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A: Proofs of Asymptotic Normality of the Weighted PPV Estimators

A1: Proof of Theorem 1

To find the asymptotic variance of P̂PVw(y), we apply delta method,
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where (?) holds by equicontinuity of
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A2: Proof of Theorem 2
Observe that Σw is a quadratic function of w,
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which is convex since the coefficient for w is greater than zero. Thus Σw has a minimum and the results follow
from simple algebra.

A3: Proof of Theorem 3
Proof of Theorem 3 follows similar arguments as in proof of Theorem 1 and is thus omitted.
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A4: Proof of Theorem 4
Proof of Theorem 4 follows similar arguments as in proof of Theorem 2 and is thus omitted.

A5: Proof of Theorem 5
Theorem 5 is a result of Delta method and the independence between the pilot cohort study (and ρ̂) with the
case-control sample.

B: Proof of Asymptotic Bias of P̂PVw

B1: Proof of Theorem 6
Let δ = ROC∗{t} − ROC(t) for t = SD̄(y). Since fSD̄(y) →p SD̄(y), we have
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B2: Proof of Theorem 7
Proof of Theorem 7 follows similar arguments as in proof of Theorem 6 and is thus omitted.

C: Illustration Using a Case-Control Example

To illustrate application of our methodology to a case-control data, we use a constructed case-control sample from
the pilot PCA3 data, which includes all cases and an equal number of controls for each population. Specifically,
118 cases and 118 controls from the initial biopsy population are included, as well as 72 cases and 72 controls from

the repeat biopsy population. Define N̂PVw to be the weighted estimator for NPV using specificity at a specific

sensitivity as the bridge between populations and let N̂PV.Aw be the alternative estimator where sensitivity at a
specific specificity is used as the bridge.

To evaluate validity of assumptions for P̂PVw(60), P̂PV.Aw(60), N̂PVw(20) and N̂PV.Aw(20) respectively,
tests are conducted using bootstrap variance estimates for equivalence between the two populations with respect
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Table 1. Comparison of the two strategies for estimating PPV and NPV. Here “Efficiency” is the

ratio of PMSE of the default estimator (P̃PV or ÑPV) vs PMSE of the weighted estimator.

P̃PV(60) P̂PV.Aw(60) ÑPV(20) N̂PV.Aw(20)

Fixed ρ

Weight 1 0.77 1 0.60
Est (95% CI) 0.76 (0.63, 0.86) 0.76 (0.65, 0.84) 0.86 (0.79, 0.91) 0.84 (0.80, 0.88)
Bias - -0.009 -0.001 -0.01
Variance 0.0034 0.0024 0.0009 0.0004
Efficiency∗ 1.00 1.41 1.00 1.80

Estimated ρ

Weight 1 0.88 1 0.58
Est (95% CI) 0.76 (0.62, 0.86) 0.76 (0.64, 0.85) 0.86 (0.78, 0.91) 0.84 (0.78, 0.89)
Bias -0.026 -0.033 -0.0016 -0.002
Variance 0.0038 0.0031 0.001 0.0007
Efficiency 1.00 1.07 1.00 1.63

to (i) sensitivity corresponding to 1-specificity = SD̄(60), (ii) specificity corresponding to sensitivity = SD(60),
(iii) specificity corresponding to sensitivity = SD(20), and (iv) sensitivity corresponding to 1-specificity = SD̄(20).
With respect to above four measures, point estimates in the initial and repeat biopsy populations are (i)
{0.347, 0.315}, (ii) {0.085, 0.097}, (iii) {0.525, 0.486}, and (iv) {0.706, 0.764} respectively. None of the test results
are significant. P-values are 0.759, 0.842, 0.719, 0.539 respectively.

We investigate performance of the four estimators over a series of w varying from 0 to 1. Variance and bias
of the weighted estimators are computed based on 1000 bootstrap samples, where cases and controls are sampled
separately from each population. First, we employ sample disease prevalence from the pilot study as if they were
known. Relative efficiency of weighted estimators versus default estimators in terms of PMSE is plotted as function
of w (Figure 2). The optimal weights that minimize PMSE for estimating PPV and NPV are identified. Observe

that P̂PVw(60) and P̂PV.Aw(60) have similar optimal efficiency, with the latter slightly better. N̂PV.Aw(20) is

slightly more efficient than N̂PVw(20) at optimal weights. When variability in prevalence estimate is taken into
account, the pattern of varying efficiency as weight changes are similar to that when ρ is treated as fixed, but the

maximal efficiency relative to the default estimator decreases (Figure 2). Again, P̂PV.Aw(60) and N̂PV.Aw(20)

achieve similar or slightly larger optimal efficiency compared to P̂PVw(60) and N̂PVw(20).

Results comparing P̂PV.Aw(60) and N̂PV.Aw(20) at their optimal weights and corresponding default estima-
tors are presented in Table 3. For both PPV(60) and NPV(20), the weighted estimate and the default estimate
are pretty similar to each other. When disease prevalence is treated as fixed, efficiency gain based on the weighted
estimator is around 35% for PPV(60) and 86% for NPV(20), which is not surprising given that there are more
subjects in the initial biopsy population. When variability in disease prevalence is taken into account, efficiency
gains using the weighted estimators are around 26% for PPV(60) and 43% for NPV(20).

Next we study robustness of P̂PV.Aw(60) and N̂PV.Aw(20) at their optimal weights to violation from the
assumption, taking variability in ρ̂ into consideration. In Figure 3 we show that in order to cause 5% (relative bias)
over- or under-estimation in PPV(60), how big the difference in 1-specificity corresponding to sensitivity = SD(60)
needs to be between the two populations. Also displayed is the required difference in sensitivity corresponding
to 1-specificity = SD̄(20), in order to cause 5% over- or under-estimation in NPV(20). Note that for PPV(60)
to be over- or under-estimated by 5% using the optimally weighted estimator, 1-specificity corresponding to
sensitivity = SD(60) needs to be smaller by 0.143 or larger by 0.158 in the repeat biopsy population than the
initial biopsy population. These correspond to 0 and 95.9 percentiles in the distribution of the 1-specificity
differences constructed by bootstrap resampling. On the other hand, for NPV(20) to be over- or under-estimated
by 5% by the optimally-weighted estimator, sensitivity corresponding to 1-specificity = SD̄(20) needs to be larger
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Fig. 1. Relative efficiency of the proposed estimator vs default estimator of (a) PPV(60) and (b) NPV(20) as function

of weight.

by 0.186 or smaller by 0.206 in the initial biopsy population than the repeat biopsy population. These correspond
to 99.4 and 4.4 percentiles in the bootstrap distribution of the sensitivity difference. Therefore, it is highly unlikely
that the optimally-weighted PPV(60) or NPV (20) estimator can lead to 5% over-estimation, although there is a
small chance that these estimators could be under-estimated by 5%.
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Fig. 2. Difference in classification accuracy between the two populations to achieve 5% over- or under-estimation

(relative bias) in PPV(60) and NPV(20). The black arrowheads are sensitivities in the initial population corresponding

to 1-specificity = SD̄(20), in order to cause 5% over- or under-estimation in NPV(20) of the repeat biopsy population;

the grey arrowheads are 1-specificities in the repeat biopsy population corresponding to sensitivity = SD(60), in

order to cause 5% over- or under-estimation in PPV(60) of the initial biopsy population.
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