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Does the grey curve go up again. . .
N = 5000/5000, P(G = 1) = 0.3, P(E = 1) = 0.5, 250,000 SNPs.
OR(G ,E ) = 1.5

logit(Y = 1|G ,E ) = β0 + 0G + 0.5E + β3GE
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More in “general”

I The power of (most of) the two stage procedures is like the

product of two typical power curves ,
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with their minimum maybe located at different spots - so you
can have two minima in the product, but otherwise the curve
should be smooth.

I The one (I think) exception is “Cocktail”, since it also involves
taking the minimum of two P-values. This is close to taking
the maximum of two power curves (with a little smoothing
aorund the point where the curves cross). After that this
maximum curve is still multiplied by another power curve.



Higher order interactions
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Why?

I ended the last lecture about GG and GE interactions with

So why would we be interested in higher order interactions???



Targeted regions

For many reasons

I power,

I computational, and

I interpretation,

we should only be interested in higher order interactions when we
focus attention on a few targeted regions (e.g. genes), selected
because of

I studies (carried out on other data sets),

I biology,

I . . .



It is not a surprise that. . .

I The power is small.

I As such we may want to see these methods as “hypothesis
generating” - i.e. we may identify a limited number of
interactions that we can follow up on in new studies.



Models

I SNPs as 3 level categorical variables:
low low low
high low high
low high high

I Decision tree models.

True False

B False True False

True A B False

D A

C

I Boolean rules like:
You are at increased risk if you have at least one
mutant for SNP1 or two mutants for SNP2.

I Classical interaction model

g [E (Y |G)] = β0 + β1G1 + β2G2 + β3G3 + β4G1G2

+β5G1G3 + β6G2G3 + β7G1G2G3,

Issues: interpretation, computation, power.....
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SNPs

A typical dataset may contain:

I Response

I Environmental and demographic variables

I Sequence (SNP) data



Regression models

We want to find a regression model:

g(E[Y |G,E]) = f (G,E),

I Y is the response, and g() some link function,

I E are environmental/demographic variables,

I G are the SNPs, and

I f is a regression function.



Adaptive model selection

Consider
g(E[Y |E,G]) =

∑
βjBj (E,G).

Bi (): basis functions that may depend on the environmental
variables E and/or the SNPs G.

Attempt to select basis functions Bi and estimate coefficients βi .

Examples:

I CART - Classification And Regression Trees - Breiman,
Friedman, Olshen and Stone (1984).

I MARS - Multivariate Adaptive Regression Splines - Friedman
(1991).

Methods for other responses (e.g. survival, logistic) exist. The CS
literature contains many proposals of methods.



Tree based methods

AKA “recursive partitioning”, CART
[Breiman, Friedman, Olshen, Stone (1984) Classification and Regression Trees

Wadsworth]

I Feature space recursively partitioned into rectangular areas
such that observations with similar response are grouped.

I When you stop, you provide a common prediction Y for
subjects in the same group.



Example

I UCSD Heart Disease study:

I Given the diagnosis of a heart attack based on Chest pain,
Indicative EKGs, Elevation of enzymes typically released by
damaged heart muscle

I Predict who is at risk of a 2nd heart attack and early death
within 30 days Prediction will determine treatment program
(intensive care or not)

I For each patient about 100 variables were available, including
demographics, medical history, lab results





Difference from linear (logistic) regression

I Not linear in predictors.

I Can have multiple splits of the same predictor.

I Non-linear and even non-monotone associations are identified
in data-adaptive way.

I Modeling involves interactions, but the focus is identification
of association/variable importance.

I Entire tree represents a complete analysis or model.

I Every data point goes from the root node, through (possibly
multiple) splits and ends in a terminal node.

Note:

I These models can be written in the basis function set up.
Basis functions are products of indicator functions.



These things are nice

I Universally applicable to both classification and regression
problems with no assumptions on the data structure.

I Good properties:
I Variable selection.
I Deals well with missing data.
I Deals well with outliers.
I Deals well with multiple types of predictors.
I No need to transform predictors.
I Deals well with large dimensionality (though maybe not GWAS).

I A simple and easy to comprehend model:
I Has the form of a decision tree.
I Picture of the tree gives valuable insights into which variables

are important and where.
I Terminal nodes suggest natural clustering of data into

homogeneous groups.



Elements of tree construction

I Tree growing
I This is like stepwise addition in regression models.
I Typically we want splits that split a less homogeneous node

into two more homogeneous daughter nodes.
I Usually done in a greedy way.
I Continue growing until the tree is “too large”.



Elements of tree construction

I Finding the right size of the tree.
I Innovation in CART: cost-complexity pruning.
I Pruning at a node means making that node terminal by

deleting all its decendants.
I For each α we can find the best tree that minimizes

Rα(T ) = R(T ) + α|T |

where R is a cost measure, and |T | the size of tree T .
I For different αs the best trees are nested.
I Cross-validation or an external data set allow us to pick the

best α.



A few more plusses and minuses

+ Easy to interpret.

+ Natural way to decide which variables are (not) important,
and when (i.e. age is not relevant if BP is low).

− Modest accuracy.

− Instability: changing the data a little can change the tree
(sometimes) a lot.



Ensemble versions

I Bagging (Breiman 1996): Fit many trees to bootstrap
resampled versions of the training data, and classify by
majority vote.

I Boosting (Freund & Schapire 1996): Fit many trees to
reweighted versions of the training data. Classify by weighted
majority vote.

I Random Forest (Breiman 2001): Bootstrap both cases and
randomly select predictors. Use the not-selected cases to
estimate the accuracy.

Ensemble versions have much better prediction and stability, but
loose interpretation.



Logic Regression

I X1, . . . ,Xk are 0/1 (False/True) predictors.

I Y is a response variable.

I Fit a model

g(E[Y |E,X]) = β0 +
t∑

j=1

βjLj +
∑

k

γkEk ,

where Lj is a Boolean combination (logic term) of the
covariates, e.g.

Lj = (X1 ∨ X2) ∧ X c
4 .

I Determine the logic terms Lj and estimate the βj

simultaneously.



Logic Regression for SNP data

Think of a SNP as a variable G which takes values 0, 1 or 2.

A “dominant” SNP would have effect when G ≥ 1, a “recessive”
SNP when X = 2. Thus it makes some sense to recode:

X1 = 1 if X ≥ 1,

and
X2 = 1 if X = 2.



Logic Trees
The Logic Tree representation of the logic term

(X1 ∧ X c
2 ) ∨ (X3 ∧ (X c

1 ∨ X4))
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A decision tree (CART) is something different!

True False

B False True False

True A B False

D A

C
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Greedy search

Typical way to select basis functions for adaptive regression models

g(E[Y |V,X]) =
∑

βiBi (V,X),

is stepwise:

I Find the single best basis function to include in the model.
I Given the basis function already in the model, find the next

best basis function to add.
I Continue until a largest model size with stepwise addition.
I Now remove basis functions one at a time, each time

removing the least significant one.
I Select one model out of all models considered.

CART and MARS algorithms can be rephrased in this format.



Greedy search for logic regression

Problems:

I We want to keep the number of basis functions small, but
rather find potentially quite complicated ones.

I Changes should thus not be in adding basis functions, but in
making them more complicated. [See next slide...]

I The search space is quit messy, with many local optima,
suggesting that greedy algorithms may not be very useful.



Possible Moves
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Simulated annealing for Logic Regression

We try to fit the model

g(E[Y |E,X]) = β0 +
t∑

j=1

βjLj .

I Select a scoring function (RSS, log-likelihood, . . .).

I Pick the maximum number of Logic Trees.

I Pick the maximum number of leafs in a tree.
I Carry out a Simulated Annealing algorithm:

I Propose a move.
I Accept or reject the move, depending on scores and

temperature: α(sold, snew, t) = min{1, exp([sold − snew]/t}.
I Verrrrrrrrrry slowly reduce t.



Cardiovascular Health Study (CHS) MRI data

I CHS is a study of coronary heart disease and stroke in elderly
people. Between 1989 and 1993, 5888 subjects over the age
of 65 were recruited in four communities in the US.

I During 1992–94, a subset of these patients had an MRI scan.

I For 3647 CHS participants, MRI detected strokes (infarcts
bigger than 3mm that led to deficits in functioning) were
recorded as entries into a 23 region atlas of the brain.

I The mini-mental state examination is a screening test for
dementia. The response Y is a variable derived by
transforming the mini-mental score.

I We investigated models of the form
Y = β0 + β1 × L1 + · · ·+ βp × Lp + ε



Null model (permutation) test
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A sequential permutation test for model size.

•

•
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Cross validation
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The selected model

19 4

or 17

12 or

or

The model we found is Y = 1.96 + 0.36× L,
with L = X4 or X12 or X17 or X19.



Heart disease data

(Jurg Ott, Rockefeller University)

I 779 heart disease patients, all undergone angioplasty

I 342 experienced restenosis, 437 did not

I 63 candidate genes identified, 1-2 SNPs per gene; total 89
SNPs; recode in 178 binary predictors.

I no other variables



Cross validation



Potential problems with model selection

I The best size may not be clear cut.

I There may be several models of the same size that are
(almost) as good.

I Sample sizes may currently be limited, reducing power to find
interactions.



Bayesian Logic Regression

Reversible jump McMC (Green, 1995) requires

1. Prior on size of the model.
What is size?
Most natural to take a geometric prior relative to model size:
this is equivalent to an AIC type penalty on size. This requires
us to count the number of possible models of a given size
(nontrivial!).

2. Prior on models, given the size.
Also: probably want it uniform on model given the size. It’s
not totally obvious what this means. E.g. there are more ways
to write (X1 ∨ X2 ∨ X3) than (X1 ∨ (X2 ∧ X3)). But ignore
that right now.



Prior on size

P(size = i) ∝ ai .

Average posterior model size

mean of number of fitted logic trees
a the prior 1 2 3 4

1/
√

2 2.41 3.00 5.07 6.34 7.02
1/2 1.00 1.76 2.24 2.48 2.55
1/3 0.50 1.04 1.13 1.22 1.25

Median over 25 permutations (Null model test)

mean of number of fitted logic trees
a the prior 1 2 3 4

1/
√

2 2.41 2.66 4.19 4.92 5.58
1/2 1.00 1.54 1.86 2.01 2.14
1/3 0.50 0.92 1.02 1.08 1.13



Fraction of times in model

3 trees 2 trees

Top 15 SNPs a = 1/
√

2 a = 1/2
TP53(P72R)d .379 .200
CD14d .353 .201
MDM2d .135 .054
CBS(I278T)r .132 .054
TNFR1d .119 .055
CBS(68bp ins)r .112 .046
IL4RA(I50V)r .110 .048
TNFR1r .105 .042
APOC3(T3206G)d .096 .038
LTAr .076 .032
GNBd .073 .026
ADRB3r .064 .025
NOS3r .063 .026
LPA(G21A)d .055 .024
ITGB3r .053 .023



Top seven two-SNP interactions.

3 trees, a = 1/
√

2 2 trees, a = 1/2
SNP 1 SNP 2 obs exp ratio obs exp ratio
TP53(P72R)d CD14d .182 .072 2.52 .084 .037 2.23
TP53(P72R)d CBS(I278T)r .077 .027 2.85 .028 .010 2.77
APOC3(T3206G)d TNFR1r .074 .006 13.42 .030 .001 20.16
CD14d CBS(I278T)r .061 .025 2.43 .023 .010 2.34
TP53(P72R)d CBS(68bp ins)r .061 .023 2.67 .022 .008 2.55
CD14d CBS(68bp ins)r .047 .021 1.60 .018 .009 1.26
TP53(P72R)d MDM2d .044 .028 1.60 .013 .010 1.26



Top three three-way interactions.

3 trees 2 trees

a = 1/
√

2 a = 1/2
SNP 1 SNP 2 SNP 3 obs obs

TP53(P72R)d CD14d CBS(I278T)r .0581 .0223
TP53(P72R)d CD14d CBS(68bp ins)r .0439 .0167
TP53(P72R)d CD14d APOC3(T3206G)d .0204 .0073



Logic Regression references

I Ruczinski, I., Kooperberg, C., and LeBlanc, M. L. (2003).
Logic regression. Journal of Computational and Graphical
Statistics, 12, 475–511.

I Kooperberg, C. and Ruczinski, I. (2005). Identifying
interacting SNPs using Monte Carlo Logic Regression.
Genetic Epidemiology, 28, 157–170.

I Kooperberg, C., Bis, J. C., Marciante, K. D., Heckbert, S. R.,
Lumley, T., and Psaty, B. M. (2007). Logic Regression for the
analysis of the association between genetic variation in the
renin-angiotensin system and myocardial infarction or stroke.
American Journal of Epidemiology, 165, 334–343.

I CRAN package LogicReg



Multifactor Dimensionality Reduction
[Ritchie et al. (2001) Am J Hum Gen 69:138–47]

[Hahn et al. (2003) Bioinformatics 19:376–82]

modification of
[Nelson et al. (2001) Genome Res 11:458–70]

I Complex interactions are hard to detect because of sparse
data via standard parametric models

I Inaccurate parameter estimates and large standard errors with
relatively small sample sizes.

I Reduce the dimensionality and identify SNP combinations
that lead to high risk of disease.

Hunting for:
low low low
high low high
low high high



MDR



MDR

For a particular model with M SNPs (or environmental factors):

I 10-fold Cross-validation

1. Consider each “cell” (if factors are SNPs, there are 3M ).
2. On 9/10th of the data decide whether a cell is “high” or “low”

risk (for a case-control study the typical cut-off in each cell
would be the case/control ratio in the study).

3. Evaluate the prediction on the remaining 1/10th of the data.
4. Check how many of the MDR models are the same. Not entirely

clear how this is done - if each cell should be consistent, this would work

against models that have (m)any cells that are close to 50/50.

I Repeat this a number of times - to achieve stability of the
cross-validation. If you have enough computing power, always a good idea.

I Select the model with the lowest prediction error, provided the
consistency is better than by chance.



Sporadic breast cancer

200 women with sporadic primary invasive breast cancer with
age-matched hospital based controls, 10 estrogen metabolism
SNPs



Issues

I While making things binary helps, computation can explode if
the number of SNPs in the study is substantial.

I The selected models do not adhere to the usual parsimony
that we like in statistics: if a model with, say, 4 factors is ε
better than a model with 3 factors, MDR will pick 4 factors.
Usually we would prefer 3. Conceivably this could be changed
fairly easy. The MDR implementation of cross-validation
makes this worse, however (next slide).

I The models are very hard to interpret.

I To me, it would make more sense to identify a smaller number
of cells with “extreme high” or “extreme low” risk.



Bias in their implementation of Cross Validation

I Consider the number of models with M SNPs out of a total T .

0 1 2 3 4 5 6 7 8 · · ·
10 1 10 45 120 210 252 210 120 45 · · ·
25 1 30 435 4060 27405 142506 593775 2035800 5852925 · · ·

I Imagine what happens if there is no signal, and every model is
equally likely, which size would we most likely end up with. . .

I The consistency reduces this problem a little, but not by
much. Think about the situation where there is one SNP with
a strong effect. . .



Take home message well beyond MDR

When using cross-validation for model selection, if the number of
models of size M is different for different M, you can use cross-
validation to find the best model of each size, but you cannot use
it to find the best size. You need another test dataset for that!


