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Abstract. The logarithm of the spectral density function for a stationary process is 
approximated by polynomial splines. The approximation is chosen to maximize the 
expected log-likelihood based on the asymptotic properties of the periodogram. 
Estimates of this approximation are shown to possess the usual nonparametric rate of 
convergence when the number of knots suitably increases to infinity. 
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1. INTRODUCTION 

Let X ,  denote a stationary time series with autocovariance function 
y(u) = cov(X,, X,,,,) such that c,ly(u)l < m. Then the spectral density 
function f exists and is given by 

l W  
2Jc I ( = - - "  

f ( A )  = - C y(u)exp(- id)  -n s A s ~ c .  

Observe that f is nonnegative and symmetric about zero and that it can be 
extended to a periodic function with period 2~c. 

The spectral density function plays an important role in time series analysis. 
It is used to examine individual frequency components, variations and serial 
correlations of the series. See, for example, Brillinger (1981) and Priestley 
(1981) for a wide range of applications of this function in other fields. The 
spectral density function can be estimated by averaging (or smoothing) the 
periodogram, which is necessary since the periodogram itself is inconsistent. 
This type of estimate is not very flexible since it is carried out by averaging 
over a fixed number of periodogram ordinates. Other methods such as 
autoregressive spectral estimates (Priestley, 1981) and the regression method 
(Wahba and Wold, 1975; Wahba, 1980) have been proposed to handle this 
problem. The former is a parametric approach, whereas the latter is a 
nonparametric method using splines to smooth the periodogram ordinates. 
Recently, Beltrfio and Bloomfield (1987) and Hurvich and Beltrgo (1990) 
have revised the kernel method by using cross-validation to develop auto- 
matic (constant) bandwidth selection procedures, while Swanepoel and van 
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Wyk (1986), Franke and Hardle (1992) and Politis and Romano (1992) have 
considered an alternative approach using bootstrap methods. 

The present paper considers a nonparametric approach to the problem of 
estimating the spectral density function, which is related to the method of 
nonparametric generalized regression considered by Stone (1986, 1994). 
Specifically, the logarithm of the spectral density function is approximated by 
a polynomial spline, with maximum likelihood being used to estimate the 
unknown coefficients. Here the likelihood is constructed by using asymptotic 
properties of the periodogram ordinates. Under appropriate conditions, it is 
shown that the maximum likelihood estimate exists, that it is unique and that 
it achieves the usual (optimal) L2 rate of convergence when the number of 
knots suitably increases with the length of the observed portion of the time 
series. These results lend theoretical support to the related, but more 
adaptive, methodology developed by Kooperberg et al. (1995). 

2. STATEMENT OF RESULTS 

2.1. Preliminaries 

A stationary process { X,} is a linear process if 
m 

xt = ajzt-; zj -,id (0, a2). 
j = - m  

The autocovariance function for such a linear process is given by 

y(u)  = COV(X,, x,,,,) = a2Cai-,aj 
i 

and its spectral density function is given by 

Let 0 < a s 1. A function g on [0, n] is said to satisfy a Holder condition 
with exponent y if there is a positive number c such that Ig(A) - g(&)I S 

CIA- - &I" for d, & E [0, n]. Let m be a nonnegative integer and set p = 
m + a. A function g on [0, n] is said to be p-smooth if g is m times 
differentiable on [0, x] and g'"' satisfies a Holder condition with exponent a. 
In the following condition, it is assumed that p > 1/2. 

CONDITION 1. {X,} is a stationary linear process with c j l a i l  l j l p  < w .  
Moreover, Zj -i,d N(0, a*). 

Under this condition, the process is Gaussian and the spectral density 
function is p-smooth. Moreover, the periodogram 
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I T-1 12 

has the following asymptotic properties: 

where Wk, k = 1, . . ., [ ( T  - 1)/2], have approximately the exponential 
distribution with mean one, W,, and w[j-/2] (if T is even) have approximately 
the 2 distribution with one degree of freedom, and W,, W,, . . ., W[j-/2] are 
asymptotically independent; see Brillinger (1981) and Brockwell and Davis 
(1991). 

 CONDITION^. The spectral density function f is bounded away from zero 
on [0, n]. 

Under this condition, let Q, = logf denote the logarithm of the spectral 
density function. It follows from Conditions 1 and 2 that sp is bounded and 
p-smooth. 

2.2. Polynomial splines 

Let K = Kj- be a positive integer, and let A k ,  1 S k S K ,  denote the 
subintervals of [0, n] defined by Ak = [ ( k  - l)n/K, kn/K) for 1 S k < K and 
Ah. = [n(l - l /K),  n]. Let m and q be fixed integers such that m 3 p and 
m > q 2 -1. A function g defined on [0, n] is called a piecewise polynomial 
with knot sequence n/K, . . ., (K - l)n/K if the restriction of g to A ,  is a 
polynomial of degree m (or less) for 1 S k S K ,  and is called a spline if g is 
also q-times continuously differentiable on [0, n] for q 3 0. Typically, we 
assume that q = m - 1. 

Let ST denote the space of splines g on [0, n] and let Bj,  1 S j S J ,  denote 
the usual basis of ST consisting of B-splines (see de Boor, 1978). Then 
J =  ( m  + l )K - (q  + 1)(K - l),  so K + m S J S  ( m  + l ) K .  Also, B j 3 0  on 
[0, n], B, = 0 on the complement of an interval of length ( m  + l)n/K for 
1 S j s J ,  and C j B j  = 1 on [0, n]. Moreover, for 1 S j S J ,  there are at most 
2m + 1 values of j ’  E (1, . . ., J }  such that B,Bj, is not identically zero on 
[0, n]. The following condition is imposed so that the bias term will have the 
desirable rate of convergence to zero. 

CONDITION 3. J’ = o( Tl-‘) for some E > 0.  

Since the spectral density function f is symmetric about zero and is periodic 
on [-n, n], we have that f’(0) = f”(0) = f’(n) = f”(n) = 0 and ~ ’ ( 0 )  = 
q”‘(0) = ~ , ’ ( n )  = V(n) = 0. In this paper, we use splines g on [0, n] such that 
g’(0) = g”’(0) = g’(n) = g”’(n) = 0 to model the logarithm of the spectral 
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density function q. (Observe that any such spline can be extended to a spline 
on R that is periodic with period 2 x ,  symmetric about zero and does not have 
a knot at zero or n.) Equivalently, we consider g( * ; /?) = &B1( .) + 
. - + PJB,( .) with p = (P1, . . ., P,)‘ constrained to lie in the subspace SZ of 

RJ given by 
a = { p  = (P1, . . ., p,y E RJ: g’(0) = g”’(0) = g’(n) = g”’(n) = 0 

. where g = &Il l (  a )  + . + P,B,(. )}. 

Observe that the collection SO, of splines g( * ; p) ,  P E a, is a subspace of S T .  
Given /3 E a, the corresponding spectral density function is modeled as 
f( * ; P )  = exp {g( * ; P I } .  

2.3. Maximum likelihood estimation 

Set Y = f(A; p ) W ,  where W has the exponential distribution with mean one 
when 0 < A < n and has the 2 distribution with one degree of freedom when 
A = n. Omitting a term that does not depend on /?, we write the log-likeli- 
hood corresponding to the observed value y of Y as 

for O <  A s n  and y 3 0 ,  where S,(A) = 1 if A =  n and &(A) = O  otherwise. 
Thus 

for 1 s j J ,  0 < A s JI and y 3 0. Also, 

for 1 s j ,  I s 1 ,  0 < A < n and y 2 0. It follows from the last result that 
q (y ,  A; - ) is a concave function on RJ for y 3 0 and 0 < A s n and that it is 
strictly concave for y > 0. 

Let X o ,  . . ., X T - :  be a realization of length T of the time series. Set 

k = 1, 2 ,  . . ., [ T / 2 ] .  
T-1 

A k  = - 2nk and I k  = (2nT)-’I exp ( -&t)X,  
T t=o 

The (approximate) log-likelihood function corresponding to the periodogram 
and the ]-parameter model for the logarithm of the spectral density function 
is defined by 

I T/21 

I ( @ )  = l { g (  ; p>> = v ( l k r  P )  p RJ*  
k = l  
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Moreover, 

and 

so I( * )  is a concave function and it is strictly concave if some I k  is positive. It 
follows that I (B)  is also concave for p E Q. The maximum likelihood estimate B E Q is given by l@) = max { l (p ) :  p E Q}, and the corresponding maximum 
likelihood estimate of cp is given by @ = g( - ; B). We refer to f = exp (@) as 
the logspline estimate of the spectral density function f .  

2.4. Expected log-likelihood function 

By Theorem 5.2.2 of Brillinger (1981) or Theorem 10.3.1 of Brockwell and 
Davis (1991), E(Zk) = f(&) + O(T-’) ,  where O(T-’) is uniform in &. Thus 

+ O(T-1). 

Define the (approximate) expected log-likelihood function by 

where a is a function on [0, n].  Note that A(a)  is maximized at a = cp = logf. 
Set A(/?) = A{g( * ; /I)} for g E S T .  Then 

and 

1 c j ,  1 s J. 

Thus the expected log-likelihood function A(p) is a strictly concave function 
of p. Since {g( * ; p): p E Q} is a subspace of S T ,  A(p) is also strictly concave 
for p E Q. Let p* be uniquely defined by A(p*) = max {A(p): p E Q} and set 
cp* = g( - ; B*) .  
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2.5. Rate of convergence 

Given a square-integrable function g on [0,  n], set llgll = {J:lg(A)12dA}1/2.  The 
proof of the following result is given in Section 3. 

THEOREM. Suppose Conditions 1-3 hold. Then the maximum likelihood 
estimate @ of cp exists, and it is unique except on an event whose probability 
tends to zero as T + 03. Moreover, 

I\@ - cpll = Op{(J/T)"2 + J-'} .  

Given positive numbers aT and bT for T 2 1, let aT - bT mean that aT/bT is 
bounded away from zero and infinity. The next result is an immediate 
consequence of the theorem; here the rate of convergence coincides with that 
achievable by averaging the periodogram ordinates (see Brillinger, 1981, 
p. 251). 

COROLLARY. Suppose Conditions 1 and 2 hold and that J - T1/(2P+1). Then 
I [@ - cpll = Op(T-P/(ZP+1)), 

3. PROOFS 

The proof of the theorem is broken into three parts. The first part considers 
the bias term, the second proves the existence, uniqueness and consistency of 
the maximum likelihood estimate and the third part deals with the variance 
term. 

Throughout this section, it is assumed that Conditions 1-3 hold. 
Given a function a on (0 ,  n], set llallx = SUPo<isn la(A)I and 11all; = 
([ T/2] ) - '~ [ ,T_ i :1 {a (Ak) }2 .  

3.1. The bias 

In order to bound the bias term cp* - cp, we state a result that, roughly 
speaking, bounds the second derivative of the log-likelihood function in terms 
of the discrete L2  norm 11 * I I T .  The proof of this result is similar to the proofs 
of Lemma 5 in Stone (1986) and Lemma 4.2 in Stone (1994). 

LEMMA 1. Let Mo be a positive constant. Then there are positive constants 
-Mz(la - 911; for all M I  and M 2  such that - M,lla - cpl$ S A(a)  - A(cp) 

functions a on (0 ,  n] such that llalll S Mo.  

To apply Lemma 1,  it is necessary to check the boundedness condition 
based on the L ,  norm. To this end, we can use Lemma 7 of Stone (1986), 
which says that there is a positive constant M 3  such that 

llsllz S M3J'/211glI g E S T .  (1) 
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This result will also be needed in the proof of the existence of the maximum 
likelihood estimate (see Section 3.2) and in the computation of the variance 
term (see Section 3.3). 

In order to use the L2 norm to bound the bias term, we need to establish 
that this norm and its discrete version are equivalent when restricted to ST. 
By elementary properties of polynomials and a standard compactness argu- 
ment, there are positive constants M 4  and M 5  such that if T 3 M 4 J ,  then 

M51118112 c Ilgll’T MslIg1l2 g E S T .  (2) 
The next result contains the L2 and L ,  bounds on the bias term. The proof 

of this result is similar to the proofs of Lemma 8 of Stone (1986) and Lemma 
4.4 of Stone (1994). The L,  bound will be used in the proof of the existence 
of @ and in bounding the variance term @ - q*. 

PROOF. By Condition 3 and Theorem 8.15 of Schumaker (1981), there are 
periodic polynomial splines gO, for T 3 1 defined on [-n, n] with the knot 
sequence { k n / K :  k = +1, . . ., k ( K  - 1))  and a positive constant c1 such 
that  SUP^+^,^] (&((A) - q(A)l C C ~ J - ~ .  Set g,(A) = {&(-A) + gO,(A)}/2 for A E 
[0, n]. Then g, E SO,. Moreover, /(g, - ~ 3 ) ) ~  G cIJ-P and hence Ilg, - qll; 6 
C ; J - ’ ~ .  By Lemma 1, there is a positive constant c2 such that 

A(gT) - A(q) 2 - c ~ J - ~ P .  ‘(3) 
Let b be a positive constant. Choose g E SO, with Ilg - q1I2 = bJ-2p. Then 

llg - 8,1l2 c 2(1k - q1I2 + llQ3 - 8,112) 2(b + c:)J-2p.  

1 + Ilvll.. 

By (l) ,  for J sufficiently large, 

llsll, c llg - g,IL + Il& - Pllr + IlqlI.. 
since p > 1/2. Moreover, Ilg - g,1I2 3 (b/2)J-2p for b sufficiently large, since 
((g - g,(( 3 ((g - q(( - ((g, - q((. It follows from (2) and the inequality 
Ilg - gT()+ c 2(l(g - qII; + (Iq - &) that, for b sufficiently large, there is a 
positive constant c3 such that (lg - ~3(1; 3 c3bJ-2P. Thus, by Lemma 1, there is 
a positive constant c4 such that, for b and J sufficiently large, 

(4) 
Let b be chosen such that b > max (c: ,  ~ 2 / ~ 4 )  and otherwise sufficiently large. 
It follows from (3) and (4) that for J sufficiently large, 

A(g) - A ( q )  s - c , ~ J - ~ P  for all g E SO, with ((g - q(I2 = bJ-2p. 

A(g) < A(gT) for all g E SO, with I(g - q1I2 = bJ-2p .  

Therefore, A( a )  has a local maximum on Ilg - q(I2 < bJ-2p and hence, by the 
concavity of A( s), )/q* - q)I2 < bJ-2P for J sufficiently large. Consequently, 
IIq* - g,1I2 = O(J-2P), so we conclude from (1) that lIq* - grllm = O(.T1/2-p) 

0 and hence that (lq* - qI(, = O(J1/2-p).  
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3.2. The existence, uniqueness and consistency of the maximum likelihood 

The proof of the existence involves several approximations. First we approxi- 
mate the expected log-likelihood function by the log-likelihood for independ- 
ent observations. Specifically, suppose Condition 3 holds. Let tT,  T 2 1, be 
positive numbers such that Jt: = O( 1 )  and log T/1/ T = o( t;). Set 

estimate 

where A (A) = jaj exp (- ijA) and Zz( * ) is the periodogram of Z, defined by 

Zz(A) = ZLT’(A) = (2nT)-’ 

It follows from Condition 1 that the random variables Z Z ( A k )  for 1 s  k =s 
[ T/2] are independent, Zz(A,) has the exponential distribution with mean 
a2/(2n) for 1 s k < [T /2] ,  and zz(&)/E{zz(Ak)} has the 2 distribution with 
one degree of freedom if T is even and k = T / 2  (see Theorem 5.2.6 of 
Brillinger (1981)). Hence [T/2]- lE{’(g)}  = A(g)  for g E ST,  and it follows by 
applying the Markov inequality to a suitable moment generating function that 
the result below is valid (see the proofs of Lemma 10 of Stone (1986) and 
Lemma 4.6 of Stone (1994)). 

LEMMA 3. Let b and E be positive constants. There is a positive constant M 6  
such that, for T sufficiently large, 

The next result describes the approximation of the observable log-likeli- 
hood function I ( .  ) by i( * ). 

 LEMMA^. Let E and M7 be positive constants. Then, except on an event 
with probability tending to zero as T += CQ, 

for all g E ST with llgllm S M,. 

PROOF. According to Theorem 10.3.1 of Brockwell and Davis (1991), 

1, = z ( T ) ( A k )  = l A ( a k ) 1 2 z Z ( A k )  -k R T ( k k )  
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and 
T-1-1 T-1 

UTj(A) = C exp(-iAt)Z, - C exp(-iAt)Z,. 
t = - j  r=o 

It follows from Condition 1 that maxk IA(Ak)l s Elai l  < CQ and that Jz (A)  and 
YT(A) have normal distributions with mean zero and variances 0(1) and 
0; = 0 ( 1 / T ) ,  respectively. Since 

we see that 
log T 

max k IJz(Ak)l = O,{(log T)li2} and max k I YT(Ak)/ = Op{ ( 1)1’2} 

and hence that 

The desired result now follows from the observation that 

for all g E ST with llgllx s M y .  0 

The next result gives the variability of the log-likelihood function over a 
small neighborhood. 

LEMMA 5 .  Given positive constants E and M 8 .  there is a positive constant 
My such that, except on an event with probability tending to zero as T + m, 
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PROOF. Write g, = g( * ; p i )  and g2 = g( * ; p2). It follows from Theorem 
10.3.1 of Brockwell and Davis (1991) and (5) that 

- exp { - g ( A k ;  81)}1 + OP(&)* 

The desired result now follows from Condition 1 and the fact that Z Z ( A k ) ,  
k = 1, . . ., [T/2], are independent and have exponential type distributions 
with mean 02/(2x). 0 

We now discuss the approximation of certain sets by smaller sets. In fact, 
according to Lemma 12 of Stone (1986), for positive constants b and c there 
is a positive constant MI,, such that, for T sufficiently large, the set 
{g: llg - cp*ll G b z T }  can be covered by O{exp(MloJlog T)} subsets each 
having diameter at most c&. Here the diameter of a subset G of S, is 
defined as sup{Ilgl - g211x: g1, g2 E G ) .  

It follows from the above covering result, Lemma 1 with cp replaced by cp*, 
Lemmas 3-5 and Equation (2) that, for a given positive constant b ,  except on 
an event whose probability tends to zero as T + m ,  I ( g )  < I ( c p * )  for all g 
such that Ilg - q*(I = bz,. Consequently, by the strict concavity of I ( g )  as a 
function of g, the maximum likelihood estimate @ exists and is unique except 
on an event whose probability tends to zero as T +  w. Moreover, ll@ - 
q*ll= o p ( t T ) .  Thus we conclude from (1) that II@ - cp*IIp = o ~ ( J ~ / ~ ~ T )  = 
op(l) and hence from Lemma 2 that II@ - cpll = op(l). This completes the 
proof of the existence, uniqueness and consistency of the maximum likelihood 
estimate @. 

3.3. The variance 

The next task is to bound the variance term @-- cp* by establishing an upper 
bound to I I @ -  q*1l2. Let S ( p )  denote the score at 8; i.e. the J-dimensional 
column vector with entries aI(p)/C3Bj. Let H ( P )  denote the Hessian at 8, i.e. 
the J x J matrix with entries a2/(p)/agjapI, then 

‘%{P* + u ( B  - P*)}du = S ( B )  - S(P* ) .  I, du 
This can further be written as D(B - p*) = S ( B )  - S ( @ * ) ,  where D is the 
J x J matrix given by 

+ u ( B  - / ? * ) } d ~ .  
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Since (S - P* ) 'S (B)  = 0 and ( b  - P * ) ' E { S ( P * ) }  = 0, we conclude that 

(B - P * ) ' W S  - P * )  = -cS - P* ) ' [S (P* )  - E{S(P*)>l. 

IS(P*> - E{S(P*))I' = OP(7-1 

(S - P*)'D(B - P * )  S -clTJ-'IS - /?*I2 

(6) 

(7) 

(8) 

We claim that 

and that there is a positive constant c, such that 

except on an event whose probability tends to zero with T .  Since 

IKP - P* ) ' [S (P* )  - E{S(P*))ll IS - P*l ISM*)  - E{S(P*))I 

it follows from (6)-(8) that - P*12 = 0 , ( J2 /T )  and hence that 

ll@ - v*ll' = O , ( J / T ) .  (9) 
The theorem follows from (9) and Lemma 2. 

PROOF OF (7). Now, 

Thus, by Theorem 10.3.2(ii) of Brockwell and Davis (1991) and a property of 
splines ( C j ~ ,  = I ) ,  

E[IS(P*) - E{S(P*))/'l = 

Therefore (7) holds. 0 

The proof of (8) depends on the following result. 

 LEMMA^. There is a positive constant ML1 such that, except on an event 
whose probability tends to zero as T + m, 

PROOF. By Theorem 10.3.1 of Brockwell and Davis (1991), 
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where [ A (  * )I2 is bounded away from zero by Condition 2. According to (2) 
and (51, 

We claim that there is a positive constant c1 such that, except on an even 
whose probability tends to zero as T + m, 

The desired conclusion follows from (lo)-( 12). 
In verifying (12), we can assume that q = -1. It suffices to show that there 

is a positive constant c2 such that, except on an even whose probability tends 
to zero as T +  m, 

1 - zZ(Ak){g,)(Ak; 8,,)}' 2 c2J-' for 1 s u c K, 8,, E R'n+l and 18,,12 = 1 
T k:AheA, 

(13) 

where A,, = [ ( u  - l )n/K,  u n / K )  for 1 S u < K ,  AK = [n(l - l/K), n] (see 
Section 2.2) and g,,( * ; 8,,) is the restriction of g( * ; fl) to A,,. By applying a 
simple compactness argument to the set ( 8 ,  E Rrn+'; 18,>12 = l }  and using the 
distributional properties of Iz(Ak), we see that (13) holds. (A detailed proof 

0 of (12) can be found in Kooperberg et al .  (1993).) 

PROOF OF (8). NOW, 

By Condition 1, Lemma 2 and the result I / @  - q*llr = op(l) in Section 3.2, 
there is a positive constant c1 such that Ilq*llr s c1 and, for T sufficiently 
large, ~ ~ @ ~ ~ z  G cI except on an event whose probability tends to zero as 
T + m. Consequently, there is a positive constant c2 such that, except on an 
event whose probability tends to zero as T + m, 

Equation (8) follows from (14) and Lemma 6 applied to 8 = @ - p*. This 
0 completes the proof of the theorem. 



LOGSPLINE SPECTRAL DENSITY ESTIMATION 401 

ACKNOWLEDGEMENTS 

Charles J. Stone was supported in part by National Science Foundation Grant 
DMS-9204247. Young K. Truong was supported in part by a Research 
Council Grant from the University of North Carolina at Chapel Hill. 

REFERENCES 

BELTRAO, K. I. and BLOOMFIELD, P. (1987) Determining the bandwidth of a kernel spectrum 

DE BOOR, C. (1978) A Practical Guide to Splines. New York: Springer. 
BRILLINGER, D. R. (1981) Time Series, Data Analysis and Theory. San Francisco: Holden-Day. 
BROCKWELL, P. J. and DAVIS, R.  A. (1991) Time Series: Theory and Methods, 2nd Edn. New 

FRANKE, J. and HARDLE. W. (1992) On bootstrapping kernel spectral estimates. Ann. Statist. 20. 

HURVICH, C. M. and BELTRAO, K. I. (1990) Cross-validatory choice of a spectrum estimate and 
its connections with AIC. J .  Time Ser. Anal. 11, 121-37. 

KOOPERBERG, C., STONE, C .  J. and TRUONG, Y. K.  (1993) Rate of convergence for logspline 
spectral density estimation. Technical Report No. 396, Department of Statistics, University of 
California, Berkeley. 

Ser. Anal. 16, 359-388. 
POLITIS, D. N. and ROMANO, J. P. (1992) A general resampling scheme for triangular arrays of 

a-mixing random variables with application to the problem of spectral density estimation. Ann. 
Statist. 20, 1985-2007. 

estimate. J .  Time Ser. Anal. 8, 21-38. 

York: Springer. 

121-45. 

-- , and - (1995) Logspline estimation of a possibly mixed spectral distribution. J .  Time 

PRIESTLEY, M. B. (1981) Spectral Analysis and Time Series. London: Academic Press. 
SCHUMAKER, L. L. (1981) Spline Functions: Basic Theory. New York: Wiley. 
STONE, C. J. (1986) The dimensionality reduction principle for generalized additive models. Ann. 

- (1994) The use of polynomial splines and their tensor products in multivariate function 

SWANEPOEL, J. W. and VAN WYK, J. W. J .  (1986) The bootstrap applied to spectral density 

WAHBA, G. (1980) Automatic smoothing of the log periodogram J .  A m .  Statist. Assoc. 75, 

- and WOLD, S. (1975) Periodic splines for spectral density estimation: The use of 

Statist. 14, 590-606. 

estimation (with discussion). Ann. Statist. 22. 118-84. 

function estimation. Biometrika 73. 135-42. 

122-32. 

cross-validation for determining the degree of smoothing. Comm. Statist. 4, 125-41. 


