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Abstract: A method of estimating an unknown density function f based on sample data is studied. 
Our approach is to use maximum likelihood etimation to estimate log(f) by a function s from a 
space of cubic splines that have a finite number of prespecified knots and are linear in the tails. The 
knots are placed at selected order statistics of the sample data. The number of knots can be 
determined either by a simple rule or by minimizing a variant of AIC. Examples using both 
simulated and real data show that the method works well both in obtaining smooth estimates and in 
picking up small details. The method is fully automatic and can easily be extended to yield 
estimates and confidence bounds for quantiles. 

Keywords: Density estimation, Exponential family, Splines, Stepwise knot deletion, AIC, Transfor- 
mations. 

1. Introduction 

Consider data that can be thought of as arising as a random sample from a 
distribution having an unknown density. It is common practice to summarize the 
data with such statistics as the sample mean, sample standard deviation and 
sample quartiles. Unless the form of the density is known to be (say) normal or 
exponential, however, it is also very helpful to examine graphical representations 
of the data such as density estimates. 

In a mathematical treatment of density estimation, it is convenient to use 
integrated squared error /(f-f )* as a measure of inaccuracy. But this measure 
does not reliably reflect qualitative fidelity. It is considerably more important that 
a density estimate correctly inform us about some key aspects of the underlying 
density - how many modes are there? how does the density behave in the tails? - 
Consider, for example, the bimodal density function (solid line) in fig. 1. Most 
people would prefer the bimodal density estimate to the unimodal estimate even 
though the integrated squared error of the bimodal estimate is twice that of the 
unimodal one. 
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Fig. 1. Hypothetical true density (solid) and two estimates (dashed and dotted). We prefer the 
dashed estimate, even though the dotted estimate has half the mean squared error. 

Consider the problem of estimating an unknown density function f based on 
sample data. One approach is to estimate I= log(f) by a function of the form 
i= s^ + c(s”), where c(J) is the normalizing constant defined so that / exp( f) = 1 
and the maximum likelihood method is used to choose s^ from a suitably defined 
finite-dimensional linear space S of functions on R. The corresponding density 
estimate f*= exp( I^> is positive and integrates to one. This approach takes ad- 
vantage of the desirable theoretical and numerical properties of maximum-likeli- 
hood estimation of the unknown parameters of an exponential family. 

A well studied space S, is the space of the cubic splines having finitely many 
prespecified knots (de Boor [l]). (A cubic spline is a twice continuously differen- 
tiable, piecewise cubic polynomial and a knot is a location for a possible jump in 
the third derivative of the function.) The resulting models are referred to as 
logspline models. The mathematical theory of statistical inference based in such 
models, contained in Stone ill], is a blend of parametric inference and nonpara- 
metric inference that is referred to as functional inference. 

In order to avoid the introduction of spurious details in the tails of the density 
estimate, we have restricted s^ to the subspace of S, of cubic splines that are linear 
to the left of the first knot and to the right of the last knot. The corresponding 
logspline density estimate is exponential to the left of the first knot and to the 
right of the last knot. The knots themselves have been placed at selected order 
statistics of the sample data, the first knot being placed at the minimum value 
and the last knot being placed at the maximum value. Some preliminary work on 
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the practical aspects of fitting logspline models was described in Stone and Koo 

v21. 
Here, several refinements to logspline density estimation are proposed. In 

section 2 we discuss maximum-likelihood estimation of the unknown parameters 
of the logspline model and in section 3 we discuss a preliminary transformation 
having two free parameters, which are chosen to improve the exponential fit to 
the tails of the data. The important issue of knot placement and knot selection is 
discussed in section 4. First we describe a knot placement rule that depends only 
on the number of knots selected. Then we describe a nonadaptive rule for 
determining the number of knots as a function of sample size, the goal being to 
yield unimodal density estimates about ninety percent of the time when the true 
density function is suitably unimodal. Finally, we discuss an alternative proce- 
dure in which the knots are chosen from a somewhat larger number of potential 
knots by minimizing a variant of AIC. The two procedures can be made fully 
automatic and to yield density estimates that are smooth and yet flexible enough 
to reveal interesting features of the unknown density function that may be 
present. This is demonstrated in the later sections by applying logspline density 
estimation to a variety of simulated and real sets of data. 

The density estimates that have been most heavily studied so far are kernel 
density estimates. When applied to sample data y,, . . . y,, they have the form 

the positive widths w,, 1 I i I n, may or may not vary with i. For an excellent 
and reasonably current discussion of kernel density estimation see Silverman [9]. 
The main issue is the construction of such estimates is the choice of the widths: if 
they are too small, distracting spurious features are introduced; if they are too 
large, important features may be lost. When the widths do not vary with i, it may 
be impossible to choose the common (band)width to be large enough to avoid the 
introduction of spurious features in the tails of the density, but small enough to 
show important features in the central portion. Wand, Marron and Ruppert [13] 
have proposed a remedy for this deficiency in which kernel density estimation 
with a fixed bandwidth is applied after a data-dependent transformation. The 
combined procedure is similar to kernel density estimation with a variable 
bandwidth. O’Sullivan [7] discusses logspline estimates from the perspective of 
penalized likelihood density estimation. 

More details about logspine density estimation can be found in Kooperberg 
[6]. In particular it contains more information about preliminary transformations 
(see section 4) and about numerical aspects of computing logspline estimates. 

2. Logspline models 

Let K denote an integer with K 2 4 and let t,, . . . , t, be a (simple) knot sequence 
in[W; thatissuchthat -CXCO?,< ... < tK -c co. Let S, denote the collection of 
twice continuously differentiable functions s on Iw such that the restriction of s 
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to each of the intervals ( - co, tr], [tr, f3], . . . , [t,_,, fK], [tk, co) is a cubic 
polynomial. We refer to the functions in S, as cubic splines having (simple) knots 
at t ,,“‘, t,. Observe that S, is a (K + 4) dimensional linear space. Let S denote 
the K-dimensional subspace of S,, consisting of functions s E ,S, such that s is 
linear on (-cc, tl] and on [tK, co). Set p = K - 1. Then S has a basis of the 
form 1, B,,. .., BP. We can choose B,, . . . , B,, such that B, is a linear function 
with negative slope on ( - co, tl], B2,. . . BP are constant on (- co, tl], BP is a 
linear function with positive slope on [t,, co), and B,, . . . , Bp_l are constant on 

]tK, 00). 
Let 0 denote the collection of all column-vectors 8 = (8,, . . . ,8,)’ E R P such 

that 0r -C 0 and tIP < 0. Given 8 E 0, set 

c(e) = log 1 exp(V,(y) + . . . +epBpb)) dy 
i i 

and 

f(y; @)=ex~(V,(y)+ _ +e,B,(+c(e)), YER. 

Then /u f( y; 0) d y = 1. Let F(. ; t9), denote the distribution function corre- 
sponding to f(. ; 8). We refer to the identifiable p-parameter exponential family 
f( . ; e), 8 E 0, of positive twice differentiable density functions on R as a 
logspline family. 

For t9 E 0 let I*( a) denote the Hessian matrix of c( 0) at 8, which is the p x p 

matrix having entry i3*c(e)/M, M, in row j and column k for 1 <j, k up. This 
matrix is positive definite, so c( *) is strictly concave on 0. 

Let Y be a random variable having a continuous and positive density function. 
Let Y,, . . . , Y, be independent random variables having the same distribution as 
Y. 

The log-likelihood function corresponding to the logspline family, given by 

0) = Clog(f(Y; e)), e E 0, 

is strictly concave on 0. The maximum-likelihood estimate 8 is obtained by 
maximizing the log-likelihood function. Since the log-likelihood function is strictly 
concave, the maximum-likelihood estimate is unique if it exists. 

Suppose that ( - cc, tl] and [t,, co) each contain one or more observed values 
of Y,,..., Y, and the intervals [t,, t2], . . . , [t,_ 1, tK] each contain four or more of 
these observed values. Then the maximum-likelihood estimate 4 exists. We refer 
to f^= f (. ; 4) as the logspline density estimate. 

3. Maximum likelihood estimation of 0 

Let H(8), 8 E 8 denote the Hessian of c(e), the p x p matrix whose (j, k) 
element is 

a%(e) 
aB,=- / Bj(y)B,b)f(y; 6) dy 

R 

+/&b)fb; 8) dyJB,b)fb; 8) dy. Iw OR 
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Let Y,, _ . . Y, be a random sample of size n from f and let S( 8) be the score 
function; that is, the p-dimensional vector of elements 

gp) = b, - n&(e), 
J J 

where the sufficient statistics 

bJ = cB,(Y;). 

The maximum likelihood 

b ,, . . . b, are defined by 

equation for e^ is S( e^) = 0. Let I( 0) = - nH(8) 
denote the information matrix corresponding to the random sample. The New- 
ton-Raphson method for computing 8 is to start with an initial guess d(O) and 
iteratively determine BCrn) from the formula 

It at some stage 1( 8(m+1)) I /( 8’“)), then dCrn+‘) should be replaced by @,+i) = 
tPm) + al-‘( JCm))S( a’“‘), for some constant (Y E (0, 1). In our implementation 
we choose (Y = 2-k, where k is the smallest positive integer such that 1(&m) + 
2-“I-‘(8(“)) - S(&“))) > I( &“‘)). When 1(8’“‘) is close to 4, the method tends 
to converge very fast. We found the condition that c < 10e6, where 

~ = c (r-y P’)s( 8’“‘))2 
max( ( Qm))‘, 0.0000; 1’ 

yields a workable convergence criterion. In practice, however, the algorithm has 
to be modified slightly because of the requirements that & < 0 and 8, < 0 
(Kooperberg [6]). As starting values we use 6)J”’ = 0 for j = 2,. . . p - 2, while we 
make a rough preliminary estimate of the rate at which f(y) tends to 0 as 
y + + co to obtain initial guesses for e;“‘, 8d?l, and 8:‘. See Kooperberg [6] for 
more details. 

Although it is straightforward to give confidence bounds for the logspline 
density estimates based on the usual asymptotic formula for the standard error of 
a maximum likelihood estimate, we have not done so since we have found 
confidence intervals in density estimation to be of limited value. In particular 
confidence intervals for densities give little information about the shape of the 
density: even when the density estimate is unimodal, the corresponding confi- 
dence bounds will contain bimodal estimates; the reverse will also often be the 
case. 

4. Preliminary transformation 

The tails of the logspline model beyond the extreme knots are exactly exponential 
and the tails are almost exponential close to the extreme knots. The accuracy of 
exponential approximation to the tails of f can be improved by means of a 
preliminary transformation. 
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In the following we assume that Y is a positive random variable that can take 
on arbitrary small values larger than zero. If Y has different properties, for 
example Y > a for some a # 0, YE [a, b], or YE lR without any further restric- 
tions, no transformation or a transformation different from the one discussed in 
this section might be more appropriate. Transformations are further discussed in 
Kooperberg [ 61. 

First, in order to improve the accuracy of the exponential approximation to the 
upper tail of f, we consider choosing the positive power parameter j3 so that the 
conditional distribution of Yp - ap given that Y 2 a is approximately exponen- 
tial. In practice p must be determined from the sample Y,, . . . , Y,. We denote the ,. 
corresponding fitted value by p. We choose a to be the median Y,~. Although one 
could argue that the location of the last mode would be a more natural choice for 
a, we found that this gives no noticeable improvement, while it would require 
estimation of a. The largest observations will be the most influential in estimating 
p regardless of a. 

Let T1),..., q,, denote the increasing order statistics corresponding to 

Y,,..., Y,,. Let m = [(n + 1)/2] denote the greatest integer in (n + 1)/2, so that 
m I (n + 1)/2 < m + 1. A reasonable way to choose fi is by maximum-likelihood 
based on the two-parameter exponential family with the dependence of j.5 = qm, 
on the sample data being ignored. We are led to choosing p based on the data 
Y Y (rn)‘“. (n) to maximize the function 

Observe that 

g’(p) = (ngm) 
i 

l- 
C($, logi??,) - y;pm, log(%J) + Clog(y, ) C(??, - y;pmJ 1 (1) . 

Under the assumption that 0 < qm, < q,,,, it is straightforward to show that 
g”( ,8) < 0 for /? > 0 and hence_ that g’(p) is a strictly decreasing function of 6. 
As p J 0 g’(p) has limit (1 - A/2)X( qi,/q,,), where 

as fi + 00, g( fi) has limit Clog( ~i,/~,,). 
Suppose that 0 < ym, 5 Y(,+i) < q,,,. Then g( fl) is a strictly decretsing 

function of p if 2 2 2 and g( j3) has a unique maximum j? if 2 -C 2. When A < 2 
the numerical value of p is easily found by solving the equation g’(p) = 0 in an 
iterative manner. We refer to p as the maximum-likelihood estimate of the power 
parameter. (When 2 2 2, it is reasonable to consider the logarithmic transforma- 
tion: IV= log(Y) and w = log(Y), 1 I i < n.) Using maximum-likelihood to 
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determine a preliminary power transformation was suggested in part by Box and 
Cox [2]. More information about the maximum likelihood estimation of a power 
parameter can be found in Kooperberg [6]. 

Next, to improve the accuracy of the exponential approximation to the lower 
tail of f, we consider the problem of choosing the power parameter fi so that the 
conditional distribution of logs(l + Y.~/Y) - logp(2), given that Y <y.,, is ap- 
proximately exponential. We can obtain a fitted value B to /3 by applying the 
maximum-likelihood estimate, as just described, to log(1 + Y(,,/Y), 1 I i 5 n. 

Let pi, & > 0. Consider the twice continuously differentiable transformation 
T( .) on (0, cc) defined by 

T(y) = (u - log8’(l + l/4> I u=(y/ys)fl’. 

Observe that T( .) > 0 is strictly increasing on (0, cc). 
Let & be the maximum-likelihood estimate of the power parameter based on 

Y,, . _ . , Y, and let & be the estimate of the power parameter based on log[l + 

(r(,,/r,Pl? 1 - - < I < n. Let ?( .) be defined on (0, cc) by 

f(y) = (U - 1ogq1 + l/u>) I u=(v/v~s)81. 

We refer to ?( .) as the preliminary transformation. 

let .A&x- denote the logspline density estimat? obtained from the random 
sample v = ?( Y,), 1 I i I n using K knots. Let fK denote the density estimate 
given by 

h(Y) = %#-~.Ic(%4~ Y ’ 0. 

We refer to f;r as the logspline density estimate based on Yi, . . . , Y,, K knots and 
the preliminary transformation. 

Let a denote the constant negative slope of B, to the left of the minimum 
knot. Then af?i is the constant slope of log(j,,) to the left of this knot. The 
limiting behavior of f;,(y) as y JO is as follows. 

(0 &<l, 

0 &=l and a&8i>l, 

limf;,(y)=( CE(O, co) (1) 
.v 1 0 

A=1 and a&,&=1, 
,. ,. n 

cc p,= 1 and a&B, < 1, 

(00 &j2) 1. 

It is ea:iLy seen that if &(y) has a finite positive limit as y JO (that is if & = 1 
and a&B, = l), then fz( v) + 0 as y J 0. 

5. Knots 

Choosing the knots is the main problem in fitting logspline models; it is 
comparable to choosing a kernel-width in kernel density estimation. In choosing 
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the knots there are two main issues: 
_ How many knots should be used? 
_ Where should the knots be placed? 
Although these issues are clearly related, they will be treated independently in the 
following sections. 

5.1. Knot placement 

The following features have arisen out of experience in fitting logspline 
models: 

_ there should be a simple and automatic knot selection rule; 
_ knots should be placed at or near selected order statistics; 
_ the corresponding indices should be approximately symmetrically distributed 

about (n + 1)/2; 
_ there should be knots at the first and last order statistics; 
_ the pattern of extreme knots should be approximately independent of sample 

size; 
_ the middle knots should be approximately at equally spaced indices. 
Some of these features appeared to be particularly desirable when we were 
interested in using logspline estimates for obtaining confidence bounds for 
extreme quantiles. In particular it appeared necessary to have a second large knot 
relatively close to the largest knot to obtain confidence bounds for extreme 
quantiles that both give reasonable coverage and are not extremely large (see also 
Breiman, Stone and Kooperberg [3]). 

Let K denote the number of knots. The knot placement will be determined by 
asequenceofnumbersr,,...,r, suchthatl<r,< *.a <r,<n.Letl<k<K 
and let m denote the greatest integer in r,, so that m I r, < m + 1. Then the k th 
knot will be placed at 

(m + 1 - 5J_J+,, + (rk - ++,+i). 

(In particular if rk = m, the k th knot is placed at y(,,.) 
Our symmetry condition is that 

r, + r,+,-k = n + 1, l<krK, 

which implies that 

‘k+l - rk = rK+l_k - rK_k, l<k<K. 

In order that there be knots at the first and the last order statistics, we choose 
r, = 1 and rK=n. 

Set g, = rk+, - rk for 1 I k I K - 1. In order to satisfy the remaining features, 
we ended up by requiring that 

gk=4.[(4-E)v1]...:[(4-(k-1)+1], l<k<K/2, 

where c E R; here a v b = max( a, b). The constant 6 is determined as follows: if 
K is an odd integer, then 2rCK+1j,2 = n + 1; if K is an even integer, then 

‘K/2 + rK/2+1 = n + ‘. 
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We will now give two examples of our knot placement rule, in which rk has 
been rounded off to the nearest integer. 

Example 1. n = 150, K = 7 and e A .1881. The rounded-off values of rk are as 
follows: 

k12 3 4 5 6 7 
r, 1 5 20 75 131 146 150 

Example 2. n = 500, K = 10 and E A .5300. The rounded-off values of rk are as 
follows: 

k 1 2 3 4 5 6 7 8 9 10 
rk 1 5 19 60 158 343 441 482 496 500 

The knot-placement rule described in this section will be employed from now 
on. 

5.2. How muny knots? 

Choosing the number of knots is like selecting a bandwidth: too many knots 
leads to a noisy estimate; too few knots gives an estimate that is overly smoothed 
and thereby missing essential details. Our point of view in making this choice is 
that the most desirable quality of a density estimate is that it correctly inform us 
about key aspects of the true density, such as the number of modes. 

Define a density f on (0, cc) to be (at least) bimodal if there exist positive 

numbers Y,, y2, y3 in strictly increasing order such that f( y2) <f ( yl) and 
f ( y2) < f ( y3). Otherwise f is, unimodal. For numerical convenience, we classify a 
logspline density estimate f, on (0, cc) to be (at least) bimodal if there exist 
positive numbers yi, y2, y, in strictly increasing order such that &( y2) < 
0.99fi( yl) and f& y2) < 0.99fi( y3) and as unimodal otherwise. (Due to the 
nature of logspline density estimation, this classification is rarely effected by 
changing .99 to some other value slightly less than 1.) 

Let f, denote the logspline density estimate based on Y,, . . . , Y,, K knots and 
the preliminary transformation. Let pr K,n denote the probability that f;c is 
unimodal when f is the common density of Y,, . . . , Y,. Presumably, pr K n is a 
decreasing function of K. If f is a unimodal density, we would like p,,;,,,’ to be 
close to one. If f is not a unimodal density, we would like P,,~,~ to be close to 
zero. Given a unimodal f and n, let Kf,n be the maximum value of K such that 
pr K,n 2 .9. The number of Kr,, depends mildly on the choice of f. To obtain a 
specific number of knots for each given sample size, we let f be the gamma(5) 
density defined as the density of CZX, where X, are 5 independent random 
variables having the same exponential distribution. We write K/,. for this choice 
of f as K, and refer to the dependence of K,, on n as the knot-number rule. 

Explicit (approximate) values of KR can be obtained by Monte Carlo simula- 
tion and numerical computation of f,. We have carried out simulations of size 
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1000, and rounded the results to nice numbers: 

60-124 125-199 200-349 350-499 500-650 
:n 6 7 8 9 10 

The values of K, in the above table give a reasonable number of knots to be 
used in logspline density estimation when not enough computing power is 
available to use knot deletion as described in the next subsection. We have tested 
the table on a wide range of gamma and lognormal distributions and found that 
the probability of bimodality rarely rose above .2 or fell below .05. When the 
underlying density function is believed to be particular irregular (smooth), 
however, it would be appropriate to use more (less) than K, knots. 

5.3. Stepwise knot deletion 

Instead of using a fixed number of knots, determined by the knot-number rule 
described in the previous section, we can start out with a larger number of knots 
and then remove those knots that appear to be inessential for the given data. 

For 1 <j up, let B, be written in terms of the truncated power basis as 

Bj(Y) =‘j+‘,,Y+ C’,,(Y -t,):. Then 
k 

for 1 I k I K. Correspondingly, +k = A’# and 

for 1 I k I K. 

Consider t, and t, as being permanent knots and t,, 2 I k I K - 1, as being 
nonpermanent initial knots that may be deleted and consider stepwise knot 
deletion among the non-permanen! initial knots. At any step we delete that knot 
having the smallest value of 1 +k I/SE( +k). In this matter, we arrive at a 
sequence of models indexed by m, which ranges from 0 to p - 3; the m th model 
has p - m free parameters. Let fm denote the loglikelihood function for the m th 
model evaluated at the maximum-likelihood estimate for that model. Let AIC,,, 
= - 2[, + a( p - m) be the Akaike Information Criterion with parameter penalty 
(Y for the m th model. We choose the model corresponding to that value rSi of m 
that minimizes AI&. This model has K - & knots and p - h free parameters. 
We choose (Y = 3 since, for this value of OL, the probability is about .l that f is 
bimodal when f is a gamma(5) density and it is also about .l when f is the 
lognormal density defined as the density of exp( Z/2), where Z has the standard 
normal distribution. (The more traditional value of LY = 2 leads to spurious modes 
in the estimate with high probability, presumably because (Y = 2 corresponds to 
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minimizing mean squared error, which is a dubious criterion in the context of 
density estimation (fig. 1). Schwarz [S] recommended using (Y = log( n ) in a 
context in which one of the fitted models is exactly valid. So far, there is no 
theoretical justification for choosing (Y = 3 or, more generally, for choosing (Y 
independently of n .) 

The idea of using stepwise knot deletion in the context of nonparametric 
regression is due to Smith [lo]. 

6. Simulated examples 

6.1. Unimodal examples 

Figures 2 and 3 contain examples involving exponential, half-normal, gamma(5) 
and log-normal distributions. The random variable 1 Y 1 has a half-normal 
distribution if Y has a normal distribution; Y = C:X; has a gamma(5) distribu- 
tion if X;, 1 I i I 5 are independent random variables having the same exponen- 
tial distribution; and Y = exp( Z/2) has a lognormal distribution if Z has a 
standard normal distribution. From here on we refer to these densities as the 
exponential, half-normal, gamma and lognormal densities respectively. It should 
be noted that the logspline method is scale invariant. 

gamma half-normal 

Fig. 2. Logspline density estimates for datasets of size n = 150 generated from gamma and 
half-normal densities - Solid = real, dashed = knot deletion, dotted = fixed knots. 



338 Ch. Kooperberg, Ch.J. Stone / Logspline density estimation 

lognormal exponential 

0 

0 , 

0 

Fig. 3. Logspline density estimates for datasets of size n = 500 generated from lognormal and 
exponential densities - Solid = real, dashed = knot deletion, dotted = fixed knots. 

We report here results for density estimates based on samples of size n = 150 
and n = 500. The same samples were used for both the procedure with a fixed 
number of knots and the one with stepwise knot deletion. For the logspline 
density estimate with a fixed number of knots we used 7 knots for n = 150 and 12 
knots for n = 500 in accordance with the knot-number rule of section 5.2. For the 
logspline density estimate with stepwise knot deletion we started with 12 knots 
for n = 150 and 15 knots for n = 500. The starting number of knots for logspline 
density estimation with stepwise knot deletion has relatively little influence on the 
final estimate, but it does have a strong influence on the amount of computing 
time. In particular if we choose an exceptionally large starting number of knots 
relative to the sample size, the computing time skyrockets since the log-likelihood 
function is too flat for rapid convergence. 

For both the logspline density estimate with a fixed number of knots and the 
one with stepwise knot-deletion, we carried out the preliminary transformation 
and placed the knots according to the knot-placement rule of section 5.1. The 
placement of the knots in the final estimate (after the knot deletion for the 
stepwise knot deletion estimate) is indicated in the figure: “0” indicates a knot 
for the procedure with a fixed number of knots; “x” indicates a remaining knot 
for the stepwise knot deletion procedure. The solid line indicates the true density 
from which we generated the data, the dashed line is the estimate with stepwise 
knot deletion, and the dotted line is the estimate with a fixed number of knots. 
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In the figures we also provide a kernel density estimate. This estimate is based 
on a very small rectangular window. It is not included as a competitor of the 
logspline estimates, but as a descriptor of the raw data since, particularly for 
n = 150, the differences between the true density and the logspline density 
estimator are due almost entirely to sampling variation that would effect any 
estimate. It is scaled down to one half of its original height to prevent its graph 
from interfering with the other graphs. Although we only present a few (randomly 
selected) simulation examples, we feel that the results are fairly typical of the 
much larger number that we have examined. 

The following numbers of knots remain in the logspline density estimates with 
stepwise knot deletion: 

n = 150 n = 500 

gamma( 5) 
half-normal 

5 
4 

lognormal 
exponential 

4 
4 

The two estimators have similar behavior. Especially for the gamma and the 
lognormal densities, it is clear that the amount of smoothing near the mode of the 
density and the amount of smoothing in the tail seem to be correct. The tails are 
smooth, while the mode has, approximately, the correct width and height. The 
half-normal density for n = 150 is a case where the (apparently) bad fit is due 
more to the sampling than to the form of the estimator. From the rectangular 
window estimator below the other estimators, it would (if one would ignore the 
few observations larger than the 4th tick mark) almost seem more believable that 
these data were generated from a uniform distribution than from a half-normal 
distribution. It is also interesting to note that the number of knots in the final fit 
for the procedure with knot deletion is about the same for n = 150 and n = 500 
and that the procedure with knot deletion always ends up with less knots than the 
procedure with a fixed number of knots (which is not suprising, since the 
remaining knots are placed more efficiently). 

Consider a density f (such as exponential or half-normal) that has a finite 
positive limit at zero. According to (1) the estimate fi has a positive limit at zero 
if and only if & = 1 and a&!& = 1, which happens with probability zero. Thus 
with some probability p, f, has limit zero at zero and, with complementary 
probability 1 -p, fK has limit infinity at zero. As a consequence, & has an 
unstable irregularity that, fortunately, is concentrated on a very small interval 
about 0 (and which is omitted from the plots corresponding to the half-normal 
density in fig. 2, the exponential density in fig. 3 and the suicide data in fig. 7). In 
many practical situations, the behavior of the density estimate very near the 
origin is not of interest. When it is of interest, however, and there is an 
irregularity near the origin, it probably can be reduced by recalculating the 
logspline density estimate under the constraints that & = 1 and a&$, = 1. This 
issue will be investigated in the future. 
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6.2. Bimodal examples 

It is of particular interest to see how a density estimate behaves if the true density 
is of a more complex nature, for example a bimodal density. To investigate this 
we have generated samples from densities of the form f( y; a,, a*, a3) = (1 - 

aMy) + a?O; a2, a3), where g(y) is the lognormal density we used before 

and h(y; a2, a3) is the normal density with mean a2 and standard deviation a3. 
In figs. 4, 5 and 6 we present results for samples of size n = 150 and n = 500 
where (a,, a2, a3) is (.2, 2, .07), (.2, 2, .17) and (.2, 2, .27) respectively. The first 
of these densities is an example with a very sharp second mode, the second one 
has a moderately sharp second mode, while the third example only has a small 
second mode. 

In the picture are logspline density estimates for samples sizes of n = 150 and 
n = 500. The computations and figures are organized in the same way as the 
examples in the previous section. The solid line is the true density, the dotted line 
is the logspline density estimate with a fixed number of knots and the dashed line 
is the logspline density estimate with stepwise knot-deletion. 

The following number of knots remain in the logspline density esitmates with 
stepwise knot deletion: 

density 

a3) = (.2, 2..07) 
:I:: z:: a3) = (.2, 2..17) 

(ai, a2, a3) = (.2, 2..27) 

figure 

fig. 4 
fig. 5 
fig. 6 

n = 150 n = 500 

6 9 
6 8 
7 7 

In the bimodal examples with n = 500, the main difficulty lies in estimating the 
secondary mode when it is relatively sharp (fig. 4). The logspline estimate with a 
fixed number of knots substantially underestimates the height of this mode. The 
method with knot deletion does a much better job: the estimated height differs 
significantly from the true height in both examples, but the estimate with the 
small rectangular window below suggests that the differences are due almost 
entirely to sampling variation that would effect any estimate. It is our experience, 
based on the examination of many more examples, that the differences between 
the height of the secondary peak as estimated by the logspline method with knot 
deletion and the true height of the mode is almost entirely due to such sampling 
variation. (Note that the number of observations contributing to the secondary 
peak is approximately binomial with parameters n = 500 and p = .2; even a 
window estimate with a fairly small bandwidth reduces the height of this mode 
somewhat when it is as sharp as in this example.) 

The results for the relatively small sample size of n = 150 are quite different. 
Here there is a significant difference between the performance of the two density 
estimates. The logspline density estimate with a fixed number of knots clearly 
does not have sufficient flexibility to pick up the second mode correctly. Some- 
times it misses the mode completely (fig. 5, left), while in all other cases it 
estimates a second mode which is considerably too wide. The method with 
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n=150 n=500 

0 
I I I 

0 

r 

Fig. 4. Logspline density estimates for data generated from a bimodal density with a sharp second 
mode (.2, 2, .07) - Solid = real, dashed = knot deletion, dotted = fixed knots. 

n=150 n=500 

Fig. 5. Logspline density estimates for data generated from a bimodal density with clear second 
mode (.2, 2, .17) - Solid = real, dashed = knot deletion, dotted = fixed knots. 
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0 

n=150 n=500 

0 

0 

Fig. 6. Logspline density estimates for data generated from a bimodal density with small second 
mode (.2, 2, .27) - Solid = real, dashed = knot deletion, dotted = fixed knots. 

stepwise knot deletion does a much better job. In these examples it always picks 
up the second mode (although we have found that it misses it sometimes too, 
especially when the second mode is small). It also does a good job of estimating 
the locations of the modes, the heights of the modes, and the general shape of the 
density. 

To get a better idea about the performance of logspline density estimation in 
the case of a bimodal distribution, we carried out a small simulation in which 100 
datasets of size 150 and 100 datasets of size 500 were generated from each of the 
three bimodal densities used in our examples. For each of these samples we 
computed the logspline density estimate with a fixed number of knots and with 
knot deletion. We then counted how often the estimate was, incorrectly, uni- 
modal. The results can be found in the following table: 

n = 150 n = 500 

density knot deletion fixed knot knot deletion fixed knot 

;:;: :;; a,) as) = = (.2, (.2, 2..07) 2..17) 1: 30 16 0 0 0 0 
(ai, a2, a,) = (.2, 2..27) 43 51 12 14 

The density estimates are highly correlated: that is, the probability that both 
estimates are bimodal is larger than the product of the individual probabilities. 
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These results are in agreement with the examples. For n = 500 there appears to 
be little difference in the ability of the two methods to detect bimodalities, while 
for n = 150 the estimate with knot deletion is considerably better in detecting 
bimodalities than the one with a fixed number of knots. 

7. Real examples 

In fig. 7 we show a few density estimates based on real data, one widely used in 
the literature, while the others have been provided to us by two colleagues. 

The data for the left top plot of fig. 7, which is labelled “suicide”, consist of 86 
spells of psychiatric treatment undergone by patients used as controls in a study 
of suicide risks reported by Copas and Freyer [4]. The data are used extensively in 
Silverman [9] and they are also used by Wand, Marron and Ruppert [13]. The 
logspline density estimate with a fixed number of knots has 5 knots, the one with 
stepwise knot deletion has 4 of the original 11 knots left in the final estimate. The 
estimates are comparable to those reported by Wand et al. 

The data for the right top plot of fig. 7, which is labelled “boston”, arose in the 
following way. Each of 244 people gave a blood sample and a suitable treated 
fraction of the plasma was subjected to gradient gel electrophoresis and stained 
with a protein stain. The data are diameters (in Angstrom) of the major peak in 
the low-density lipoprotein region, the values being obtained by calibrating a 
densitometric scan. The data for the left bottom plot of fig. 7, which is labelled 
“montreal”, arose in a similar way. Differences between the distributions of these 
two groups are due to the nature (age, sex, health status, etc.) of the two samples. 
This set of data was made available by Dr. Ronald M. Krauss of Lawrence 
Berkeley Laboratory via our colleague Terry Speed. 

The logspline density estimate for boston (n = 244) with a fixed number of 
knots has 8 knots, the one with stepwise knot deletion has 7 of the original 13 
knots left in the final estimate. Here the method with knot deletion clearly seems 
to do a better job than the one with a fixed number of knots. Looking to the 
rectangular window estimate, it seems that the mode, as detected by the method 
with stepwise knot deletion is actually there. The method with a fixed number of 
knots is unimodal. 

The logspline density estimate for montreal (n = 684) with a fixed number of 
knots has 11 knots, the one with stepwise knot deletion has 8 of the original 16 
knots left in the final estimate. Here the difference between the 2 estimates seems 
to be marginal. The size of the small side mode is the only observable difference. 

The data for the right bottom plot of fig. 7, which is labelled “income”, were 
provided to us by Wolfgang Haerdle. This is a dataset consisting of 7125 random 
samples of yearly net income in the United Kingdome (Family Expenditure 
Survey [5]). 1 (The data have been resealed.) This dataset is considerably larger 
than the other examples that we have looked at. For such a large dataset the 

’ The calculations and investigations were made in close collaboration with the Wirtschaftstheore- 

tische Abteilung II, University of Bonn, Bonn, West-Germany. 
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suicide (n=86) 

100 200 300 400 500 

montreal (n=684) 

240 250 260 270 280 0 1 2 3 

boston (n=244) 

230 240 250 260 270 280 

income (n=7125) 

iox0 .L_ 
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1 I I 

Fig. 7. Logspline Density Estimates for some real datasets dashed = knot deletion, dotted = fixed 
knots. 
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behavior of logspline density estimation is relatively insensitive to the precise 
number of knots. The logspline density estimate with a fixed number of knots has 
15 knots and the one with stepwise knot deletion has 9 of the original 18 knots 
left in the final estimate. The density is clearly bimodal. The two estimates are 
very close, have absolutely no problem at all in picking up the sharp peak, and 
give almost identical estimates of the height of this peak. 

Although this dataset is extremely large, so kernel estimator with a fixed 
window size will provide a reasonable estimate. Specifically, the sharp peak 
requires such a small window size that the rest of the density estimate will be too 
wiggly. Wand, Marron and Ruppert [13] apply modified kernel density estimates 
to this dataset. The modifications involve making a transformation, after which 
they use a global window size. The approach of Wand et al. seems to work as well 
as ours for a dataset of this size, but we have no comparison with their method 
for smaller datasets containing more details than the suicide data. It should be 
noted that the transformations of Wand et al. are specifically developed for 
skewed distributions. Presumably different transformations would have to be 
developed to make their method applicable to other problems. The logspline 
density approach is much directly applicable. 

It seems appropriate here to report how much CPU-time is needed to compute 
logspline density estimates. The times reported below are seconds CPU-time on a 
Spare-station 1 + . The code which was used had not yet been fully optimized, so 
it is likely that faster computations are possible. 

dataset 

suicide 
boston 
montreal 
income 

Fixed Knots 

0.18 
0.24 
0.46 
5.02 

Knot deletion 

1.15 
1.64 
2.88 

12.03 

For comparison, a kernel estimate in 100 points using the default density 
estimation subroutine in S uses about 0.85 seconds CPU-time for income on the 
same machine. 

8. Conclusions 

Our examination of figs. 2 through 7 (and many other similar figures) has 
convinced us that the logspline density estimate with stepwise knot deletion gives, 
automatically, a good density estimate, even for sample sizes as small as 80. The 
density estimate is smooth, but it also picks up those details and irregularities 
that seem real to the density underlying the data. Although we have not discussed 
any smaller datasets in this paper, we have found that even for sample sizes as 
small as 50 the logspline density method gives decent results. We have not tried 
our method on datasets of sample size less than 50. 

The logspline density estimate with a fixed number of knots, performs nearly 
as well as the one with knot deletion when there are at least 400-500 observa- 
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tions. Since the method with a fixed number of knots uses less computing time it 
may be preferable for large datasets. 

Our experience is that, in general, the spline underlying the density estimates 
needs about 1.5 knots close to a second mode to pick up that mode, and about 2 
knots close to that mode to get a good estimate of its shape. For the estimate with 
stepwise knot deletion it suffices that these knot be among the knots in the initial 
estimate - they will rarely be deleted if there is a sizeable second mode. 

The main advantages of logspline density estimation, as presented in this 
paper, are that it is fully automatic and produces good estimates, even for 
somewhat irregular densities. 

Another advantage is that the logspline density estimate is a function of a 
relatively small number of parameters (knots, 6 ‘s), so the density can easily be 
used for other purposes (e.g. bootstrapping or robust regression). 

A further advantage of logspline density estimation is that it can be used in a 
natural way to get estimates and confidence intervals for quantiles. Since log- 
spline density estimation yields a smooth (functional) estimate of the density, it 
yields a smooth estimate of the quantile function too. Standard errors can be 
obtained using classical maximum-likelihood methods. Confidence intervals can 
be constructed using these standard errors and an adaption procedure similar to 
the one described in Breiman, Stone and Kooperberg [3]. 

Simulations show that the size and coverage probabilities of the confidence 
intervals are comparable to non-parametric bounds, where the non-parametric 
bounds exist, and they extend further in the tail, although for quantiles very far in 
the tails ( p = .1/n) there are better methods available, which are discussed in 
Breiman, Stone and Kooperberg [3]. 

A minor disadvantage of logspline density estimation is that it is somewhat 
computer intensive. However with the increased availability of fast computers, we 
believe that this will not be a serious problem. 

There is potential for further improvement to logspline density estimation and 
it would be worthwhile to compare this method with other methods, especially 
with the various forms of kernel density estimation. In the mean time, logspline 
density estimation, as presently constituted, works well enough to be useful as a 
data analytic tool. To this end, we intend to make the procedure publicly 
available as an “S” function and as a fortran subroutine. 
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