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Circuit Layout and Yield

CHARLES KOOPERBERG

Abstract —In this article the relation between circuit layout and yield is
studied. A well-known yield formula is extended to a more general yield
formula, in which not necessarily every defect is fatal. A defect sensitivity
function is discussed. This function contains, in prineiple, all information
about a chip layout necessary to calculate the yield. The relation between
this sensitivity function and the yield formula is explained. If the defect
size distribution is known the defect sensitivity function can be used to
compute an optimal shrinking factor. An example, in which several defect
size distributions are used, shows that these computations are highly
sensitive for the form of the defect size distribution.

I. INTRODUCTION

INCE the pioneering work of Murphy [1], several

articles have been published on the modeling of the
yield of integrated circuits [2]- —[9]. Most articles deal mainly
with the description of the yield as a function of the area
of the circuit; little attention is paid to the relation be-
tween circuit layout and yield. However, it is clear that not
all defects are fatal to a circuit. Whether a defect is fatal
will, in general, depend both on the type of the defect and
on the layout of the circuit in the area where the defect is
located.

II.  YIELD FORMULAE

Several formulae for the yield, the probability that a
circuit has no fatal defects, are known from literature
[1]-[9]. One of the most popular yield formulae is:

- Y=(+A4D/c)" (1)

where A is the area of the circuit, D the defect density,
and ¢ a parameter. There are two justifications known for
this formula:

a) defects have a tendency for clustering; c is a param-
eter that indicates the degree of clustering [7], [10];
and

b) the defect density differs from wafer to wafer and
from lot to lot; its distribution is (approximately) a
gamma distribution, whose shape is determined by ¢
[11]. .

With ¢ =1, (1) becomes the well-known Seed’s formula [2],
and with ¢ = o, it becomes the Poisson yield formula [1].
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Formula (1) can be extended easily to a more general
yield formula, which takes into account the fact that not
every defect is fatal [12]. Therefore, we shall distinguish the
following two concepts:

1) - defects are local disturbances on the surface of a
wafer, with a supposed random character, for exam-
ple, dust particles; and

2) faults are failures of the circuit, caused by defects.
Not every defect causes a fault. The probability that
two or more defects cause a fault together (but that
none of them causes a fault individually) is ne-
glected.

Typically the layout of a circuit is seen to consist of
several parts, each with its own density of structure (e.g., in
memories there are the peripheral structure and the matrix
of cells). It is intuitively clear that the effect of a similar
defect on the chip is strongly dependent on where the
defect is located. A defect located in a region of the chip
with much detailed structure has a larger probability of
causing a fault than a defect which is located in a region
with less structure. Therefore the chjp will be divided into
J chip regions R, with area 4, (j=1,---, J, Y4;=4),in
such a way that within each Chlp region the densuy of
structure is about constant. It is assumed that within each
chip region R, every defect has a constant probability P,
of causing a fault Chip reglons do not necessarily need to
be connected. For example, in a memory chip one could
define three chip regions: the memory cells, the peripheral
structure, and the area in between the cells.

To incorporate this into (1), further assumptions about
the distribution of the defects have to be made. Viewed in
the light of a) and b) above it does not seem natural to
assume that the presence of defects in different chip re-
gions is independent (which would be computationally
easy). However, it seems more natural to assume that the
distribution of the defects over the whole chip, which is
assumed for (1), is still valid for the whole chip in this
case. Therefore, in (1) 4D is replaced by ¥4 DP; to
incorporate the fact that there are differences between the
chip regions (the “Y”) and that not every defect is fatal
(replacing D by DP;). Formula (1) now becomes

Y= (1+ }:_AjDPj/c)_c. (2)

This formula is only valid for one type of defect. When
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there are N types of defects, this formula becomes

N =<
Y=]] (1+ YADP, /.| . (3)

i=1 J

We replace D and ¢ by D, and c,, since each type of defect
will have a different density, and we replace the P, by P,;
since each type of defect might have a different chance of
causing a fault. The product follows from the fact that a
chip will only work if none of the defect types causes a
fault, and the fact that different types of defects are
assumed to be independent.

Note that from the parameters of (3) only the P;; are

dependent on the circuit layout. We will examine these P, -

more in the following section.

1II. THE DEFECT SENSITIVITY FUNCTION

In this section a defect sensitivity function is introduced.
This function is a generalization of a concept introduced
by Stapper [13] and Maly and Deszczka [14] (further
extended by Maly [15]), and it may also be considered as
an alternative to the fault probability kernel of Ferris-
Prabhu [16]. The defect sensitivity incorporates the in-
fluence of a particular layout on the yield. In particular it
may be used to calculate the sensitivity of a chip design to
defects, and the effect of shrinking.

In the following we assume that all defects can be
treated as circular defects. If we assume that defects of a
certain type i in chip region R; can be considered as the
result of a homogeneous Poisson process on R; we get

P, = P(a defect of type i in chip region R, causes a fault)

= f C>Op (a defect of type i has radius r)
0

f i})(fllDucr) dx} dr
R

. T

A

o

= / p(a defect of type i has radius r)g,,(r) dr
o

o0
= [ h(gy(n)ar (@)
where
F, fault of type i;
D, defect of type i with radius r centered at

point x in R,

P(F,|D,,) conditional probability that a defect
centered at point x in R; will cause a
fault of type i,

1/4; uniform probability density on chip region
R iy

fi(r) dejnsity of the distribution of the radius of
defects of type i, and

8:,(r) probability that a defect with radius r of

type / in chip region R; will cause a fault.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 23, NO. 4, AUGUST 1988

Assume that the conductor is
broken if there is a defect which
covers a fraction ¢ of it
(0<g<1). The defect located at
x causes an error if its radius is
at least d+qw. Thus:

0 r<d+qw
P(F;1Dy)= {l r2d+qw.

Fig. 1. P(F|D,,): the fault type i considered is a break in the

ixr

conductor. The chip region contains a single conductor.

~
8(r)

0 wi2 — wsi2

Fig. 2. The defect sensitivity function g, (r) for a large number of
parallel conductors. The type of fault considered is a complete break of
a conductor (g =1).

The function g, (r) will be called the defect sensitivity
function. It is the fraction of the area of the chip region R;
where a defect of type i with radius r causes a fault.

In some cases it is possible to derive relatively simple
expressions for the defect sensitivity function g, (r) using
the following relation:

g;;(r) = P(a defect of type i and
radius 7 in R, causes a fault)

-,

J

1
A_P(E|Dtxr) dx’ (5)
J
It is reasonablé to assume that when a defect with radius r
which is located at x causes a fault, that a defect of the
same type with radius ' > r at x causes a fault too, and
similarly, if a defect with radius » which is located at x
causes no fault, that a defect of the same type with radius
r’<r at x causes no fault. Thus typically there exists an
r” (depending on i and x) such that

< "
e ©

P(EID.) = {$
See, for example, Fig. 1.

For simple structures and simple types of faults it is
sometimes possible to calculate the defect sensitivity func-
tion directly.

The case in Fig. 2 is well known [13]-[16]. However, it is
also possible to calculate g, (r) in somewhat more com-
plicated structures, e.g., Fig. 3. The computation proceeds
as follows. Fix r. Calculate in which part of the area a
defect, of radius r, if centered there, would cause a fault of
the circuit. In Fig. 3(a) and (b), for example, this means
that a circular defect of radius » would cover the conduc-
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Fig. 3. (a), (b) The defect sensitivity function g, ,;(r) for two simple
patterns. The type of fault considered is a complete break of a
conductor (g =1). The chip region considered is the square with side /.

tor to cause a break (the “dotted” area). Now compute
what fraction of the total area /2 is involved. Repeat this
for all r and obtain g, ; as a function of r. Clearly g, ()
will be 0 for very small r, 1 for very large r, and nonde-
creasing in between.

In Section II we argued that P, is the link between
circuit design and yield. When P, ; is smaller, region R ; of
the circuit is less sensitive for defects of type i. Therefore
P,; can be seen as a measure of the sensitivity of the circuit
to defects of type i in chip region R ; of the design. P,;
depends on the defect size distribution £,(r) and the defect
sensitivity function g; ;(r). Since the size distribution of
the defects is independent of the circuit layout, the defect
sensitivity function contains all the information of a defect
sensitivity measure of the chip layout. This aspect of the
defect sensitivity function deserves more attention. For
example, it might be useful to study how it is possible to
calculate the defect sensitivity function by means of a
simulation program.

IV. OPTIMIZATION OF THE CHIP SIZE (SHRINKING)

It is customary at a certain time in a circuit’s life cycle
to consider the possibility of dimensional shrinkage, i.e.,
reducing-the size of the chip elements by the same factor.

From the previous section it follows that P, ; will in-
crease due to the shrinking (i.e., the size distribution re-
mains the same, but the defect sensitivity function will
increase). On the other hand the area A4 (=X A ;) of a chip
will decrease. The following questions arise:

® “how does shrinking affect the yield;” and
¢ “which shrinking factor optimizes the number of good
dies per wafer (approximately Y/4)?”
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These questions can be answered using the following pro-
cedure:

1) a design of a chip is given, and the features of the
chip which have to be shrunk by a factor f are
chosen;

2) ayield formula is given; among the parameters are
the P, (i=1,---,N, j=1,---,J) and A; (j=
L,---,7);

3) the g;(r) are calculated (or approximated) as a
function of f;

4) using (4) the P, ; can be calculated as a function of
f; and

5) _this gives a yield formula as a function of f. Re-
membering that the total area of a chip depends on
f too, it is now possible to calculate Y/A4 as a
function of f.

V. EXAMPLE

We will now give an example to illustrate points 1-5 of
Section IV.

1) A defect monitor consists of two layers [18] (Fig 4).
The line width in layer I is 2 pm, and the spacing 2.5 pm;
in layer II the line width is 3 pm, and the spacing 2.75 pm.
Four types of defects can be distinguished by electrical
measurements on the defect monitor (N = 4):

1) shorts in layer I;

2) shorts in layer II;

3) breaks in the string of layer II; and
4) shorts between layers I and II.

Because of the length of the “fingers” of the defect moni-
tor, the edge effects can be neglected (we are left with one
chip region: J=1), and it is therefore assumed that both
layers consist of a large number of parallel conductors.

Normally all sizes are shrunk by the same factor, how-
ever, since a defect monitor is mainly one-dimensional, the
length of the fingers is képt constant. Only the line width
and the spacing in both layers are made proportional to a
factor f. The area of the defect monitor now becomes Af.
The insulating area between layers I and 1I is thus also
proportional to f.

Note that for the defect monitor shrinking in the second
dimension would only result in shorter “fingers.” The area
would, therefore, become smaller. However, the defect
sensitivity function would remain unchanged. In the scope
of this paper this is not a very interesting situation.

2) We used yield formula (3):
4
Y=T](+4Dp/c,) “.
i=1

Since the physical interpretation of ¢, is unknown, and this
constant plays no important role in the following, ¢, = o,
for all i, is chosen for computational simplicity. Formula
(3) now becomes

Y = e~ ATRDR,

™
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Fig. 4. The defect monitor. w: line width; s: spacing; /: length.

and consequently, the number of good chips per wafer is
proportional to

Y/f = e ER L, (3)

From the yield data that were available from already
produced monitors, it was possible to estimate D,P,, for
i=1,2,3 and 4.

3) Since it is assumed that the defect monitor consists of
a large number of parallel conductors, it is simple to
calculate the defect sensitivity function for defect types 1),
2), and 3). For defect type 4) it is assumed that each defect
which is in the insulating area between both layers causes a
fault. Therefore g (7, f) = (area where there is a conduc-
tor in both layer I and layer 1I)/4, which is independent
of r and f.

4) The calculations have been carried out for several
different size distributions. One of these distributions is
the size distribution that was used in [16] and [17]:
g O<r<r,

fi(r)= (9)

r2/r, rp<r.
Note that the mean of distribution (9) is 4r, /3 and that it
has infinite variance. When r, is assumed smaller than the
smallest detail, the results of the calculations turn out to be
independent of the actual value of r,.

Because literature from other disciplines [19], [20] sug-
gests that the distribution of the radius of dust or smoke
particles is distributed lognormal, the calculations were
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distribution (eq. 9)
- lognormal (0.5,0.25)
lognormal (0.5, 1.00)

001 0.1

fitr)

0.001

0.00001
7

r(mu)

Fig. 5. Two lognormal densities and the density from (9) compared.

also carried out with lognormal distributions. The density
of the lognormal distribution is

1
fi(r)=;¢[log(r/ﬁ)/v] (10)
with
L
o(x) = NTS e * /% the standard normal density.
a

The mean of this distribution is ﬁe"z/ 2, and the variance is
Bzeyz(ev2 —1). We chose lognormal distributions with mean
0.5 pm and variance 0.25 pm’ and mean 0.5 pm and
variance 1 pm? (compared with line widths of 2 and 3 pm
and spacings of 2.5 and 2.75 pm). In Fig. 5 the densities of
the three distributions that were chosen are compared.
(Note that the vertical axis is logarithmic.) Clearly the
important part to look at are the tails of the distributions.
(Defects with radius 0.1 pm will not do much harm.) The
distribution from (9) has the heaviest tail, while the
lognormal distributions have lighter tails. Heavier tails
correspond to many large defects. It is not clear what the
actual distribution is.

The same size distribution was taken for all types of
defects. In fact not much is known about size distributions.
However, it can be seen from the following results that the
defect size distribution is a very important factor in yield
calculations. Therefore we strongly agree with [18] that the
size distribution of defects is a factor that deserves more
attention.

Using the results of Section V-3 it is now possible to
calculate P, for i=1, 2, 3, and 4.

5) Combining Sections V-2 and 4, expressions for the
yield and Y/f as a function of f are obtained. The results
can be found in Figs. 6 and 7. From Fig. 7 it is easy to
conclude what the optimal shrinking factor (optimal in the
sense that the number of good dice per wafer is maxi-
mized) would be, if the defect size distribution is, ap-
proximately, known. However, from this example it is clear
that this optimal shrinking factor strongly depends on the
defect size distribution. When it is assumed that the defect
size distribution is the one from (9), it would be optimal to
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distribution (eq. 9)
e lognormal (0.5, 0.25)

------ lognormal (0.5, 1.00)

yield

Fig. 6. The yield as a function of shrinking factor f. The factor f is
linear with line width and spacing.

distribution (eq. 9)
e lognormal (0.5, 0.25)
,,,,,, lognormal (0.5, 1.00)

yieldlarea

f

Fig. 7. The number of good dice per wafer as a function of shrinking .

factor f. The factor f is linear with line width and spacing.

shrink the chip further. When the defect size distribution is
a lognormal with mean 0.5 pm and variance 0.25 pm?, the
present dimensions of the chip would be nearly optimat.
However, when the size distribution is lognormal with
mean 0.5 pm and variance 1.00 pm? the conclusion would
be that the chip has been shrunk already too much; the
number of good dice per wafer would increase if the
dimensions of the chip were increased.

It is not our purpose to draw any conclusions from Figs.
6 and 7 about the defect monitor itself. The defect monitor
is a research chip, and the production circumstances were
different each time (this is probably why it seems that it is
optimal to enlarge the dimensions of some details). The
example is only meant to illustrate how the defect sensitiv-
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ity function can be used to calculate an optimal shrinking
factor. However, one thing is clear from Figs. 6 and 7:
depending on the size distribution of the defects we would
draw completely different conclusions.

In this aspect it is good to realize that we could have
“inverted” the computations. Producing defect monitors
with different widths and different spacings, under further
identical conditions, one can make inferences about size
distributions.

VI. SUMMARY AND CONCLUSIONS

We have extended a general known yield formula to a
more comprehensive yield formula which includes the fact
that not every defect is fatal to the circuit.

We discussed a defect sensitivity function, which de-
pends only on the design of the chip. It was explained how
this function is a tool to obtain a measure of the sensitivity
to defects of a chip design. An example was given to
illustrate how the defect sensitivity function can be used to
optimize the sizes of the components of a chip.

It appears that the distribution of the sizes of the defects
is a very important factor in yield calculations. (Very) little
is known about these size distributions. It might be possi-
ble to extract more information about size distributions,
using, for example, defect monitors with different line
widths and spacings.
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