^{GE} = \left(\sum_{j=1}^{m} E_i G_{ij} w_j \right) \eta + \sum_{j=1}^{m} E_i G_{ij} \delta_j$$
$$= E_i \left(\sum_{i=1}^{m} G_{ij} w_j \right) \eta + \sum_{j=1}^{m} (E_i G_{ij}) \delta_j$$

• No interaction means $H_0: \eta = 0, \tau^2 = 0$

Challenges

- Main effects {β₁^G, · · · , β_m^G} may not be estimated reliably if m is large or variants are rare.
- Assume the main effects {β_j^G} are random effects such that

 $eta_j^G \sim F(0,
u^2)$

▶ Need to derive score statistics for the mixed GxE effects (η, τ^2) in the presence of another random effects β_i^G .

Estimation

- β^G can be estimated by maximum posterior approach (or best linear unbiased prediction, in the linear mixed effects model), but the computation is intensive under a generalized linear model due to *m*-dimensional integration with no closed form.
- $\hat{\beta}_{i}^{G}$ minimizes ridge regression

$$\widehat{\beta}^{ridge} = \operatorname{argmin} \left\{ \sum_{i=1}^{n} (y_i - X'_i \alpha - E_i \beta^E - G_i \beta^G)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \right\}$$

where $\lambda=\sigma^2/\nu^2$

Some nice properties about ridge

- Knight and Fu (2000) states that if λ = o(√n) then β^λ is a √n consistent estimator of β₀
- Score statistics for the fixed effects under H_0 : $\eta = 0$, $\tau^2 = 0$

$$u_{\eta} = (D - \tilde{\mu})' \left(E(\sum_{j=1}^{m} G_{j} w_{j}) \right)' V \left(E(\sum_{j=1}^{m} G_{j} \cdot w_{j}) \right) (D - \tilde{\mu})$$

where
$$\widetilde{\mu} = \widehat{E}(D|G, E)$$
 under $\eta = 0, \tau^2 = 0$

Score statistic for the variance component under H_0 : $\tau^2 = 0$

$$u_{\tau^2} = (D - \hat{u})(GE)(GE)'(D - \hat{\mu})$$

where $\widehat{u} = \widehat{E}(D|G, E)$ under $\tau^2 = 0$

Combination of score statistics

P-value based, Z_η = -2 log P_η and Z_{τ²} = -2 log P_{τ²}
 T_f = Z_η + Z_{τ²} ~
$$\chi^2_4$$

Grid-search based optimal linear combination

$$T_o = \max_{\rho \in [0,1]} (\rho U_\eta + (1-\rho) U_{\tau^2})$$

where ρ is restricted on a set of pre-specified grid points $\{0 = \rho_0, \rho_1, \dots, \rho_d = 1\}$

Adaptive-weighted linear combination

$$T_a = Z_\eta^2 + Z_{\tau^2}^2$$

 Give more weight to either burden or variance component if the evidence comes mainly from one

(ロ) (同) (三) (三) (三) (○) (○)

Su YR, Di C and Hsu L (2015). A unified powerful set-based test for sequencing data analysis of GxE interactions. Submitted.

Power comparison

• m = 25 variants

To	T _a	T _f	Burden	Var Comp			
H_a : 30% variants $eta = c$							
0.541	0.620	0.672	0.473	0.533			
H_a : Half $\beta = c$, other half $\beta = -c$							
0.544	0.542	0.516	0.021	0.632			
$H_{m{a}}$: All $eta=m{c}$							
0.768	0.770	0.740	0.848	0.050			

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

Weight

- Choices of weight
 - Functioncal characteristics (e.g., missense, nonsense)
 - Screening statistics, *M_j* and *C_j* are the Z statistics from marginal association screening and correlation of G and E screening

$$m{w}_j = \left\{egin{array}{cc} M_j & ext{if} \ |M_j| > |C_j| \ C_j & ext{otherwise} \end{array}
ight.$$

Since the screening statistics are independent of GxE test, no need to use permutation to calculate the p-values

(ロ) (同) (三) (三) (三) (○) (○)

Jiao S, Hsu L, et al. (2013, 2015)

Summary

- Set-based association testing
 - Mixed effects model that accounts for both burden genetic risk score and variance component

(ロ) (同) (三) (三) (三) (○) (○)

- Meta-analysis
- GxE interaction between a set of variants and environmental factor

Recommended readings

- Liu D et al. (2007). Semiparametric regression of multidimensional genetic pathway data: Least-Squares Kernel Machines and Linear Mixed Models. Biometrics 63:1079–1988.
- Liu D et al. (2008). Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC Bioinformatics 9:292.
- Schaid DJ (2010) Genomic similarity and kernel methods I: advancements by building on mathematical and statistical foundations. *Hum Hered* 70:109–31.
- Schaid DJ (2010) Genomic similarity and kernel methods II: methods for genomic information. *Hum Hered* 70:132–140.
- Zhang and Lin (2003). Hypothesis testing in semiparametric additive mixed models. *Biostatistics* 4:57–74.

Recommended readings

- Lee S, Lin X and Wu M (2012). Optimal tests for rare variant effects in sequencing association studies. Biostatistics 13: 762–775.
- Lin DY and Tang Z (2011). A general framework for detecting disease associations with rare variants in sequencing studies. AJHG 89: 354–67.
- Jianping Sun, Yingye Zheng, and Li Hsu (2013). A Unified Mixed-Effects Model for Rare-Variant Association in Sequencing Studies. Genetic Epidemiology, 37: 334-44.
- Jiao S, ..., Hsu L (2015) Powerful Set-Based Gene-Environment Interaction Testing Framework for Complex Diseases. Genetic Epidemiology, DOI: 10.1002/gepi.21908
- Tang Z and Lin DY (2015). Meta-analysis for discovering rare-variant associations: Statistical methods and software programs. AJHG 97:35–53
- Wu et al. (2011). Rare-variant association testing for sequencing data with the sequence kernel association test. AJHG 89: 82-93.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●