More about interactions

October 9, 2015

Toy data

Consider the data - a binary response Y, a binary environmental variable E and a binary gene G:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Three testing approaches

$$\mathsf{logit}(\mathsf{Pr}(\mathsf{Y}=1|\mathsf{G},\mathsf{E})) = \alpha_0 + \alpha_1\mathsf{G} + \alpha_2\mathsf{E}$$

P-value for H_0 : $\alpha_1 = 0$ is 0.070. Not significant!

$$\mathsf{logit}(\mathsf{Pr}(\mathsf{Y}=1|\mathsf{G},\mathsf{E}))=eta_0+eta_1\mathsf{G}+eta_2\mathsf{E}+eta_3\mathsf{GE}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

P-value for H_0 : $\beta_3 = 0$ is 0.051. Not significant! But....

P-value for H_0 : $\beta_1 = \beta_3 = 0$ is 0.029. Significant!

Consider the data - a binary response Y, a binary environmental variable E and a binary gene G:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Three testing approaches

$$\mathsf{logit}(\mathsf{Pr}(\mathsf{Y}=1|\mathsf{G},\mathsf{E})) = \alpha_0 + \alpha_1\mathsf{G} + \alpha_2\mathsf{E}$$

P-value for $H_0: \alpha_1 = 0$ is 1. Not significant!

$$logit(Pr(Y = 1|G, E)) = \beta_0 + \beta_1G + \beta_2E + \beta_3GE$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

P-value for H_0 : $\beta_3 = 0$ is 0.033. Significant! But....

P-value for H_0 : $\beta_1 = \beta_3 = 0$ is 0.104. Not significant!

What does this teach us?

- Both the test H₀ : β₃ = 0 and the test H₀ : β₁ = β₃ = 0 involve the interaction parameter β₃, but one tests the interaction, one tests the genetic effect, in the situation of possible confounders.
- As always, it's important to be aware what the null hypothesis means -
 - Testing whether genes affect the outcome, where the gene effect may depend on the environment.
 - Testing for gene-environment interaction.

Unfortunately not all genetic epi papers are that careful...

• Today focus on the interaction test H_0 : $\beta_3 = 0$.

Note: just as for the interaction test, testing for genetic effect in the situation of possible confounders can exploit G-E independence. See Dai et al. (2012), $Am \ J \ Epi \ 176$:164–173 and the references therein.

There are some papers that have found genes testing for (G + GE), e.g.

► Gauderman and Siegmund (2001) *Hum Herid* **52**:34–46.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Selinger-Leneman et al. (2003) Gen Epi 24:200-7.
- Kraft et al. (2007) Hum Herid 63:111-9.
- ▶ Huang et al. (2011) Genome Med 3:42.

Power and sample size

Number of case-control pairs required for 80% power.

	GxE	interacti	G main effect		
		P(E			
P(G = 1)	$\exp(\beta_3)$	0.1	$\exp(\beta_1)$		
0.05	1.5	19571	7520	1.5	860
	2.0	6263	2495	2.0	266
0.40	1.5	4107	1588	1.5	196
	2.0	1359	550	2.0	68

Power and sample size

Case-control	GxE	interacti	G main effect		
		P(E			
P(G = 1)	$\exp(\beta_3)$	0.1	$\exp(\beta_1)$		
0.05	1.5	19571	7520	1.5	860
	2.0	6263	2495	2.0	266
0.40	1.5	4107	1588	1.5	196
	2.0	1359	550	2.0	68

Case-only	GxE interaction			
	P(E=1)			
P(G=1)	$\exp(\beta_3)$	0.1	0.5	
0.05	1.5	9257	3916	
	2.0	2640	1257	
0.40	1.5	2114	885	
	2.0	671	317	

Genomewide... $\alpha = 5 \times 10^{-8}$

Case-control	GxE	interact	G main effect		
		P(E			
P(G = 1)	$\exp(\beta_3)$	0.1	$\exp(\beta_1)$		
0.05	1.5	98725	37946	1.5	4338
	2.0	31600	12591	2.0	1344
0.40	1.5	20707	7995	1.5	988
	2.0	6850	2776	2.0	342

Case-only	GxE interaction			
	P(E=1)			
P(G=1)	$\exp(\beta_3)$	0.1	0.5	
0.05	1.5	46686	19739	
	2.0	13304	6342	
0.40	1.5	10654	4456	
	2.0	3385	1579	

Those sample sizes are large.....

- Interactions need larger sample sizes than main effects.
- Genome-wide searches need to correct for many comparisons.
- Third whammy: sometimes the E has serious measurement error, reducing power even further.

Idea: can we identify SNPs that are "more likely" to be involved in interactions, and only test those.

Issue: we need to select those SNPs in such a manner that we only need to multiple-comparisons correct for the number of SNPs we test for interactions, not the number we could have tested.

Simplest example

[Kooperberg & LeBlanc (2008) Genet Epi 32:255-63.]

 Genome-wide screen of the top *M* SNPs using "marginal-effect" test on all subjects:

 $logit(Pr(Y = 1|G)) = \gamma_0 + \gamma_1 G$

Test H_0 : $\gamma_1 = 0$ for each SNP at α_M level.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Simplest example

[Kooperberg & LeBlanc (2008) Genet Epi 32:255-63.]

1. Genome-wide screen of the top *M* SNPs using "marginal-effect" test on all subjects:

$$\mathsf{logit}(\mathsf{Pr}(Y=1|\mathsf{G})) = \gamma_0 + \gamma_1 \mathsf{G}$$

Test H_0 : $\gamma_1 = 0$ for each SNP at α_M level.

イロト イポト イヨト イヨト

Simplest example

[Kooperberg & LeBlanc (2008) Genet Epi 32:255-63.]

 Genome-wide screen of the top *M* SNPs using "marginal-effect" test on all subjects:

$$logit(Pr(Y = 1|G)) = \gamma_0 + \gamma_1 G$$

Test H_0 : $\gamma_1 = 0$ for each SNP at α_M level.

2. Test m SNPs that pass screen with standard logistic model

$$logit(Pr(Y = 1|G, E)) = \beta_0 + \beta_1 G + \beta_2 E + \beta_3 GE$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Significance threshold α/m .

Here this works well

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Here as well

くしゃ (中)・(中)・(中)・(日)

Here it is more problematic

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Here it won't work well

Two stage procedures

- 1. Screen all SNPs
 - Using marginal association
 - Using the correlation of G and E in cases and controls combined

- A combination of the above
- 2. Test only those SNPs that pass the screen.
 - Case-control
 - Case-only
 - Data-adaptive (e.g. Empirical Bayes)

Testing approaches

Case-control

Case-only

Data-adaptive: Empirical Bayes, Bayesian Model Averaging

- Robust
- Does not assume G-E independence
- Substantial gain in power when G-E independence holds
- Type 1 error increases when G-E independent incorrectly assumed
- Also assumes "rare disease" (this can be relaxed)
- Increased power versus case-control
- Improved control of type 1 error versus case-only

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Key result

[Dai et al. (2012) Biometrika, 99:929-44.]

For a screening procedure to maintain the correct type 1 error, the test statistics for screening and testing are (pairwise) independent. We can then work out that

- For generalized linear models and Cox proportional hazards models, the marginal association screening is independent of the case-control, the case-only, and the empirical Bayes estimators.
- The correlation between G and E is independent of the case-control estimator, but not independent of the case-only or the empirical Bayes estimators.

Thus, when using a two-stage procedure we need to consider the pair of tests: not every screening statistic can be matched up with every GxE test.

Formally...

- Subject i = 1,..., n iid: outcome Y_i, genes G_{i1},..., G_{im}, environmental variable E_i, confounders W_i.
- ▶ θ_j is the G-E interaction between G_j and E. The Wald statistic for H_{0j} : $\theta_j = 0$ is $T_j = \hat{\theta}_j / \hat{\text{var}}(\hat{\theta}_j)^{1/2}$.
- Let $K_{0j}: \xi_j = 0$ be another hypothesis with an assymptotically linear estimator; let $T_j^0 = \hat{\xi_j} / \widehat{\text{var}}(\hat{\xi_j})^{1/2}$ be its Wald statistic.
- ► Specify $0 \le \alpha_0 \le 1$. Set $\Gamma_j^0 = \{T_j^0 : |T_j^0| > \Phi^{-1}(1 \alpha_0/2)\}$. Suppose m_0 genetic variants pass the filter.
- ► Define $\Gamma_j = \{T_j : |T_j| > \Phi^{-1}(1 \alpha/(2m_0))\}$. We declare the *j*th test significant if $T_i^0 \in \Gamma_j^0$ and $T_j \in \Gamma_j$.
- Theorem: if cov{n^{1/2}(ξ̂_j − ξ_j), n^{1/2}(θ̂_j − θ_j)} → 0. for all j, and m₀/m converges to a constant α'₀ in probability, then the two-step procedure preserves the family wise error rate.

Using this result

For most of the filtering/testing approaches we can establish this independence on a case-by-case basis. But the following result is more general useful.

- Let (Y_i, V_{i1},..., V_{ip}), i=1,..., n be iid random variables, with Y the outcome variable in a GLM with canonical link g.
- Let q < p. Consider the nested GLMs

$$g\{E(Y|V_1,\ldots,V_q)\} = \beta_0 + \sum_{j=1}^q \beta_j V_j,$$

$$g\{E(Y|V_1,\ldots,V_p)\} = \beta_0 + \sum_{j=1}^p \gamma_j V_j.$$

► Theorem: the MLEs (\$\hat{\beta}_0, \ldots, \$\hat{\beta}_q\$) and (\$\hat{\gamma}_{q+1}, \ldots, \$\hat{\gamma}_p\$) are assymptotically independent.

Thus, the independence of $\hat{\beta}_1$ and $\hat{\gamma}_3$ is immediate in these models:

$$g\{E(Y|G,W)\} = \beta_0 + \beta_1 G + \beta_2 W,$$

$$g\{E(Y|G,E,W)\} = \gamma_0 + \gamma_1 G + \gamma_2 E + \gamma_3 GE + \gamma_4 W.$$

Why does screening on G-E correlation make sense?

 So the G-E correlation is different between cases and controls, therefore, at least one of these strata has a correlation that is not 0.

G-E interaction screening

[Murcray et al. (2009) Am J Epi 169:219-26.]

1. Genome-wide screen of the top *M* SNPs testing for G-E correlation (i.e., a "case-only" test on all subjects

$$logit(Pr(E=1|G)) = \delta_0 + \delta_1 G$$

Test H_0 : $\delta_1 = 0$ for each SNP at α_M level.

▲ □ ► ▲ □ ►

G-E interaction screening

[Murcray et al. (2009) Am J Epi 169:219-26.]

1. Genome-wide screen of the top *M* SNPs testing for G-E correlation (i.e., a "case-only" test on all subjects

$$logit(Pr(E = 1|G)) = \delta_0 + \delta_1 G$$

Test H_0 : $\delta_1 = 0$ for each SNP at α_M level.

2. Test m SNPs that pass screen with standard logistic model

$$logit(Pr(Y = 1|G, E)) = \beta_0 + \beta_1 G + \beta_2 E + \beta_3 GE$$

Significance threshold α/m .

Multiple possibilities

- ► Marginal G screening ⇒ case-control testing.
- G-E correlation screening \implies case-control testing.

But also

- ► Marginal G screening ⇒ empirical Bayes testing.
- Marginal G screening => case-only testing, if G-E independence holds.

Which one works best?

N = 5000/5000, P(G = 1) = 0.3, P(E = 1) = 0.5, 250,000 SNPs. OR(G, E) = 1

$$logit(Y=1-G,E) = \beta_0 + 0.5G + 0.5E + \beta_3GE$$

N = 5000/5000, P(G = 1) = 0.3, P(E = 1) = 0.5, 250,000 SNPs. OR(G, E) = 1.5

$$logit(Y=1-G,E) = \beta_0 + 0.5G + 0.5E + \beta_3GE$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

N = 5000/5000, P(G = 1) = 0.3, P(E = 1) = 0.5, 250,000 SNPs. OR(G, E) = 1.5

$$logit(Y=1-G,E) = \beta_0 + 0G + 0.5E + \beta_3GE$$

A general framework

[Hsu et al. (2012) Gen Epi 36:183-94.]

Cocktail approach

[Hsu et al. (2012) Gen Epi 36:183-94.]

• Let p^{marg} be the P-value for $H_0: \gamma_1 = 0$ in

$$logit(Pr(Y=1|G)) = \gamma_0 + \gamma_1 G$$

• Let p^{corr} be the P-value for $H_0: \delta_1 = 0$ in

$$logit(Pr(E = 1|G)) = \delta_0 + \delta_1 G$$

- ► Use p^{screen} = min(p^{marg}, p^{corr}) for screening.
- Screening can be done using a fixed α or using weighted testing (next slide).
- If p^{marg} ≤ p^{corr} test using empirical Bayes, if p^{marg} > p^{corr} test using case-control.

Somewhat similar method: H2 [Murcray et al. (2011) Gen Epi 35:201-10.]

Weighted hypothesis testing

[Ionita-Laza et al. (2007) AJHG 81:601-14.]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Weighted hypothesis testing

- All SNPs are tested, but with different significant thresholds.
- Rank SNPs by screening P-value, e.g.
 - 1. 5 SNPs with smallest screening P-value.
 - 2. next 10 SNPs
 - 3. next 20 SNPs

Group	# SNPs	Alpha
1	5	5.00E-3
2	10	1.25E-3
3	20	3.13E-4
4	40	7.81E-5
5	80	1.95E-5
6	160	4.88E-6
7	320	1.22E-6
8	640	3.05E-7
9	1280	7.63E-8
10	2560	1.91E-8
11	5120	4.77E-9
12	10240	1.19E-9
	•••	•••

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

N = 5000/5000, P(G = 1) = 0.3, P(E = 1) = 0.5, 250,000 SNPs. OR(G, E) = 1

$$logit(Y=1-G,E) = \beta_0 + 0.5G + 0.5E + \beta_3GE$$

N = 5000/5000, P(G = 1) = 0.3, P(E = 1) = 0.5, 250,000 SNPs. OR(G, E) = 1.5

$$logit(Y=1-G,E) = \beta_0 + 0G + 0.5E + \beta_3GE$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

One more modification.... EDGxE

[Gauderman et al. (2013) Gen Epi 37:603-13.]

Instead of either using marginal or G-E ranking, can we use both simultaneously?

1. Let T_{marg} be the χ^2 statistic for for $H_0: \gamma_1 = 0$ in

 $logit(Pr(Y=1|G)) = \gamma_0 + \gamma_1 G$

and let T_{corr} be the χ^2 statistic for for $H_0: \delta_1 = 0$ in

$$logit(Pr(E=1|G)) = \delta_0 + \delta_1 G$$

Then rank using $T_{EDGxE} = T_{marg} + T_{corr}$.

Test only those wit *p_{EDGxE}* < α_M or use weighted hypothesis testing.

N = 5000/5000, P(G = 1) = 0.3, P(E = 1) = 0.5, 250,000 SNPs. OR(G, E) = 1

$$logit(Y=1-G,E) = \beta_0 + 0.5G + 0.5E + \beta_3GE$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

N = 5000/5000, P(G = 1) = 0.3, P(E = 1) = 0.5, 250,000 SNPs. OR(G, E) = 1.5

$$logit(Y=1-G,E) = \beta_0 + 0G + 0.5E + \beta_3GE$$

Asthma GWAS from Gauderman et al.

Asthma GWAS from Gauderman et al.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Asthma GWAS from Gauderman et al.

Chr SN		Location	Reference Allele	Step 1			Step 2			Significance
	SNP			Chi-square	P-value	Bin	OR _{G×E}	t-Test	P-value	Threshold
1	rs6697552	241192975	Т	37.48	7.3×10^{-9}	1	1.13	0.64	0.52	0.005
1	rs1832719	200713649	С	37.23	8.2×10^{-9}	1	0.42	-1.81	0.07	0.005
7	rs1229492	81402058	Т	27.88	8.8×10^{-7}	1	0.88	-0.82	0.41	0.005
4	rs6842542	158594467	С	25.50	2.9 x 10 ⁻⁶	1	1.60	2.55	0.011	0.005
9	rs520613	109925873	G	24.79	4.1×10^{-6}	1	1.01	0.04	0.97	0.005
4	rs719525	76578274	С	24.18	5.6×10^{-6}	2	0.98	-0.11	0.91	0.0012
5	rs10069175	21923777	С	23.57	7.6×10^{-6}	2	1.15	0.70	0.48	0.0012
8	rs7000310	119837792	С	22.91	1.1×10^{-5}	2	0.57	-3.13	0.0017	0.0012
8	rs10505105	108376513	Т	22.61	1.2×10^{-5}	2	0.82	-1.11	0.27	0.0012
9	rs630965	109925300	G	22.14	1.6×10^{-5}	2	1.07	0.53	0.59	0.0012
13	rs1988388	52944609	Т	21.75	1.9×10^{-5}	2	1.19	1.26	0.21	0.0012
9	rs2767777	125998894	С	21.69	2.0×10^{-5}	2	0.91	-0.59	0.56	0.0012
9	rs865686	109928299	С	21.67	2.0×10^{-5}	2	1.05	0.34	0.74	0.0012
12	rs4765748	3724788	А	21.66	2.0×10^{-5}	2	0.84	-0.87	0.38	0.0012
15	rs1523526	59051579	С	21.31	2.4×10^{-5}	2	0.92	-0.62	0.53	0.0012

Table 6. Top 15 SNPs from EDG × E analysis of 536,857 SNPs for G × Sex interaction with young-onset childhood asthma

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

What about $G \times G$? Continuous Y? Continuous E?

- Most things go through the same way.
- Except, case-only and empirical Bayes estimators need a binary Y.
- ▶ With *G*×*G* computational efficiency becomes more of an issue.
- Other complications arise when the G were imputed, and are not exactly 0/1/2.

A sobering note

There likely have been more papers written about methods to identify GxE and GxG interactions, than the number of interactions that have successfully been identified.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●