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Linear splines and their tensor products are used to estimate the conditional log-hazard function based on possibly censored, positive
response data and one or more covariates. An automatic procedure involving the maximum likelihood method, stepwise addition,
stepwise deletion, and the Bayes Information Criterion is used to select the final model. The possible models contain proportional
hazards models as a subclass, which makes it possible to diagnose departures from proportionality. Cubic splines and two additional
log terms are incorporated into a similar model for the unconditional log-hazard function to allow for greater flexibility in the extreme

tails. A user interface based on S is described.
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1. INTRODUCTION

Consider data involving a positive response variable that
may be (right-) censored and one or more covariates. We
think of the original, uncensored response variable as having
a conditional density function given the values of the co-
variates that is positive on [0, oo ). The hazard function and
its logarithm corresponding to this density function are re-
ferred to as the conditional hazard function and the condi-
tional log-hazard function.

A basic assumption of the proportional hazards model
(Cox 1972) is that the conditional log-hazard function is an
additive function of time and the vector of covariates or,
equivalently, that the conditional hazard function is a mul-
tiplicative function of time and the vector of covariates. One
of the main purposes of the present investigation is to develop
a practical approach to modeling the conditional hazard
function that does not depend on the validity of this as-
sumption.

In this article we describe a general framework for mod-
eling the logarithm of the conditional hazard function with
linear models. The maximum likelihood method is used to
estimate the unknown parameters of the model. We describe
a fully automatic method involving stepwise addition, step-
wise deletion, and the Bayes Information Criterion (BIC)
for selecting the final model in a family of allowable spaces.

We then describe particular families of allowable spaces
corresponding to HARE (hazard regression) and HEFT
(hazard estimation with flexible tails). In HARE, linear
splines and selected tensor products are used to estimate the
logarithm of the conditional hazard function. The method
is similar in spirit to MARS (Friedman 1991). One advan-
tage of HARE models is that they include proportional haz-
ards models as a subclass. The presence or absence of inter-
action terms between covariates and time in the final model
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can in fact be regarded as a check on the proportionality of
the underlying hazard model.

In HEFT, the unconditional log-hazard function is esti-
mated using cubic splines. To allow for greater flexibility in
the extreme tails, two additional log terms are incorporated
into the fitted model for the log-hazard function. With these
log terms, HEFT can fit Weibull and Pareto distributions
exactly. In the analysis of survival data with covariates, HEFT
is useful as a preprocessor for HARE.

To evaluate this combination of HEFT and HARE, we
apply it to various data sets that have been studied in the
literature. The combined procedure appears to be a prom-
ising tool in survival analysis.

Under suitable conditions, Kooperberg, Stone, and
Truong (1995) obtained the L, rate of convergence for a
nonadaptive version of the methodology treated in this ar-
ticle. This result lends theoretical support to HEFT and
HARE and, in particular, to the use of polynomial splines
and their tensor products in defining the allowable spaces
used in these procedures.

Traditionally, in the proportional hazards model and in
some other survival analysis models, the dependence of the
survival time on the covariates is modeled fully parametri-
cally, so that this regression function can be estimated in-
dependently of the baseline hazard function (see, for ex-
ample, Cox and Oakes 1984, Kalbfleisch and Prentice 1980,
and Miller 1981). Typically, the baseline hazard function is
not estimated at all, but sometimes it is modeled paramet-:
rically. In particular, Etezadi-Amoli and Ciampi (1987) used
polynomial splines to model this function.

Within the framework of the proportional hazards model,
there have been a number of papers in which the dependence
of the survival time on the covariates has been modeled by
means of various nonparametric techniques, with the base-
line hazard function being ignored. In particular, Hastie and
Tibshirani (1990) and O’Sullivan (1988a) used smoothing
splines, Sleeper and Harrington (1990) used B splines, and
LeBlanc and Crowley (1992) used a regression tree algo-
rithm. Hastie and Tibshirani (1993) introduced varying-
coefficient models. In the context of survival analysis, this
allowed them to fit an additive model with time-varying coef-
ficients of the covariates. Gray (1992) used smoothing splines
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and allowed time-varying coefficients and some interaction
terms. '

The discussion section of Abrahamowicz, Ciampi, and
Ramsay (1992) contains a good review of many of the papers
on the use of splines to estimate density and hazard functions
in the presence of censored data. These papers typically fall
into two groups: those using smoothing splines or similar
procedures (including Anderson and Senthilselvan 1980,
O’Sullivan 1988b, Senthilselvan 1987, and Whittemore and
Keller 1986), and those using polynomial splines (including
Abrahamowicz et al. 1992, Efron 1988, Etezadi-Amoli and
Ciampi 1987, and Kooperberg and Stone 1992). O’Sullivan
(1988b) is the only one who directly modeled the log-hazard
function. Gu (1991) presented an asymptotic analysis of the
hazard estimate of O’Sullivan ( 1988b) that is different from
the analysis of Cox and O’Sullivan (1990). Kooperberg and
Stone (1992) modeled the log-density function. Most of the
other authors modeled either the density function or the
hazard function itself.

2. LINEAR MODELS FOR THE CONDITIONAL
LOG-HAZARD FUNCTION

Let M be a nonnegative integer and let 7 be a positive
random variable whose distribution may depend on M co-
variates x;, ..., Xy ranging over the subsets %, ..., Xy,
of R, each of which contains at least two members. Then x
=(x,...,Xxp)rangesoverthe subset 26 = 26; X « « « X X,
of R™. Let f( - | x) denote the dependence on x of the density
function of 7', which is assumed to exist and be positive on
[0, o). (If M = 0, then f(- |x) = f(+).) Because in typical
practical applications with A > 0, x|, . . ., x)s are possible
values of random variables, we refer to f(- |x) as the con-
ditional density function of 7 given x. Let F(- |x), (- |x)
and «( - | x) denote the corresponding conditional distribu-
tion function, hazard function, and log-hazard function.

Observe that

F(tlx)=f0f(u|x) du,

Alx) = T{(_Ii‘l()z‘—l)x_) (1)
and
a(t]x) = log AM(t]x), t=0.
Moreover,

1 —F(t|x)= exp(—Ltk(ulx)du)

1
=exp(—f exp(a(ulx))du), t=0. (2)
0
Because F(t|x) < 1 for 0 < ¢t < oo and lim,., F(t|x) =1,
we conclude that f(', exp(a(u]x)) du < oo for 0 <t < o
and that [ exp(a(t|x)) dt = co. Furthermore, A(¢|x)
= exp a(t|x) for t = 0, and
0

1t1%) = expateixexp( - [ exp(aul)) du),

t=0. (3)
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In this article we use polynomial splines and selected tensor
products to obtain a linear model for o(¢|x). By modeling
a(t]x), as opposed to A(¢|x), f(¢|x), or F(t]|x), we do not
have to worry about positivity constraints. Also a model for
the log-hazard function leads to a concave likelihood func-
tion, even in the context of right censoring. This is not true,
for example, for a model for the log-density function. Finally,
a proportional hazards model can be written as a linear model
for the log-hazard function; thus by modeling the log-hazard
function, we include proportional hazard models. We refer
to Sections 4-6 for more details about the models for «(?|x).

Let 1 < p < o0, let G be a p-dimensional linear space of
functions on [0, co) X % such that g(- |x) is bounded on
[0, 00) for g € G and x € %, and let By, . .., B, be a basis
of this space. Consider the model

P
a(tlx; B) = 2 B;B;(tx),

=1

t=0, (4)

for the conditional log-hazard function, where 8 = (84, . . .,
B,)T. Given 8 € R” we define A(¢|x; 8), F(t|x; ) and f(|x;
B) by imitating Equations (1)-(3).

3. MAXIMUM LIKELIHOOD ESTIMATION

Consider n randomly selected individuals. For 1 < i < n,
let T; be the survival time, C; the censoring time, and x, the
vector of covariates for the ith such individual and set Y;
=min(7;, C;)and §; = ind(7; < C,). It is assumed that T;
and C; are conditionally independent and that 7" has con-
ditional density function f( - |x) given x. The random vari-
able Y; is said to be uncensored or censored according as §;
= 1 or §; = 0. Note that the partial likelihood corresponding
to Y; = y;, 8;, x;, and B equals [ f(y; |x;; 8)1% [1 — F(y;|x;;
3 1'% (see Miller 1981, p. 16), so the log-likelihood equals

&(yi, 8;1x;3 B) = d;a(y; 1%, 5 B)
37
—fo exp(a(u|x;; 8)) du,

=0 and §,€{0,1}.

Thus the log-likelihood function corresponding to the ob-
served data (Y, 6;, x;), 1 < i =< n, and the linear model for
the conditional log-hazard function that was discussed in the
previous section is given by

1B) =2 (Y, 6i1x:8), BER. (5)

Moreover,

a a
l = Yia 6i i s

l<j<p and BER?
and
a2 92

3808 ' ® = 2 35,95,

(Y., 6; x5 8),

l<j,k<p and BER?
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where

d
.a_ﬁj(b(y’ o|x; B)

y

=6Bj(yIX)—f Bj(u|x)exp(a(u|x; 8)) du,

0
l<j<p, y=0 and d€{0,1},

and

2

36,96

&y, 0|x; B)

34
:_fo By(ul%) Be(ulx)exp(a(ulx; B)) du,

l<j,k=<p, y=0 and 6€{0,1}.

It follows from the last result that ¢(¢, 6|x; - ) is a concave
function on R? for t = 0, § € {0, 1}, and x € % and that
/(B) is a concave function on R” (see Cox and Oakes 1984,
p. 97).

The maximum likelihood estimate £ is given as usual by
B8 = maxg/(8), and the log-likelihood of the model is given
by / = I(8). The corresponding maximum likelihood esti-
mates of the conditional log-hazard function, hazard func-
tion, density function, and distribution function are given
by &(t|x) = a(t|x; B), A(t|x) = A(t|x; B), and so forth.

Let S(B) denote the score at 8 (i.e., the p-dimensional
column vector with entries 8/(8)/38;), and let H(8) denote
the Hessian at 8 (i.e., the p X p matrix with entries 3%/(8)/
8B,08x). The Newton-Raphson method for computing gis
to start with an initial guess 8® and iteratively determine
8D from 8™ according to the formula

B = § — [H(B™)]7'S(B™).

Here we use the Newton—-Raphson met}}od with step-halving,
in which 8¢"*" is determined from 8 (™ according to the
formula

B = B — 2 HH(B™)]T'S(B™),
where yu is the smallest nonnegative integer such that

1B — 27 [H(B )] 'S(B™))
= (B = 27! [H(B™)]'S(6™)).

We stop the iterations when /(8 "* 1) — I(8 ") < ¢, where
e= 107,

4. MODEL SELECTION

When modeling the log-hazard function with a linear
model (4), the remaining issue to be resolved is the choice
of G. In this section we describe an algorithm for determining
G in an adaptive fashion. This algorithm is a hybrid of well-
known stepwise addition and stepwise deletion procedures
in multiple regression and generalized linear models, where
each regression model can be viewed as an element of a
linear space spanned by the potential predictors. From this
viewpoint, we define a family of allowable spaces § that may
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be considered during model selection. This family § of al-

lowable spaces is assumed to have the following properties:

» Each G € ¢ is a linear space having dimension p = ppin.

» There is only one G € § with dimension p,,;,.

« If G € § has dimension p > pnin, then there is at least
one subspace Gy € ¢ of G with dimension p — 1.

« If Gy € § has dimension p, then there is at least one
space G € ¢ with dimension p + 1 and containing G,
as a subspace.

We refer 10 Gmin € § with minimal dimension pp,;, as the
minimal allowable space. In the context of multiple regres-
sion and generalized linear models, the space G is a linear
space spanned by candidate predictors, with G;, being the
space of constants, and it typically is obvious which variables
can be added and deleted. But it is more complicated in our
situation. In the next two sections, we give two specific con-
structions of allowable spaces, which subsequently pro-
vide a complete description of HARE (Sec. 5) and HEFT
(Sec. 6).

Initially, we use the minimal allowable space to model
a(t|x). Then we proceed with stepwise addition. Here we
successively replace the (p — 1)-dimensional allowable space
G, by a p-dimensional allowable space G containing G, as
a subspace. Where for multiple regression it is possible to
evaluate candidates for a new basis function by recomputing
the fit, in our context this would be too computationally
demanding to be practically useful. Therefore, we choose
among the various candidates for a new basis function by a
heuristic search designed approximately to maximize the
absolute value of the corresponding Rao statistic. This is
similar to what is sometimes done for generalized linear
models (see, for example, the function step.glmin S and
the discussion in Chambers and Hastie 1992, p. 235).

Specifically, let §© be the maximum likelihood estimate
of the coefficient vector 8 = (B, . . ., 8,) T corresponding to
G, but subject to the constraint that the estimate of the con-
ditional log-hazard function be in Gy, and let 3, be the coef-
ficient of the basis function added in going from Gy, to G.
Then the Rao statistic for testing the hypothesis that the
conditional log-hazard function be in G, is given by R
= [S(B)1,/ VT (B®)],,, where 1(8©) = —H(8)
with S(-) and H(-) corresponding to G. (Here R is the
signed square root of the Rao statistic as usually defined; see
Rao 1973, 6e.3.6). :

Upon stopping the stepwise addition stage according to a
rule described in Section 11.4, we proceed to stepwise dele-
tion. Here we successively replace the p-dimensional allow-
able space G by a (p — 1)-dimensional allowable subspace
Gy until we arrive at the minimal allowable space, at each
step choosing the candidate space G so that the Wald statistic
for a basis function that is in G but not in Gj is smallest in
magnitude. As was the case during the stepwise addition
stage, we do not refit the model for each basis function that
is a candidate to be dropped, because this would be com-
putationally infeasible.

Specifically, let 8 = (8, . . ., 8,)7 be the maximum like-
lihood estimate of the coefficient vector 8 = (84, - - ., B,)7
corresponding to G, where §3, is the coefficient of the basis
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function that would be deleted in going from G to G,. Then
the standard error SE(§,) of §, is the positive square root of
the pth diagonal entry of [I(8)]~' = —[H(8)] ", with H(-)
corresponding to G, and the Wald statistic for testing the
hypothesis that the conditional log-hazard function is in G,
equals 3,, / SE(@,). Note that the Wald statistic used during
the stepwise deletion stage and the Rao statistic used during
the stepwise addition stage test the same hypothesis, but the
Wald statistic is based on the maximum likelihood estimate
corresponding to G, whereas the Rao is based on the max-
imum likelihood estimate corresponding to Gg.

During the combination of stepwise addition and stepwise
deletion, we get a sequence of models indexed by » with the
vth model having p, parameters. Let /, denote the log-
likelihood of the »th model, and let

AIC,, = —2[, + ap, (6)

be the Akaike information criterion (AIC) with penalty pa-
rameter a for this model. We select the model corresponding
to the value v of » that minimizes AIC,, . In light of the work
of Kooperberg and Stone (1992) and our experience in the
present investigation, we recommend choosing a = log » as
in BIC due to Schwarz (1978). ( The interface described in
Sec. 7 allows the user to specify the penalty parameter.)

5. THE HARE MODEL

In this section we describe the family of allowable spaces
for HARE and the corresponding basis functions. The HARE
model involves splines and selected tensor products. To avoid
numerous numerical integrations with respect to ¢, we con-
fine our attention to linear (rather than quadratic or cubic)
splines. In the present context, it is convenient to define an
allowable space by listing its basis functions.

Let K, be a nonnegative integer; if K, = 0, then there are
no basis functions depending on ¢; if K, > 1, then let ¢, for
1 < k < K, be distinct positive numbers and consider the
basis functions By (1) = (& — t), for 1 < k < K, where ¢,
= max(¢, 0). Next, for | < m < M, let K,, be an integer
with K,,, = —1; if K,,, = —1, then there are no basis functions
depending on x,,,; if K, = 0, then consider the basis function
B,0(x) = x,n; and if K,,, > 1, then consider the basis function
Bo(Xn) = X, let x,, for 1 < k < K,,, be distinct real num-
bers, and consider the additional basis functions B,,,.(x,,)
= (X — X ) forl =k < K,.

Let G be the linear spacing having basis functions 1, By (?)
forl =k <Ky, Bpu(xm)forl =m=<Mand0 <k <K,,
and perhaps certain tensor products of two such basis func-
tions. It is required that if B,,;( x,,,) Box(?) is among the basis
functions for some j = 1, then B,,o(Xx,)Box(t) = XmBox(t)
must be among the basis functions. Similarly, it is required
that if B;;( x;) By (X, ) is among the basis functions for some
Jj =1, then By(x)) Byx(xm) = X1Bux(Xn) and hence x,x,,
must be among the basis functions.

It is easy to check that the collection § of such spaces
satisfies the properties listed in Section 4. In particular, the
minimal allowable space G, for the HARE model is the
space of constant functions. Thus the minimal model for
(4Yhasp=1,B, =1, and
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a(t]B8) = a(t|x; B) = B,

so that « does not depend on ¢ or on the vector x of covariates.
The corresponding conditional distribution of T given x is
exponential with mean exp(—g8,;), which does not depend
on x.

If none of the basis functions of G depends on both ¢ and
x, then (4) is a proportional hazards model (Cox 1972). It
is a particular interesting feature of the HARE model that
the model selection procedure described in Section 4 may
or may not result in a proportional hazards model. If any of
the basis functions in the final model depends on both time
and a covariate, then a proportional hazards model might
not be appropriate.

Given the basis of an allowable space G as defined earlier,
it is obvious whether any given basis function can be deleted
in one step.

t=0,

Example. Let M = 3. Then the following six basis func-
tions span an allowable space G: B, = 1, B, = (1 — t),, B;
=Xy, B4 = (x; — 6)+, Bs = x, and Bg = x;(1 — t),. In this
example, By, Bs, or Bg could be removed and the remaining
space would still be allowable. But if one of the basis functions
B, or B; were removed, then the remaining space would not
be allowable, because it would still contain Bg = B, B;. The
constant basis function B, can never be removed.

Let Gy be the allowable space having basis functions 1,
By(t)forl =k <Ky, Bpu(xp)forl =m=Mand 1 <k
< K,,,, and perhaps certain tensor products of two such basis
functions. To decide which basis function to add to this
model, we compute the Rao statistic as described in Sec-
tion 4.

a. for all spaces that can be obtained from G, by adding
a basis function By (x;) = x;t0 Gy

b. for all allowable spaces that can be obtained from G,
by adding a basis function to G that is a tensor product
of two basis functions B;;( x;) and B, (x,), ! # m, that
are in Gy

c. for a space that can be obtained from G, by adding a
basis function based upon a potential new knot in time,
located using the algorithm described in Section 11.3

d. for a space that can be obtained from G, by adding a
basis function based on a potential new knot in co-
variate m for 1 < m < M, located using the algorithm
described in Section 11.3.

As the new space G, we choose the one corresponding to
the largest absolute value of the Rao statistic among those
candidates listed previously that are nonvacuous.

Example (continued). Corresponding to a, we can add
the basis function x;3 to the space in the foregoing example.
Corresponding to b, we can add By B, = (1 — 1).(x; — 6).4,
B>Bs = (1 — t),x,, or B3Bs = x;x, to the space. The basis
function B, Bs = (x; — 6). X, cannot be added, because the
resulting space would not contain B; Bs = X, X5, so it would
not be allowable. Corresponding to ¢ and d, a basis function
(1 — t)y with 1, > 0 and 1, # 1, (x; — X1 )+ with x;;, # 6, or
(X2 — X2t )s could be added. No basis function of the form
(x3 — X3¢ )+ could be added before x; is added.
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6. THE HEFT MODEL

In the absence of covariates, (4) reduces to

p
a(t|8) = 2 B;Bi(1), t=0.

J=1

Because estimations and model selection are considerably
easier for this model, it is now feasible to use cubic splines.

A linear space G of functions on [0, oo ) that are piecewise
cubic, have two continuous derivatives and are constant near
zero and in the right tail is defined by a sequence of knots
at which the third derivative may be discontinuous. In par-
ticular, given the integer K = 3 and the sequence ¢, . . ., Ix
with0 <t < +++ <ix< o0, let G be the (K — 2)-dimen-
sional space of twice-continuously differentiable functions s
on [0, o) such that s is constant on [0, ¢,] and on [k, o)
and the restriction of s to each of the intervals [¢,, 5,], .. .,
[tx—1, tx]is a cubic polynomial. The functions in G are cubic
splines having (simple) knots at ¢;, ..., k. Let By, ...,
Bx_, be a basis of this space such that By, = 1 on [0, o)
and By, ..., Bx_3; equal zero on [, co). The collection of
such spaces G forms a family ¢ of allowable spaces for the
basic HEFT model. In particular, if K = 3, then G is the
minimal allowable space Gn;n, which is the one-dimensional
space of constant functions on [0, «), and B, = 1 on
[0, ).

Model selection for the basic version of HEFT is straight-
forward. The first three knots are placed at the quartiles of
the uncensored data. During the stepwise addition stage, as
described in Section 4, new knots are successively added.
The selection of these knots is similar to the selection of a
new knot for HARE, which is described in Section 11.3.
Stepwise deletion for the basic HEFT model is equivalent
to stepwise deletion of knots. The main numerical task of
the HEFT algorithm—the computation of the log-likelihood
1(B8), the score S(B), and the Hessian H( ) for various models
and values of 3—is described in Section 11.2.

A more sophisticated version of the HEFT model is ob-
tained by the inclusion of two extra basis functions. This
adds considerable flexibility to the tails of the fitted distri-
bution. In particular, as we show, inclusion of these two
basis functions makes it possible for HEFT to fit Weibull
and Pareto distributions exactly.

Given a positive number ¢ (which will be defined in terms
of the observed data in a simple manner), set B_,(¢) = log(¢/
(t+ ¢))and By(t) = log(t + ¢) for t > 0. Let G, be the space
G defined earlier and set p = K — 2. Then B_,, By, By, . . .,
B, is a basis of the linear space spanned by Go U {B_;, By }.
The collection & of such spaces G forms the family of allow-
able spaces for the extended HEFT model.

The two log terms in the model for the log-hazard function
are easily motivated. Consider a positive density function f
on (0, co) and let F, &, and a denote the associated distri-
bution function, hazard function, and log-hazard function.
Suppose first that f(¢) ~ at” for t =~ 0, where a > 0 and vy
> —1. Then log f(t) =~ v log t for t =~ 0. Because 1 — F(t)
~ 1 for t =~ 0, we conclude that a(¢) =~ v log ¢ for t = 0.
This motivates the inclusion of the term 8_, B_,(¢) with §_,
> —1 in the model for the log-hazard function.
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Suppose next that f(¢) ~ a exp(—bt”) for ¢t > 1, where a
>0,b>0,and v > 0. Then

1 — F(1) ~ #exp(—bt“’), £> 1,

SO

N2) =~ byt t> 1,

and hence a(t) =~ (v — 1)log ¢ for ¢t > 1. This motivates
the inclusion of the term Gy By (¢) with By > —1 in the model
for the log-hazard function.

Suppose instead that f(¢) ~ at>~! for ¢t > 1, where a, b
>0.Then 1 — F(t) ~ ab~'t™fort> 1,s0 \(t) ~ bt™" for
t > 1 and hence a(t) =~ (—1)log ¢ for t > 1. This motivates
allowing the possibility that 8, = —1 in the model for the
log-hazard function.

Suppose now that K = 3. Thenp =1 and B, = 1, so

a(t; B) = ,(Ldogﬁ + Bolog(t + ¢) + B1, 1> 0.
This three-parameter model, which is the minimal allowable
space for the extended version of HEFT, includes Weibull
and Pareto distributions as special cases. As the default we
chose the shift parameter ¢ to be the upper quartile of the
uncensored data.

Consider first the Weibull density function fgiven by

() = byt 'exp(—bt"),

where b > 0 and v > 0, whose distribution function is given
by

t>0,

F(t) =1 —exp(—bt), (7)

The corresponding log-hazard function is given by «(?) = (v

— 1)log ¢ + log by for t > 0. Thus a(+) = a(-; B), where

B-; = By =+ — 1 and B, = log by. (Alternatively, we can

get the Weibull model by settingc=0,8_,=0,8,=v — 1,

and 8, = log by.)

Consider next the Pareto density function fgiven by
be®

(t + C)b+l ’

t>0.

S = t>0,
where b > 0 and ¢ > 0, whose distribution function is given
by

b
F(t)=1—(L), t> 0. (8)

t+c¢

The corresponding log-hazard function is given by «(t)
=log b — log(t + ¢) fort > 0. Thus «(+) = a(-; B), where
8- =0, 8 = —1, and 8, = log b. (Here we have assumed
that the parameter ¢ of the three-parameter model coincides
with the parameter c¢ of the Pareto distribution; otherwise,
the three-parameter model provides only an approximation
to the Pareto distribution.)

7. USER INTERFACE

Programs for implementing HARE and HEFT as de-
scribed in this article have been written in C, and interfaces
based on S (Becker, Chambers, and Wilks 1988; Chambers



Kooperberg, Stone, and Truong: Hazard Regression

and Hastie 1992) have also been developed. The software is
available from statlib by sending an e-mail message with the
body send hare from S or send heft from S to statlib@
stat.cmu.edu.

The current interface to HARE consists of eight S func-
tions: dhare, hhare, phare, ghare, rhare, hare.fit,
hare.summary, and hare.plot. The functions dhare,
phare, ghare, and rhare are analogous to the S functions
dnorm, pnorm, gnorm, and rnorm, and to similar four-
tuples of S functions for ¢ distributions, F distributions,
gamma distributions, and so forth. Thus dhare gives the
(estimated) conditional density function, phare gives the
conditional distribution function, ghare gives the condi-
tional quantile function, and rhare gives a random sample
from the conditional distribution. The function hhare gives
the conditional hazard function, and hare.fit performs
the model fitting and model selection tasks and supplies the
modest output used as input to dhare, hhare and so
forth. The functions hare.summary uses the output of
hare.fit to provide summary information about the fit
and about the other fits that could be obtained by using
alternative values of the penalty parameter. Finally,
hare.plot uses the output of hare. fit directly to pro-
duce a plot of the conditional density, distribution, survival,
or hazard function.

The interface to HEFT is similar to that for HARE.

8. APPLICATIONS OF HEFT

8.1 Approximating the Pareto and Weibull
distribution with HEFT models

In Section 6 we discussed how Pareto and Weibull distri-
butions can be modeled using HEFT. To illustrate the use
of HEFT in estimating these distributions based on sample
data, we generated a sample of size 200 from a Pareto dis-
tribution with parameters b = 4 and ¢ = 1 in (8). In the left
side of Figure 1, we show the true density function (solid)
corresponding to this distribution together with various es-
timates of the density function based on the sample. The
line with long dashes corresponds to the estimated density
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function obtained from HEFT using the default parameters.
As we noted in Section 6, HEFT can exactly fit a Pareto
distribution if the shift parameter ¢ in HEFT equals the pa-
rameter c in the Pareto distribution. The default value for ¢
in HEFT is the 75th percentile of the data, which was .4 for
this sample. The function heft. fit has an option shift,
which allows the user to specify ¢. In particular, we used
heft.£fit with the option shift=1 to make it possible
for HEFT to fit the exact Pareto distribution. The third curve
in the left side of Figure 1 corresponds to the value for the
shift parameter ¢ that minimizes BIC. We determined that
this was 2.7.

The right side of Figure 1 shows the results of a similar
set of computations based on a random sample of size 1,000
from a Pareto distribution with parameters b= 1 andc = 1
in (8). Again, we show the estimate based on HEFT with
the default choice for shift (which was 2.9), the theoretical
optimal choice for shift (¢ = 1), and the value for shift
that minimizes BIC (¢ = .8). As in the left side, the remaining
curve is the density function corresponding to the true density
function.

From these two examples (and many more that we have
examined ), we find that HEFT approximates Pareto distri-
butions extremely well for sample sizes of 500 and larger,
especially if shift is optimized, but even with the default
choice. It should be noted, though, that the HEFT estimate
frequently does not coincide with the three-parameter model
described in Section 6. Often a few knots, close to the origin,
remain. If the sample size is smaller, then the HEFT estimate
of the Pareto distribution typically has the form of the three-
parameter model in Section 6.

Figure 2 is similar to Figure 1, but the underlying distri-
butions for this figure are Weibull. The data for the left side
of Figure 2 is a sample of size 200 from a Weibull distribution
with parameters » = | and v = .25 in (7). In the figure we
show the true density function corresponding to this Weibull
distribution together with the estimate for this density func-
tion based on HEFT using the default parameters. In the
right side of Figure 2 we show the results of similar calcu-

— true

I ——  HEFT, shift=2.9
HEFT, shift=1
HEFT, shift=0.8

density function
0.0001 0.00100 0.0100 0.10000

T T T T T

0 50 100 150 200

0.00001

Figure 1. Estimated Density Functions for Pareto Distributions. Left side, n = 200, b = 4, ¢ = 1; right side, n = 1,000, b=1,¢c = 1.
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Figure 2. Estimated Density Functions for Weibull Distributions. Left side, n = 200, v = .25; right side, n = 1,000, v = 4; solid line, truth; dashed

line, HEFT.

lations based on a sample of size 1,000 from a Weibull dis-
tribution with parameters » = 1 and vy = 4 in (7).

The HEFT fits to Weibull distributions illustrated in Figure
2 have the form of the three-parameter model described in
Section 6. The parameters _,, 8o, and §, for the HEFT fit
in the left side of Figure 2 are —.755, —.819, and —1.232,
and their theoretical values are —.75, —.75, and —1.386.
Similarly, the parameters for the HEFT fit in the right side
of Figure 2 are 3.444, 2.383, and 2.182, and their theoretical
values are 3, 3, and 1.386.

We carried out a small simulation study to determine how
well HEFT estimates Weibull distributions. For 100 simu-
lations, we generated samples of size 200 and size 1,000 from
Weibull distributions with parameters » = 1 and vy = .25
and with parameters » = 1 and v = 4. Between 76% and
92% of the HEFT fits have the form of the three-parameter
model described in Section 6. The estimated values for 8_;,
Bo, and B, are typically very close to their theoretical values.

Based on experience with other examples, not reported
here, we have found that HEFT vyields a reasonable estimate
for the hazard function even when there is a substantial per-
centage of right censoring,.

8.2 HEFT as Preprocessor for HARE

Before applying HARE, we can use HEFT to transform
time so that the transformed unconditional hazard function
will be approximately equal to 1 (see Cox 1972, p. 209).
Recall the notation of hazard regression introduced in Sec-
tion 3. Let the HEFT methodology be applied to (Y7, §;), 1
< i < n, to yield an estimate A of the unconditional hazard
function. Let the HARE methodology then be applied to
(do(Y7), 8;, X;), yielding an estimate A; of the conditional
hazard function for the transformed data and the estimate
A(2]x) = Ao(2)A(do(2)|x) of the conditional hazard func-

tion f0f the untransformed data; here g, = —log(1 — Fj),
with F, being the distribution function corresponding
to )\0.

The unconditional hazard function of the transformation
should be approximately constant on [0, co). To see this,

let T be a continuous random variable having distribution
function F. Then U = F(T) is uniformly distributed on (0,
o0 ), s0 —log(1 — U) = —log(1 — F(T)) has the exponential
distribution with mean 1, whose hazard function equals 1
on [0, o).

There are two advantages of such a transformation. First,
because of the piecewise linear nature of HARE, the (base-
line) hazard function may have big jumps in its first deriv-
ative at the various knots in time. But the HARE model for
the transformed data typically has fewer knots in time,
whereas the jumps in the first derivative of the baseline hazard
function at these knots tend to be smaller. Secondly, because
of the allowable spaces used for the HARE model, the fitted
conditional hazard functions beyond the last knot in time
are necessarily constant. This is no longer true if the trans-
formation based on HEFT is made before applying HARE.

We refer to the examples to come in Sections 9.1 and 9.3
for the practical use of HEFT as a preprocessor for HARE.

9. EXAMPLES

In this section we illustrate various ways of using HEFT
and HARE by analyzing three data sets. The analyses are
not meant to be definitive.

9.1 Lung Cancer Data

Our first example concerns data from a Veteran’s Ad-
ministration lung cancer trial, which have been examined
by Kalbfleisch and Prentice (1980) and various other authors.
The response is survival time in days; the predictors are
treatment (1 = standard, 2 = test), cell type (squamous,
small, adeno, and large), a performance index (between 0
and 100, with higher scores better), age, and prior therapy
(0 = no, 1 = yes). There are 137 cases, of which 9 are cen-
sored. ‘

When we applied the HARE algorithm to this data, we
got the model with nine basis functions that is summarized
in Table 1. Note that two of the basis functions in the model
involve both time and a covariate (for one of these functions
the covariate is performance status; for the other, it is the



Kooperberg, Stone, and Truong: Hazard Regression

Table 1. First HARE Analysis of the Lung Cancer Data

Standard

Basis function Coefficient error
1 —9.830 2.26
Performance status .250 .108
(Performance status — 20), —.260 .108
Cell type: small cell —1.39 634
Cell type: adeno 2.43 47
(156 — t), .0245 .0058
(Performance status) X (cell type: small cell) .0387 0112
(Performance status) X (156 — t), —.000433 .000095
(Cell type: adeno) X (156 — t), -.0125 .0045

indicator of cell type adeno), suggesting that a proportional
hazards model might not be appropriate.

The standard errors in Table 1 are obtained in the usual
parametric manner as the square roots of the diagonal entries
of the inverse of the estimated information matrix. Because
they do not take the highly adaptive nature of HARE into
account, they should be regarded as merely suggestive.

The default HARE analysis should not automatically be
accepted as definitive. In particular, when we apply this pro-
cedure one of the first steps we typically take is to transform
time as described in Section 8.2, so that the unconditional
log-hazard functions of the transformed time is approxi-
mately constant. The present example will show the advan-
tage of such a transformation.

When HEFT is applied with the default options, the es-
timate for the hazard rate is the solid line in the left side of
Figure 3. The corresponding transformation ¢, is shown in
the right side of Figure 3. The estimated hazard function has
no knots remaining, and the coefficient of log(¢/(¢ + 145.75))
1s .0075, with a standard error of .1280, whereas the coeffi-
cient of log(z + 145.75) is —.597, with a standard error of
.321; the estimate of the intercept is —1.55. The BIC value
for this model is 1,508.73.

This leads us to use heft.fit with the option left-
log=0, which allows us to force the coefficient of log(¢/(¢

hazard function
0.008 0.010

0.006

0.004

T T T T T T
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+ 145.75)) to equal zero. As expected, this hazard estimate
again has no knots remaining. The coefficient for log(¢
+ 145.75) is now —.583, with a standard error of .211, and
the intercept is —1.643, so this model corresponds to

A1) ~ e 193 (1 + 145.75) 783, (9)

The BIC value for the model is 1,503.82, considerably smaller
than that for the previous model because the present model
has one less parameter. The estimate of the unconditional
hazard function and the corresponding transformation are
shown as the dotted curves in Figure 3. These curves are
hard to distinguish from the solid ones corresponding to the
previous fit.

Finally, we applied heft.fit with the options left-
log=0 and rightlog=0, which forces the coefficients of
both log-based basis functions to equal zero. This HEFT
estimate has the form of a two-parameter model involving
four knots, and its BIC value equals 1,504.65. The estimate
of the unconditional hazard function and the corresponding
transformation for this fit are shown as the dashed curves in
Figure 3. Observe that this estimate differs considerably from
the other two estimates. All in all, we like the dotted curve
corresponding to (9) best.

After transforming the data as described in section 8.2
using the model (9), we applied HARE. The results are
summarized in Table 2. In Figure 4 we show the coefficient
of performance status and the hazard function for a person
with specified values of the relevant variables for the fits with
and without the transformation of time using HEFT.

The fit in Table 2 is fairly similar to that in Table 1 with
respect to the basis functions. But as can be seen in Figure
4, the fits are quite different as far as the estimated conditional
hazard rate is concerned, the reason being that HARE, when
applied to untransformed data, necessarily given an estimate
for the conditional hazard rate that is constant beyond the
last knot in time.

Hastie and Tibshirani (1993) analyzed the same data. In
their analysis, the coefficient of performance status varies

tranformed time
3

T T T T T T

0 200 400 600 800 1000

time

Figure 3. Three Estimates of the Unconditional Hazard Function and the Corresponding Transformation of Time Using HEFT With Various Options

for the Lung Cancer Data.
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Table 2. HARE Analysis of the Transformed Lung Cancer Data

Standard

Basis function Coefficient error -
1 —~7.06 2.60
Performance status 272 110
(Performance status — 20), —.230 108
(Performance status — 85), -.273 17
Cell type: small cell -1.16 .65
Cell type: adeno 2.239 .622
(2.665 — go(t))+ 224 .62
(Performance status) X (cell type: small cell) .0339 .0115
(Performance status) X (2.665 — §i(t))+ —.0421 .0095
(Cell type: adeno) X (2.665 — §(t)). -2.00 .54

with time, but no other interactions enter the model. Koop-
erberg and Stone (1993 ) showed a similar model for the data
using HARE after a transformation of time by HEFT. This
fit, summarized in Table 3, was obtained by using the op-
tion 1inear for performance status, which prevents HARE
from entering any knots for this covariate, and the option
include for the time X performance interaction, which
makes basis functions that depend on time and performance
status the only allowable interactions in the model. The
function 4, is as earlier.

Are the two interaction terms in Table 2 but not in Table
3 real or spurious? To investigate this question, we carried
out a small-scale simulation study. First, we estimated the
distribution of the censoring times under the assumption
that the censoring was independent of the covariates (an
assumption that we investigated in more detail for our third
example, the breast cancer data). Then we applied HEFT
to the original survival times, but used 1 — § instead of §, as
was done in the calculations leading to figure 4 of Kooperberg
and Stone (1992). HEFT yielded that a constant hazard
function, corresponding to an exponential distribution with
mean 1,851, fits well. (Because there were only nine censored
observations, it is not surprising that we obtained a very
simple estimate for the unconditional hazard function.)
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Table 3. HARE Analysis Forcing a Model Similar
to the Model in Hastie and Tibshirani (1993)

Basis function Coefficient ~ Standard error
1 .229 617
Performance status —.00216 .00085
Cell type: small cell .739 222
Cell type: adeno .963 .255
(1.082 — Gi(t)+ 2.25 77
(Performance status) X (1.032 — G(t)). -.0518 .0126

For each simulation, we generated a new set of survival
times 77 = §o'(#;) for 1 < i< 137, wheret, for | <i=< 137
is an independent sample generated using rhare applied to
the fit summarized in Table 3, and the same covariates as
in the original data; here g is obtained from the HEFT fit
as described in Section 8.2. Then we generated the censoring

times C¥, 1 < i < 137, as a random sample from the ex-
ponential distribution with mean 1,851. For each i, we set

Y! = min(T}, C7) and 67 = ind(TF =< C¥). Using
heft. fit with the default options, we transformed Y ¥ for
1 < i < 137, after which we used hare.fit, also with the
default options, to fit a model to the conditional log-hazard
function of (§o (Y ), 87, x;), 1 <i=<137.

We carried out 100 such simulations. In Table 4 the fitted
models are summarized with respect to the variables involved
in the two-dimensional (tensor product) basis functions, with
differences in the coefficients and knot locations being ig-
nored.

From Table 4 we see that in only 2 out of 100 simulations
did the model fit by HARE have three or more interactions.
Because the models in Tables | and 2 both have three in-
teractions, it seems reasonable to conclude that more inter-
actions than the one in Table 3 should be included in the
model. On the other hand, this simulation does not indicate
whether the models in Tables 1 and 2 omit some practically
important interactions.
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hazard function
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Figure 4. Fitted Coefficient of Performance Status as a Function of Time and Fitted Hazard Function for a Person with Cell Type Squamous and
Performance Status 40. Solid line, transformed; dashed line, untransformed.
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Table 4. Summary of the Simulation Study for the Lung Cancer Data

Interactions in model Frequency

No interactions 16
Only a (Goft)) X (performance status) interaction 57
One interaction, not (G(t)) X (performance status) 10
A (Golt)) X (performance status) interaction and one

other interaction 12
Two interactions, but none (G(t)) X (performance

status) 3
Three or more interactions 2

NOTE: Of the 57 simulations that yielded the correct interactions, 23 had 6 basis functions that
coincided with those in the model in Table 2 with respect to the variables involved.

9.2 PBC Data

Our second example illustrates many of the features of
hare. fit that facilitate the search for the best model to fit
the data. This example involves data from a double-blind,
randomized trial involving primary biliary cirrhosis (PBC)
of the liver, which were discussed extensively by Fleming
and Harrington (1991). There were 312 patients in the clin-
ical trial. The response was survival time (days), and there
were 17 covariates listed by Fleming and Harrington. Of the
312 observations, 187 were censored. We took the logarithm
of five of the covariates—serum bilirubin, alkaline phos-
phatase, urine copper, SGOT, and triglycerides—because the
empirical distributions of these quantities are highly skewed
to the right.

As the first step in the analysis of the PBC data, we used
HEFT to estimate the unconditional hazard function, getting
Ao(?) ~ exp(—8.498). Thus transformation was not needed
to make the unconditional hazard function approximately
constant.

We continued our analysis by applying HARE with the
default options to the 274 cases with no missing values for
any of the covariates. This analysis yielded a model with 13
basis functions. None of these basis functions involved the
covariates treatment, serum cholesterol, log(triglycerides),
or platelet count, each of which had one or more missing
values. Whichever options for HARE we chose, none of these
covariates entered the model. Therefore, in further analysis
we excluded these four covariates and included all 310 of
the 312 cases that were complete with respect to the re-
maining 13 covariates. The other two cases have missing
values for alkaline phosphatase. Because log(alkaline phos-
phatase) did appear frequently in the initial HARE fits, we
excluded those two cases during the rest of the analysis.
(There are other methods, such as imputation, to deal with
missing data; for an overview, see Little and Rubin 1987.)

Applying HARE to these 310 cases and 13 covariates, we
got a fairly complicated model with 15 basis functions, which
is summarized in Table 5. Because the model selection al-
gorithm described in Section 4 does not guarantee an optimal
model, it is reasonable to search for a model that either fits
better with respect to AIC or fits about as well but is easier
to interpret. HARE has several options that facilitates this
search process.

It is possible to specify the maximum number of basis
functions in a model, overriding the default value for P,
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(Sec. 11.4). For the PBC data, changing P, in hare.fit
consistently resulted in the same fitted model as described
earlier. It is also possible to use a model obtained from a
previous hare.fit as the starting value for a new search.
This is useful when combined with the output of
hare.summary, which indicates whether the various models
were fit during the addition stage or the deletion stage. In
the latter case, a user could specify the model fit by HARE
as the starting point for a new fit. If the resulting model
differs from the starting model, the new model has a lower
AIC. If the original model was fit during the addition stage,
HARE would necessarily return the same model. The latter
was the case for the PBC data.

The hare . summary command also provides information
about the influence of the choice of the penalty parameter
a in (6). Table 6 consists of a part of the output of
hare.summary when applied to the model from Table 5.

For each possible dimension of the model, the output
shown in Table 6 indicates whether the best model of that
dimension was fit during the addition stage or the deletion
stage and shows the log-likelihood and its AIC value with
the choice of the penalty parameter used in hare.fit. The
last two columns show the dependence of the selected model
on the penalty parameter. For example, with n = 310 the
default value of the penalty parameter is log 310 ~ 5.74. As
can be seen from Table 6, any choice of the penalty parameter
between 5.51 and 5.83 would have resulted in the same model
with 15 basis functions. If the penalty parameter were 6,
however, HARE would have fit a model with only 9 basis
functions.

The model obtained with HARE using 6 as the penalty
parameter turned out to be additive. The other eight non-
constant basis functions were as follows: a knot in time, age,
a knot in age, ascites, log(serum bilirubin), albumin,
log(alkaline phosphatase), and prothrombin time.

This led us to use the option additive to fit an additive
model, using the default value log 310 for the penalty pa-
rameter. The resulting fit is summarized in Table 7.

As it turned out, this model has a lower AIC value than
the model in Table 5 (2,189.83 versus 2,190.89). Further
analysis did not improve on this model. Note that the model
in Table 7 is a proportional hazards model. As such, we can

Table 5. HARE Analysis of the PBC Data

Basis function Coefficient Standard error
1 -18.1 3.1
age .0486 .0099
(age—71.9), —.503 .230
ascites —.284 517
edema 149 410
log(serum bilirubin) —7.56 2.61
(log(serum bilirubin) + .916). 8.60 2.64
albumin —.848 .239
log(alkaline phosphatase) .514 41
prothrombin time .0516 .1293
(1,170 — t), -.00770 .00232
(4,079 — 1), —.000469 .000140
(ascites) X (edema) 1.88 .73
(1,170 — t), X log (serum bilirubin) —.000729 .000240
(1,170 — t), X (prothrombin time) .000667 .000196
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Table 6. Part of the Output of hare.summary, When Applied
to the Model From Table 5

Penalty
dim A/D log-likelihood AlC Min Max
1 Add -1,180.79 2,367.31 113.84 inf
2 Add -1,123.87 2,259.20 27.86 113.84
3 Add -1,110.50 2,238.22
4 Del -1,096.00 2,214.95 17.99 27.86
5 Del —1,087.01 2,202.69 10.47 17.99
6 Del -1081.77 2,197.96 7.90 10.47
7 Del —1,078.54 2,197.24
8 Add —1,075.81 2,197.51
9 Add —1,069.92 2,191.46 5.83 7.90
10 Add —1,067.78 2,192.94
1 Add —1,064.42 2,191.94
12 Add -1,061.70 2,192.23
13 Del —-1,058.29 2,191.15
14 Del —1,055.61 2,191.53
15 Add —1,052.42 2,190.89 5.51 5.83
16 Add —-1,049.97 2,191.73
17 Add —1,047.38 2,192.29
18 Add -1,044.15 2,191.56 0 5.51

compare it with the models obtained by Fleming and Har-
rington. In their table 4.4.3c, they ended up fitting a model
that includes age, albumin, serum bilirubin, edema, and
prothrombin time. There is a discrepancy in that we include
log(alkaline phosphatase) but not the indicator of edema.

9.3 Breast Cancer Data

We now consider a data set that is much larger than those
in the two previous examples. The data, discussed by Gray
(1992), come from six breast cancer studies conducted by
the Eastern Cooperative Oncology Group. There were 2,404
patients in these studies. All patients had disease involvement
in their axillary lymph nodes at diagnosis, indicating some
likelihood that the cancer had spread through the lympatic
system to other parts of the body; however, no patients had
evidence of disease at the time of entry into the study, which
was following surgical removal of the primary tumor and
axillary metastases. The response is survival time (years)
from entry into the study. There are six covariates: estrogen
receptor status (ER; O is “negative,” 1 is “positive”), the
number of positive axillary lymph nodes at diagnosis, size
of the primary tumor (in cm), age at entry, menopause (0
is premenopause, 1 is postmenopause ), and body mass index
(BMI, defined as weight/height? in kg/m?). Because the
empirical distribution of the number of nodes is highly
skewed to the right, we used log(number of nodes) instead
of the number itself in our analysis. Of the 2,404 cases, 1,116
were uncensored and 1,288 were censored. There were no
missing values for any of the covariates.

In this data set some of the survival times are exactly zero,
which makes it impossible to include log(¢/(z + ¢)) as a
basis function in the HEFT fit. Thus we used the option in
heft.fit that lets Gy be the (K — 1)-dimensional space
of twice-continuously differentiable functions s on [0, o)
such that s is linear (as opposed to constant) on [0, ¢,] and
constant on [k, co0) and the restriction of s to each of the
intervals [2), 5], . . ., [Zx_1, {x] is a cubic polynomial.
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The estimated unconditional hazard function and the
corresponding transformation of time are shown in Figure
5. This fit has four parameters, because it is based on four
knots and the term log(z + c¢).

When we applied HARE to the transformed data, we ob-
tained the fit summarized in Table 8. Further analysis along
the lines of that in Section 9.2 did not yield a better fit. When
HARE was applied to the untransformed data, the resulting
fit was similar, but it included one more knot in time. In
Figure 6 we show the hazard function and the survival func-
tion for a person with specified values of the relevant co-
variates for the fits with and without the preliminary trans-
formation of time using HEFT. Note that the selected values
of the covariates are close to the corresponding median values
as observed in the study.

A plausible assumption in survival analysis is that the cen-
soring time is independent of the vector of covariates. This
assumption can be investigated using HEFT and HARE by
treating T, . .., T, as the censoring times and C,, ..., C,
as the survival times; that is, by applying these procedures
to(Y;,1—6;,x;), 1 <i<n.

The estimated fit to the censoring distribution that we
obtained using HEFT is multimodal, with the corresponding
density estimate being shown in Figure 7. Private commu-
nication with Robert Gray from the Eastern Cooperative
Oncology Group suggests that the multimodality is due to
different accrual periods and patient populations in the six
studies. After applying HARE to the transformed data, we
obtained a model with two basis functions, summarized in
Table 9. This analysis suggests that the conditional distri-
bution of the censoring time depends on whether a woman
is premenopausal or postmenopausal. The hazard of cen-
soring is about 27% larger for postmenopausal women. On
the other hand, of the six studies three were limited to post-
menopausal women, two were limited to premenopausal
women, and one study included both. Thus the apparent
effect due to postmenopausality could actually be due to the
different accrual periods in the six studies. (At the time of
this writing, we do not have the data that would allow us to
pursue this issue further.)

To investigate the sensitivity of the fit summarized in Table
8 to random fluctuations in the data, we carried out the
following simulation 200 times. First, we generated a new
set of survival times T = §g'(¢;) for 1 < i < 2,404, where
t; for 1 <i<2,404isanindependent sample generated using
rhare, the fit summarized in Table 8 and the same covari-
ates as in the original data, whereas 4y’ is the inverse of the

Table 7. HARE Analysis of the PBC Data—Forcing an Additive Model

Basis function Coefficient Standard error
1 ~18.9 3.0
age .0480 .0100
(age—71.9), -.502 218
log(serum bilirubin) -7.20 2.60
(log(serum bilirubin) + .916), 8.06 2.62
albumin -1.03 .21
log(alkaline phosphatase) .485 140
prothrombin time 274 .085
(4,079 — t), —.000627 .000096
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Figure 5. Estimated Unconditional Hazard Function and the Corresponding Transformation of Time Using HEFT for the Breast Cancer Data.

transformation displayed in the right side of Figure 5. Then
we generated the censoring times CT, 1 < i < 2,404, as a
random sample from the distribution corresponding to the
density displayed in Figure 7. For each i, we set Y
=min(77, Cf) and 8 = ind(7¥ < C¥). Using
heft.fit with the default options, we transformed ¥ ¥, 1
< i < 2,404, after which we used hare.fit, also with the
default options, to fit a model to the conditional log-hazard
function of (45 (Y ), 87, x;), | <i < 2,404.

In Figure 8 we show, for the fit from Table 8 and five
randomly selected simulations from that fit, the fitted con-
ditional hazard and survival functions for the same vector
of covariates as used in Figure 6. In Figure 9 we summarize
these quantities for all 200 simulations. In particular, for
every time ¢ we computed the 2.5th and 97.5th percentiles
of the simulated fit to the conditional hazard and survival
functions. At each time, 95% of the simulations fell in the
gray band (the solid line is again the fit from Table 8).

Figures 10 and 11 summarize the effect of some of the
covariates. The bootstrap bands in these figures are con-
structed as in Figure 9. In the left side of Figure 10 we show
log(hazard ratio) a(¢|x;) — &(t|x;) as a function of time;
here x, and x; are identical to the vector of covariates used
in Figure 6, except that estrogen receptor status equals 1 (ER
is positive) in x; and equals zero (ER is negative) in x,. The
right side of Figure 10 displays the effect of the number of
nodes on the log hazard. Specifically, in this figure we show

g(x) = a(2|nodes = x, age = 50, ER =1,

BMI = 25, size = 3, menopause
— a(2|nodes = 4, age = 50, ER = 1,

1)

BMI = 25, size = 3, menopause

1).

That is, we show log(hazard ratio) when time = 2 and all
covariates are kept fixed at the same value as in Figure 6,
except that the number of nodes is allowed to vary and is
compared with nodes = 4. The fact that both the estimate

corresponding to Table 8 and the width of the 95% bootstrap
band equals zero when nodes = 4 is a consequence of the
fact that g(4) equals zero by definition.

Similarly, the left side of Figure 11 shows log(hazard ratio)
when time = 2 and all covariates are kept fixed at the same
value as in Figure 6, except that the tumor size is allowed to
vary and is compared with size = 3. The right side of Figure
11 shows log( hazard ratio) when time = 2 and all covariates
are kept fixed at the same value as in Figure 6, except that
age is allowed to vary and is compared with age = 50.

The results of our analysis of the breast cancer data are
similar to those of Gray (1992). In particular, compare the
left and right sides of Figure 10 and the left and right sides
of Figure 11 with figures 3a, 4a, 4c, and 4d of Gray (1992).
Furthermore, the only interaction between covariates that is
significant in table 3 of Gray (1992) is nodal group X tumor
size. Similarly, in Table 8 the only interaction between co-
variates that ends up in the model is that between log(nodes)
and size.

The bootstrap bands in Figures 9-11 reflect the contri-
bution of the variance of the corresponding point estimates,
but not their bias. To see this in a simple manner, consider
just the HARE procedure by itself and its dependence on
the penalty parameter. If this parameter is sufficiently large
(say, 200 or more), when HARE is applied to the real data
it estimates the conditional log-hazard function by a constant
Bo. Similarly, when applied to the simulated data from the
initial fit, it typically estimates the conditional log-hazard
function by a constant that is rather close to Bo. Thus the
corresponding bootstrap bands, obtained as in Figure 9-11,
are very narrow. In the opposite direction, when the penalty
parameter is extremely small (in particular, when it equals
zero), the corresponding bootstrap bands are very large.
Clearly, however, we should not think of the various esti-
mates as steadily improving in accuracy as the penalty pa-
rameter increases from zero to infinity. These reservations
about the bootstrap bands and similar reservations about
standard errors, which apply more generally in statistics, es-
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Table 8. HARE Analysis of the Transformed Breast Cancer Data

Basis function Coefficient Standard error

1 —.0443 .3990
ER 426 119
log(nodes) .686 .070
size .158 .035
age —.0401 .0093
(age—43), .0408 .0115
menopause 409 105
(.194 — Go(t))+ —6.58 1.33
(.514 — Go(t))+ 2.66 41
log(nodes) X size —-.0650 .0181
(-514 — Golt))+ X ER —-2.91 .39
(.194 — Go(t))+ X size .878 .266

pecially in the context of highly adaptive procedures but even
in the context of parametric models that are not exactly valid,
deserve much greater emphasis in the literature.

10. CONCLUDING REMARKS

In light of the examples in Section 9 and considerable
additional experience with HARE and HEFT and their user
interfaces, we are convinced that these methodologies are of
considerable practical value. In particular, as Figure 6 illus-
trates, it is very easy to plot hazard and survival functions
for an individual with a given vector of covariates after a
model has been fit using HARE. Thus this methodology is
potentially useful for a health care practitioner in coming
up with a prognosis for a particular patient.

HEFT, as described in this article, combines cubic splines
with stepwise addition and deletion of knots for the esti-
mation of the log-hazard function. It has two extra log terms,
which are specifically tailored to fit the tails of the underlying
distribution. An important improvement of HEFT over ex-
isting methodology is that it estimates the right tail of a dis-
tribution well even when there is a substantial amount of
right-censoring, while being just as good as other density
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Figure 7. Estimated Unconditional Density Function for the Censoring
Distribution for the Breast Cancer Data.

estimates elsewhere. Another important advantage of the two
log terms is that it is possible to estimate a distribution with
a simple parametric form in some situations (as in the lung
cancer and PBC examples), whereas in other situations
HEFT can estimate well using a spline model with a small
number of knots (as is the case in the breast cancer example).
These features make HEFT an ideal preprocessor for HARE.

The available features in HARE make it easy to try a
variety of models on a given set of data. In particular, linear
proportional hazards models, additive proportional hazards
models, proportional hazards models with time-varying coef-
ficients, and nonparametric proportional hazards models can
be conveniently fitted and compared. A limitation of HARE
is that the present implementation, although ideally suited
for the study of time-varying coefficients (sometimes called
time-dependent covariate effects), does not allow for time-

1.0
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survival function
0.4

0.2

0.0

T T T T
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Figure 6. Fitted Hazard and Survival Functions for a Premenopausal Woman of Age 50 With Negative Estrogen Receptor Status, Four Nodes, Body
Mass Index 25, and Tumor Size 3 cm. Solid line, transformed using HEFT; dashed line, untransformed.
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Table 9. HARE Analysis of Censoring Times for the Breast Cancer Data

Basis function Coefficient Standard error
1 -.109 .039
menopause .236 .056

dependent covariates; that is, covariates whose value may
change during the study. A future version of HARE should
be able to deal with such covariates.

11. NUMERICAL IMPLEMENTATION
11.1 Starting Values

As the starting value in the Newton-Raphson algorithm
for obtaining the maximum likelihood estimate of the log-
hazard function in the minimal allowable space, we use the
maximum likelihood constant estimate & = log(Z; 6;/
>; Y;) of this function. In the context of stepwise addition,
the starting value for the next step is the exact maximum
likelihood estimate from the previous step, which is possible
because the new linear space contains the previous space as
a proper subspace.

In the context of stepwise deletion, let 8, B, +
+ B,B, be the maximum likelihood estimate of the condi-
tional log-hazard function having the form corresponding
to the p-dimensional linear space G with basis By, . . ., B),
and let By, ..., E,,_l be the basis of an allowable (p — 1)-
dimensional subspace Gy of G. Also, for 1 < j < p, let
T 71 a;x By be the orthogonal projection of B, onto G, relative
to the inner product

<>\1, >\2> = E MY Ix) A (Y5 x;).

Because

0.20
i

hazard function

0.05

0 2 4 6 8 10 12

time (years)
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the maximum likelihood estimate of the conditional log-
hazard function to Gj.

11.2 Computation of the Log-Likelihood
Function, Score Function, and Hessian
for HEFT

The main numerical task of the HEFT algorithm is the
computation of the log-likelihood /(8), the score S(8), and
the Hessian H(B) for various models and values of 3. The
time-consuming aspect of this computation involves the nu-
merical approximation of

Y; o
2 [ et du= [ Naoww du,

N(u) = #({i: Y, = u}),

for many functions ¥ that are twice continuously differen-
tiable on (0, co) and three times continuously differentiable
on each of the intervals (0, #,], [#1, 21, . . ., [tx-1, k], [k,
o0 ). Note that the function N(+) is piecewise constant, has
jumps at the observations Y, ..., Y,, and equals zero to
the right of the maximum observation Y.

Let Jy, ..., Ja be a partition of (0, Y] into disjoint
intervals whose endpoints contain all the initial knots. Then

fw N(u)Y(u) du = sz(u)w(u) du.
0 y Y

Thus the time-consuming aspect of the computation involves
the evaluation of

fJN(u)w(u) du,

where J is a bounded interval and ¢ is a three times-
continuously differentiable function on a bounded interval
Jo containing J. Let by, b,, b3, and b, be distinct points in
Jo, and let P be the cubic polynomial that interpolates the
values of ¥ at these points. We approximate f 7 N(u)y(u)
du by [; N(u)P(u) du. According to the Lagrange inter-
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Figure 8. Conditional Hazard and Survival Functions for the Fit of Table 8 (Solid Line) and Five Random Samples From This Model (Dashed Line).

Same covariates as in Figure 6.
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Figure 9. Conditional Hazard and Survival Functions for the Fit of Table 8 and 95% Bootstrap Bands From That Model. Same covariates as in

Figure 6.

polation formula, P(u) = 2, (b)P(u), where P,(u)
= ILss (= b))/ T nrs(by — byy). Observe that

f N(w)P(u) du f N(w) S W) Pu) du
J J .

1l

2z lP(b/)J‘N(u)l"z(u)a’u,
/ J

where the quantities f J N(u)P,(u) du (which can be eval-
uated analytically) need only be obtained once, right after
the partition J,, . .., Ji,, and the four interpolation points
corresponding to each of these intervals are determined.
Suppose that one or more of the uncensored observations
equal zero. If the coefficient B_, of the basis function B_, is
negative, then the log-likelihood function is infinite at zero.

0.0 0.5

log hazard ratio(ER+/ER-)
-0.5

-1.0

0 2 4 6 8 10 12

time (years)

To avoid this difficulty, we omit the basis function B_; and
let Gy be the (K — 1)-dimensional space of twice-
continuously differentiable functions s on [0, o) such that
sis linear on [0, ¢;] and constant on [, co ) and the restric-
tion of s to each of the intervals [¢,, t,], ..., [1x-1, Ix] is a
cubic polynomial.

11.3 Optimizing the Location of a New Knot

In this section we describe the algorithm for finding the
location of a potential new knot in a covariate for the HARE
model. The addition of a new knot in time for HEFT or
HARE is similar. Because it is not possible to come up with
simple updating formulas to compute score functions and
Hessians, in HEFT and HARE for many new potential knots
with little effort as in MARS (Friedman 1991), we need to

log hazard ratio

T T T T

0 10 20 30

nodes

Figure 10. Log of the Hazard Ratio for the Fit of Table 8 and 95% Bootstrap Bands for That Fit. Left side, as a function of time for the ratio ER
positive / ER negative; right side, as a function of nodes, relative to nodes = 4 after 2 years. Other covariates as in Figure 6.



Kooperberg, Stone, and Truong: Hazard Regression

o
°

log hazard ratio
02 00 02 04 06 08

-0.4

0 2 4 6 8 10

tumor size (cm)

93
o
2
o
]
3
B 3
(V]
N
]
=
(2]
o o
o
© .
S w

T T T T T T T

20 30 40 50 60 70 80

age (years)

Figure 11. Log of the Hazard Ratio for the Fit of Table 8 and 95% Bootstrap Bands for That Fit After 2 Years. Left side, as a function of size relative
to size = 3; right side, as a function of age, relative to age = 50. Other covariates as in Figure 6.

limit the number of knots for which we compute the Rao
statistic.

To find a potential new knot in covariate m, let ¢, < ¢,
< -+ < tg be the corresponding knots presently in the
model, to which we want to add one more knot, and let X,

..., X be the values X, . . ., X, of covariate m written
in nondecreasing order. Define /; and u; by

1,~=6+argmaxX(j)st,», i=1,...,K,, (10)

1<j<n
Uu; = -6 + arg min X(j) = livg,
l<j=n
i=0,...,K,—1, (11)

[0 = 1, and
U = n.
Fori=0,..., K,, such that u; = /;, we compute the Rao

statistic r; for the model with (x,, — X(j,)+ as the new basis
function, where j; = [(/; + u;)/2]. Because of the 6 and —6
in (10) and (11), it is possible that u; < /; for some i; if so,
then no knot can be added between ¢; and ¢;,,. This forces
knots for a given covariate in the model to be at least 6 order
statistics apart, which improves the numerical and statistical
stability. If there is no i for which u; = /;, then no knots can
be added to the model.

We place the potential new knot in the interval [X(s),
X~ ]; where i* = arg max |r; |. We proceed by computing
the Rao statistic r; for the model with (x,, — X))+ as the
new basis function with / = [(/;« + j;+)/2] and r, for the
model with (x,, — X))+ as the new basis function with u
=[(is + ;+)/2]. If |ris| = || and |r;+| = |r,|, then we
place the new knot at X(,,,+). If |r;»| < || and |r/| = |r,],
then we continue searching for a knot location in the interval
[X(»y, X And if |r«| < |r,| and |r/| < |7,|, then we
continue searching for a knot location on the interval
[XGimys Xl

To find a potential new knot in time, we proceed in a
similar manner, except that we select its location based on
the ordered statistics just of the uncensored data.

Note that for each candidate for a new basis function,
only one column of H(-) and one element of S(-) need to
be computed, all other elements having already been com-
puted during the most recent set of iterations.

11.4 Maximal Number of Basis Functions

We stop the addition of basis functions when one of the
following three conditions is satisfied:

» The number P of basis functions equals P,,.,, where the
default value for Py, is min(6n'/3, n/4, 50) in HARE
and min(4n'/°, n/4, 30) in HEFT.

. fp—£,< i(P—p)— 5forsomepwith3<p<P—3,
where /, is the log-likelihood for the model with p basis
functions.

» The search algorithm yields no possible new basis func-
tion.

Note that the default value for P,, is somewhat arbitrary
and mainly the result of experience. But the power rate is
somewhat motivated by the theoretical results of Kooperberg
etal. (1995), the n/4 bound prevents models for small data
sets from being too large, whereas the constant upper bound
prevents models for large data sets from being too large.

[Received May 1993. Revised May 1994.]
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