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1. INTRODUCTION 

The problem of estimating the spectral distribution for a stationary time series 
is of fundamental importance in statistics. If this distribution is absolutely 
continuous, its density function can be estimated by a variety of methods, the 
most popular being window, autoregressive (AR) and autoregressive moving- 
average (ARMA) estimates. Window estimates are obtained by smoothing 
the periodogram using ‘window’ functions, while A R  and ARMA estimates 
are obtained by fitting parametric A R  and ARMA models using ‘automatic’ 
model selection procedures such as the Akaike information criterion (AIC) 
and the Bayes information criterion (BIC) (see Priestley, 1981, Chapters 6 
and 7). 

It is known that the periodogram is not a consistent estimate of the spectral 
density function and that consistency can be achieved by smoothing the 
periodogram ordinates, the degree of smoothing being controlled by the 
window width. Larger window widths smooth out the noise, but also tend to 
distort the details of the signal, while smaller window widths tend to yield 
estimates with spurious features. Recent approaches to the window width 
selection problem involve the application of cross-validation (BeltrBo and 
Bloomfield, 1987; Hurvich and BeltrBo, 1990), the bootstrap (Swanepoel and 
van Wyk, 1986; Franke and Hardle, 1992; Politis and Romano, 1992) and 
regression methods (Wahba, 1980; Pawitan and Gangopadhyay, 1991). 

In the AR approach the estimated spectral density function has the 
parametric form of the spectrum of an A R  process, and the resulting fit is 
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better when the spectral density function can accurately be approximated by 
such a form. However, this procedure may yield poor estimates when it is 
used to fit simple moving-average (MA) models (see Beamish and Priestley 
(1981) and Figure 3 later). The ARMA approach extends the A R  approach 
by approximating the spectral density function with the spectrum of an 
ARMA model. Since many more spectral density functions can accurately be 
approximated by ARMA models, not surprisingly, ARMA estimates are 
often better than A R  estimates in fitting non-AR models. However, in our 
experience, numerical procedures for determining maximum likelihood esti- 
mates of ARMA parameters are typically much less stable and far more 
computer intensive than the other approaches discussed in this paper, making 
the ARMA approach considerably less attractive. See Section 7 for more 
details. 

If the spectral distribution is possibly mixed, there are two general 
approaches to its estimation that have previously been discussed. One 
approach is to apply a method that was actually designed for the absolutely 
continuous case and hope that the estimate has sharp peaks centered near the 
atoms. The AR methods are generally used for this purpose since they 
typically yield sharper peaks corresponding to atoms than window estimates, 
while they are numerically more stable than ARMA estimates. Mackisack 
and Poskitt (1990) give an asymptotic justification for the AR procedure. In 
the engineering literature there have been various proposals to make A R  
methods more sensitive to atoms in the spectral distribution (see, for 
example, Stoica et a l ,  1991). 

The alternative approach is first to test whether atoms are present. If so, 
their locations and masses are estimated, the corresponding components are 
filtered out and the spectral density function is estimated from the filtered 
time series. Two early references on this approach are Priestley (1962a) and 
Priestley (1962b). See Priestley (1981, Chapter 8) for an overview. 

In this paper, we propose a new automatic procedure for estimating a 
possibly mixed spectral distribution. This method has the advantage of A R  
and ARMA estimates in being automatic and the advantage of the test-based 
procedures in giving explicit estimates for the masses and locations of the 
atoms. In the procedure to be studied here, the logarithm of the spectral 
density function is modeled as a polynomial spline, the unknown parameters 
of which are estimated by maximizing an approximation of the log-likelihood 
function. The performance of our procedure is compared with that of A R  and 
ARMA estimates using both simulated and real time series data. 

2. MIXED SPECTRA 

Consider a real-valued second-order stationary time series X, with mean 
E(X,) = E(X,) and covariance function y(u)  = cov(X,, X,,,). Assume that 
the time series has the form 
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P 

] = I  
X ,  = ~ R , c o s ( t A ,  + G I )  + y .  

Here 0 < Al S x; GI are independent and uniformly distributed on [-x, x]; Rl 
are independent, non-negative random variables such that R; has positive 
mean 4p1; and r, is a second-order stationary time series such that E ( Y )  = 
E(X, )  and 

where yc(u) = cov(Y,, Y,,,,). 
For a time series X ,  that satisfies these conditions, we now first define 

several functions related to the spectral distribution. In particular, the spectral 
density function of the time series is given by 

(3) 
l X  
2x I,=--,? 

f , ( A )  = - C yC(u)exp(iiiA) -n s A s n 

which can be extended to ( - m ,  m )  in the obvious manner so as to be periodic 
with period 2n; its line specfrurn is given by 

Jpj if h = 2 A] 
= 10 otherwise 

and its spectral distribittion function is given by 
I 

F(A)  = J->(cu)d(o + Cb((o) -n A s n. 
IOSI 

The autocovariance is given in terms of the spectral distribution function by 

y( u )  = /Ix exp ( i d )  dF( A). 

Note that f, and J ,  are symmetric about zero. If p = 0, then z l l l y ( u ) l  < m ,  

J ,  = 0 and the spectral distribution is absolutely continuous. We refer to k A], 
1 s j S p. as the atoms of the spectral distribution and to pI as the mass of 
the distribution at k A]. Note that if Rl equals 2 v p l  in ( l) ,  then the time 
series is the mixed model discussed in Mackisack and Poskitt (1990). 

The objective of this paper is to develop an adaptive methodology for 
estimating the spectral distribution for the series X,. In particular, we will 
estimate the log of the spectral density function with cubic splines and the line 
spectrum by a sum of Dirac delta functions. The estimation procedure to be 
described in Section 4 will be based upon the periodograrn 

z(')(A) = (2nT)- '  C exp(-iht)X, - n s A s x  I? 17-1 /=I) 

corresponding to the realization X o ,  . , ., X 7 - I  of the time series. If 
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(inconsistent) estimate of the spectral density function. In particular, if 
C1rIUl IY(U)l -=c CZ then 

where the O( T-') is uniform in A (Brillinger, 1981). 
It is convenient to refer to the function f = fc + (T/2z)fd as the rneun 

function. Under the assumptions that the atoms are all of the form 2nj/T for 
some integer j and that the time series is Gaussian, it can be shown that 

where Wj has approximately the exponential distribution with mean one if 
j < T/2 and approximately the 2 distribution with one degree of freedom if 
T is even and j = T/2, and W,, 1 s j S T/2, are asymptotically independent 
(see Brillinger, 1981, Theorem 5.2.6). 

are symmetric about zero, from now on we limit our 
attention to the interval [0, z]. Observe that if the indicated derivatives of 5 
exist, then f S ( O ) ,  fl:(O), fS(n) and f'frx) all equal zero. Let 6,(A) equal one or 
zero according to whether A = a or A # a. Set q =  log f and qc = logf,. Then 
q = q, + q d ,  where q d  = OISA, + * + OPbAp with 01, . . ., O p  > 0. Moreover, 

= (2x/T)f,(exp q d  - 1). In the next section we will use cubic splines to 
obtain a finite-dimensional approximation to qc and hence to q. 

Since fc and 

3. LINEAR MODELS 

First we describe the space of splines that will be used to model the log of the 
spectral density function. Given the positive integer K, and the sequence t l ,  
. . ., t K ,  of knots with 0 s t l  < . . < t K ,  s x, let G, be the K,-dimensional 
space of twice continuously differentiable functions s on [O,n] such that the 
restriction of s to each of the intervals [0, ill, [ ? I ,  t2], . . ., [ tK,- l ,  tK,], [ t K , ,  n] 
is a cubic polynomial, the first derivative of s is zero at 0 and JI, the third 
derivative of s is zero at 0 unless t l  = 0 and it is zero at x unless t K ,  = n. (In 
particular, if K, = 1, then G, is the space of constant functions.) Note that 
the functions in G, can be extended to splines on ( - 0 3 ,  m )  that are symmetric 
about zero, periodic with period ~ J I ,  have a knot at zero if and only if t l  = 0 
and have a knot at x if and only if t K ,  = x. Let B,, . . ., BK, be a basis of G,. 
In our implementation each of these basis functions is a linear combination of 
A, A' and (A - t , ) : ,  for i = 1, . . ., K,. Motivated by the properties of 
B-splines (de Boor, 1978) we choose these linear combinations such that the 
basis functions are nonzero on a bounded interval and that each knot is only 
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used in at most five basis functions. Because of the restrictions on derivatives 
at 0 and JC there are a few more restrictions on the basis functions. 

Next, we describe the space that will be used indirectly to model the line 
spectrum. Given the nonnegative integer Kd and the increasing sequence a l ,  
. . ., a K d  of members of {2nj /T:  1 G j s T / 2 } ,  let Gd be the Kd-dimensional 
space of nonnegative functions s on [0 ,  n] such that s = 0 except at a l ,  . . ., 
aKd .  Set Bj+K,(A) = b,,(A) for 1 S j G Kd. Then B K , + l r  . . ., B, form a basis of 
Gd, where K = Kc Kd. 

Let G be the space spanned by B,, . . ., BK. Set 

c p c ( .  ; 4,) = PlBl + * * * + P K , B K ,  

for Pc = (PI, .  . ., PKJ '  E RKc,  

qd(' ; Pd) = PK,+IBK,+1  + ' * * + P K B K  

for P d  = (/3K,+lr . . ., P K ) '  with /3K,+1, . . ., P K  3 0, and 

cp( * ; P )  = Q?c( - ; P C )  + Pd(  * ; P d )  

for P = (P1,. . ., P K ) ' .  We use cpc( * ; Pc)  to model the logarithm of the 
spectral density function and cp( * ; P )  to model the logarithm of the mean 
function. Thus, the spectral density function corresponding to P is given by 
fc( * ; BE)  = exp { cpc( ; P c ) } ,  the mean function is given by f (  - ; P )  = exp { cp( ; 
P ) }  and the line spectrum is given by 

2n 
T 

fd( * ; P c )  = -L( * ; P C ) b P  {Q)d( * ; P d ) )  - 11. 

Let Y = f(A; P)W, where W has the exponential distribution with mean 
one when 0 < A < n and the 2 distribution with one degree of freedom when 
A = n. The log-likelihood corresponding to the observed value y of Y is given 
by 

for 0 < A s x and y B 0, where we have ignored a term that does not depend 
on P.  Observe that 

for 1 s k s K ,  0 < AS JC and y 2 0. Observe also that 

for 1 s k ,  1 s K ,  0 < A s  n and y B 0. It follows from the last result that 
v ( y  , A; * ) is a concave function for y 3 0 and 0 < A s x. 
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4. ESTIMATION 

Let X o .  . , ., X 7 - 1  be a realization of length T of the time series. For 
1 s j 6 T/2 ,  let 

7-1 2 i2n j t  zi = (2xT)- '  C exp -- I t = = ~  T Ix f1  
be the value of the corresponding periodogram at the (angular) frequency 
A = 2nj/T.  The (approximate) log-likelihood function corresponding to the 
periodogram and the K-parameter model for the logarithm of the mean 
function is given by 

Moreover, 

for 1 k 4 K and p E R" with P K , + l ,  . . ., PK 2 0. Also, 

for 1 s k ,  I -s K and p E R" with Ph.,+', . . ., Pk. 3 0. Note that (4) is 
equivalent to the Whittle likelihood (Whittle, 1961). The maximum likelihood 
estimate fl  = (P I ,  . . ., f l K ) 7  is given as usual by 

the log-likelihood of the model is given by 7 = I($) and th_e maximum 
likelihood estimate of the mean function is given by ?(A) = f(A; p). Similarly, 
the maximum likelihood estimates of the spectral density function and line 
spectrum are given by FC(. ) = f c (  * ; B,) and y L i ( .  ) = if( * ,  B d ) ,  where Bc = 
B1,. . ., fih.,JT and B,r = (BK ,+ , ,  . . ., 6,)'. 

Let S ( p )  denote the score at /3, i.e. the K-dimensional column vector with 
entries al ( f?) /aP, .  Let H ( P )  denote the Hessian at p, i.e. the K X K matrix 
with entries a'I(p)/ap,ap,.  The Newton-Raphson method for computing B is 
to start with $(") and iteratively determine pcrn+')  from f i ( '" )  according to the 
formula 

j j ( r r r + I )  = f j ( " 1 )  - { H("'"")}-ls(pcr,l)), 

Here we employ the Newton-Raphson method with step-halving, in which 
B c f r l +  I )  is determined from Bcrr')  according to the formula 

B f r r i + l )  = f l ( r n )  - 2 - " { ~ ( B ' r ~ i ' ) } - l s ( B ' ~ r i ) )  
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We stop the iterations when I (B(r ' '+ l ) )  - l (B ( rn ) )  S lop6 

5.  SELECTION OF BASIS FUNCTIONS 

Initially, we fit the constant model discussed in Section 3. The location of the 
one knot in this model is of no importance. For simplicity we take t l  = 0. 
After the constant model is fit, we add one knot according to the procedure 
described below. Then we remove the knot at zero and are left with a 
constant model having one knot. 

We continue by successively adding a knot or atom at each step. When 
searching for the location of the knot or atom in adding a basis function, we 
compute the Rao statistic for the addition of a knot, as described below, for 
every frequency A = 2nj/T, 1 S j S T/2, such that IA - r k /  2 2(2n/T) for all 
knots t k  already in the model, and we compute the Rao statistic for the 
addition of an atom for every frequency A = 2nj/T, 1 C j C T/2, such that 
A # ak for all atoms ak already in the model. To facilitate the computation of 
the Rao statistic, we add one extra basis function to our existing basis so that 
the K basis functions span exactly the right K-dimensional space G and only 
one of the basis functions depends on the new knot or atom. To prevent 
atoms with extremely small mass from entering the model, some locations are 
ruled ineligible for atoms; see Section 10.6 for the details. We add the knot 
or eligible atom that has the largest Rao statistic, after which we redefine the 
basis functions of G.  

Given a model with K - 1 basis functions and a potential new knot or 
atom, let be the maximum likelihood estimate of the K-dimensional 
coefficient vector subject to the constraint that the coefficient of the new basis 
function equals zero. Then the co_rresponding Rao ~tatistic~((6e.3.6) of Rao, 
1973) equals {S(~O)}'{Z(~o)}-'S(~O), where Z(BO) = - H ( P O )  with S (  - )  and 
H (  - ) corresponding to the model with K basis functions. Issues involved in 
the efficient simultaneous computation of such Rao statistics are discussed in 
Section 10.1. Then, in Section 10.2, the Rao statistic is derived as the increase 
in the quadratic approximation to the log-likelihood function that would 
result from adding the knot or atom under consideration. 

EXAMPLE. Let T = 200. Assume that at some time during the stepwise 
addition stage of the algorithm the LSPEC model has knots at frequencies 
2n9/200, 2n16/200 and 2n45/200 and an atom at frequency 2n30/200. Then 
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LSPEC will compute the Rao statistic for adding a knot at the frequencies 
2nj/200, j = 1, . . ., 6, 12, 13, 19, . . ., 42, 48, 100. The other frequencies of 
the form 2nj/200 are ineligible either because there is already a knot at that 
frequency, or because they are within 2n2/200 of a knot. LSPEC will also 
compute the Rao statistic for adding an atom at the frequencies 2nj/200, for 
j = 1, . . ., 29, 31, . . ., 100. Except for the present location of the atom, each 
location of the form 2nj/200 is eligible. 

Upon stopping the stepwise addition process (according to a rule that is 
described in Section 10.3), we proceed to stepwise deletion. Here we 
successively remove the least statistically significant among the K remaining 
knots and atoms until only one basis function remains. Note that since the 
subspace based on K - 1 knots and atoms is a proper subspace of dimension 
one smaller than the space using K knots, removing a knot is equivalent to  
putting down a restriction c‘fi = 0, where c is a coefficient vector (similar to a 
vector of contrasts in hypothesis testing) determined by our choice of basis 
functions, discussed in Section 3. The statistical significance of a remaining 
knot or atom is now measured by the absolute value of its Wald statistic 
Z/SE(Z), where Z = c‘fi and SE(Z) = [~‘ (Z(f i ) } -~c] ’ ’~;  here I @ )  = - H ( B )  
with H (  - ) corresponding to the model with K basis functions. In the context 
of the removal of an atom, Z is the coefficient 6 of the corresponding basis 
function; in the context of the removal of a knot, Z is the jump of the third 
derivative of zjDjBj at the knot, where the Bjs are defined in terms of the K 
remaining knots. In Section 10.2, the square of the Wald statistic is derived as 
the decrease in the quadratic approximation to the log-likelihood function 
that would result from deleting the knot or atom under consideration. 

EXAMPLE (CONT.). If the same model as above was obtained during the 
stepwise deletion stage of the algorithm, LSPEC would compute the Wald 
statistic for the removal of each of the three knots as well as the Wald 
statistic for the removal of the atom. Depending on which Wald statistic is the 
smallest in absolute value, either one of the three knots or the atom could be 
removed. 

During the combination of stepwise addition followed by stepwise deletion, 
we get a sequence of models indexed by Y with the vth model having p v  
parameters. Let 1, denote the log-likelihood of the vth model, and let 
AIC,,, = -21, + a p ,  be the AIC with penalty parameter a for this model. 
We select the model corresponding to the value 9 of Y that minimizes AIC,,, 
as the optimal model for cycle one. (Typically we do not allow atoms to enter 
during the first cycle.) Then we proceed with another cycle of stepwise 
addition followed by stepwise deletion, where the initial knots and atoms are 
those that were in the optimal model for cycle one. Thus we obtain an 
optimal model for cycle two. Since the initial knots of the second cycle could 
be removed during stepwise deletion, some of the knots and atoms that were 
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found optimal during cycle one may no longer be in the model at the end of 
cycle two. We continue these cycles of a combination of stepwise addition 
followed by stepwise deletion until either the optimal model does not change 
or we reach a maximum number of cycles. In our experience, when the true 
underlying spectral distribution is mixed, one cycle of stepwise addition and 
deletion might not be enough to find the proper balance between the 
continuous component and the discrete component of the estimated spectral 
distribution. We have found in such situations that a two-cycle or multi-cycle 
procedure is more likely to find a good model. 

EXAMPLE (CONT.). Suppose that the same model above is the optimal 
model at the end of the second cycle of stepwise addition and stepwise 
deletion. If it was fit during the addition stage of the second cycle, there is no 
need to continue adding, since the algorithm was already in the same 
situation during the addition stage of the second cycle. However, if the model 
was fit during the deletion stage, it is possible that the fit would improve 
during another addition and deletion cycle. In particular, LSPEC would now 
examine the knots and atoms for addition that were mentioned above. 

In light of Kooperberg and Stone (1992) and our experience in the present 
investigation we recommend choosing CY = log II as in BIC, where n = [ T/2] is 
the number of ordinates of the periodogram that are included in the 
log-likelihood. 

6. USER INTERFACE 

A program for implementing the logspline estimation of a spectral distribu- 
tion (LSPEC) as described in this paper has beeen written in C and an 
interface based on S (see Becker et a l . ,  1988; Chambers and Hastie, 1992) 
has also been developed.' The interface consists of seven S functions: clspec, 
dlspec, 1spec.fit , 1spec.summary , lspec.plot, plspec and rlspec. The function 
1spec.fit performs the model fitting and model selection tasks and supplies the 
modest output that is used as input to the other functions. The function 
dlspec gives the spectral density function and line spectrum corresponding to 
the fit obtained by 1spec.fit. Similarly, plspec gives the spectral distribution 
function corresponding to this fit, clspec gives the autocovariance and 
autocorrelations corresponding to the fit and rlspec gives a realization of a 
stationary Gaussian time series corresponding to the fitted spectral distribu- 
tion. The function Ispecsummary uses the output of 1spec.fit to provide 
summary information about the fit. Finally, 1spec.plot uses the output of 
1spec.fit directly to produce a plot of the spectral density function, line 
spectrum or spectral distribution function. 

It should be noted that an approximate, nonadaptive version of logspline 
spectral density estimation (without atoms) is readily available in standard S. 
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Specifically, set freq = 2xj/T for 1 6 j < T/2, and period = 4 for 1 s j < T/2. 
Then the S command 

fixed <- glm(period - bs(freq, k), family = quasi(log, Ctmun2”)) 

fits a B-spline with k degrees of freedom to the spectral density function. 
However, the location and number of knots is not optimized, no atoms are 
included and the first and third derivatives of the spectral density estimate at 
0 and x are not constrained to equal zero. 

7. SIMULATED EXAMPLES 

In this section, our procedure is compared with A R  and ARMA spectral 
estimates using the automatic model selection rules AIC and BIC. The 
comparison involves the ARMA model with orders p and q defined by 
yl + ( Y ~ Y , - ~  + . + L Y ~ Y , - ~  = E, + B l ~ , - l  + . . + / 3 q ~ t - q ,  where E ,  -iid N ( 0 ,  
a’). The spectral density function for this model is given by 

u2 11 + P1exp(-iil) + . . .  + Pqexp(-iqA)12 
2n 11 + cyl exp (-in) + * + aP exp (- ipA)12 

f(4 = 

The pth-order A R  estimate of the spectral density function is defined by 

where . . ., &p and i3: are the Yule-Walker estimates of a1, . . ., mP and 
u:, respectively. In the ARAIC estimate the order p is chosen to minimize 
the Akaike information criterion AIC(p) = n log (at) + 2 p ;  in the ARBIC 
estimate the order p is chosen to minimize the (modified) Bayes information 
criterion BIC(p) = nlog(i3f) + log(n)p (see Priestley, 1981, Section 5.4). 
The ARAIC estimate of the spectral density function tends to be considerably 
more irregular than the LSPEC and ARBIC estimates when the true spectral 
density distribution is absolutely continuous. Thus, in the interest of simpli- 
city, we do not show ARAIC estimates in Figures 1-8 later. Note that in our 
examples, we computed AIC(p) and BIC(p) for p = 0, 1, . . ., 20. 

ARMA estimates for the spectrum can be defined in a similar fashion as 
the AR estimates above. While the Yule-Walker algorithm for AR estimates 
is stable, fast and provides a unique solution, algorithms to fit ARMA models 
based on maximum likelihood are less stable and very sensitive to starting 
values. In particular, both ARMA algorithms that we used, the one in S-Plus 
based on the algorithm from Ansley (1979) and the one available from 
TIMESLAB (Newton, 1988), iteratively optimize the likelihood function. 
Since the likelihood function may have more than one maximum, starting 
values are of crucial importance. 

In our computations, when we wanted to fit an ARMA ( p ,  0) model using 
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maximum likelihood, we used the Yule-Walker estimates as starting values, 
while if we wanted to fit an ARMA(p, q )  model with q > 0, we used 
as starting values the estimated parameters from a previously fitted 
ARMA(p, q - 1) model with an additional 0 added for the extra parameter. 
Nevertheless, we had serious problems obtaining ARMA estimates in a 
systematic fashion. We list some of the problems that we encountered using 
the TIMESLAB software (our experience in using the S-Plus software was 
very similar). 

(i) In all our experiments (many more than discussed in this paper) we 
tried to fit ARMA(p, q )  models with p = 0, 1, . . ., 10 and q = 0, 1, . . ., 5. 
We set the maximum number of iterations to 5000 (see below for the effect of 
this on the CPU time). We used the starting values as described above. 
Nevertheless, 23% of the time the algorithm did not converge, although we 
could use parameter estimates for the model selection procedure. More 
seriously, 2% of the time the algorithm returned an error state, so we were 
not able to use parameter values. (These numbers do not include the 
simulation study reported in Table IV, for which the percentages were much 
higher.) These problems are likely due to occasional factorization infeasibil- 
ity. See Newton (1988, p. 224) and Pawitan and O’Sullivan (1994). (If the 
maximum number of iterations were reduced to 1000 the algorithm would 
have converged only 44% of the time.) In our examples below we used the 
model with the smallest BIC or AIC value, irrespective of the model being 
obtained after convergence or when the maximum number of iterations was 
reached. 

(ii) We had three types of computer workstations available for our compu- 
tations: Sun SPARC, SGI Indy and DEC Alpha. When we ran the identical 
code using the same data on different machines we typically got different 
results. Usually these differences come from models that had converged on 
one machine but not on the other; occasionally, however, two versions of the 
same program using virtually identical starting values claimed convergence 
while providing entirely different parameter estimates. In our examples below 
we used the results from the DEC Alpha computers, which provided the 
highest percentage of convergence. 

(iii) The choice of 5000 as the maximum number of iterations in the 
ARMA fit had a serious effect on the CPU time. For example, to fit all 
ARMA models using the TIMESLAB software for the example with n = 500 
in Figure 1 below the program used 806.3 seconds CPU time on a Sun 
SPARCstation 2. Were the maximum iterations reduced to 1000 (more than 
doubling the number of cases with no convergence), the CPU time would be 
reduced to 197.9 seconds. By comparison, on the same machine, the AR 
procedure took 0.5 seconds CPU time, and the LSPEC procedure took 6.5 
seconds CPU time. (If LSPEC were run with the options updown=l and 
maxatoms=O to allow for only one cycle of model fitting and no atoms, the 
CPU time would be reduced to 2.4 seconds.) This comparison is actually 
tainted against the AR and LSPEC procedures, since these procedures were 
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run from within S-Plus, causing substantial overhead, while the ARMA 
procedure was run as a Fortran program. 

We believe that because of these problems associated with ARMA spectrum 
estimation, the practical utility of the existing implementations of this 
estimation procedure is extremely limited. Nevertheless, in our examples 
below we will be comparing LSPEC estimates with ARBIC and ARMABIC 
estimates. 

For Figure 1 we generated sequences of length 100 (part (a)) and 500 (part 
(b)) from the AR(3) process defined by Y ,  - 1.5Y,-1 + 0.7Y,-, - 0.1Y,-3 = 
E, ,  where E ,  -iid N ( 0 ,  1). Some relevant information about the estimates in 
Figures 1-4 is summarized in Table I below. 

Observe that the ARBIC, ARMABIC and LSPEC estimates are very 
similar. This is typical for low-order A R  models, where the difference 
between the estimates is generally much smaller than the difference between 
either estimate and the true spectral density function. The main difference 
between the estimates is that the ARMABIC estimate for T = 100 is 
considerably higher for frequencies close to zero. 

From Table I we notice that when T = 500 the ARBIC model has order 2 
and the ARMABIC model has order (2,0), but the curves in Figure 1 do not 
coincide. This may seem contradictory, since an ARMA(p,O) model is an 
AR(p) model. However, when fitting an A R  model we use the Yule-Walker 
estimates, which are not identical to the maximum likelihood estimates that 
we employ when fitting an ARMA model. 

For Figure 2 we generated sequences of length 100 and 500 from the mixed 
process X,  = Y,  + Z, ,  where Y,  is the same data that was used for Figure 1 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 
(b) 

FIGURE 1. Estimated spectral density functions for samples from an AR(3) process: (a) T = 100; 
(b) T = 500; -, LSPEC; -----, ARBIC; - - -, ARMABIC; . . . . . . , true. 
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TABLE I 
ORDERS FOR THE AR AND ARMA ESTIMATES A N D  N U M B ~ R  OF AIOMS AND KNOTS FOR THE 

LSPEC ESTIMATES FOR THE EXAMPLES I N  FIGURES 1-4 

ARAIC ARMAAIC 
LSPEC (not shown) ARBIC (not shown) ARM A B I C 

atoms knots P P P 4 P 4 

Figure l(a) 0 2 6 2 6 0 1 1 
Figure l(b) 0 3 3 2 2 1 2 0 
Figure 2(a) 1 2 5 2 5 2 5 2 
Figure 2(b) 1 3 20 6 4 3 4 3 
Figure 3(a) 0 4 5 3 3 4 0 4 
Figure 3(b) 0 7 14 8 1 4 1 4 
Figure 4(a) 0 5 8 1 1 4 1 4 
Figure 4(b) 0 6 15 5 8 3 2 3 

I I 

(a) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 (b) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 

FIGURE 2. Estimated spectral density functions for samples from a mixed process: (a) T = 100; 
(b) T=500; -, LSPEC; -----, ARBIC; - -  -, ARMABIC: . . . . .  , true. Atoms are 

indicated by spikes starting at the height of the spectral density function. 

and Z,  = 6cos (tn/5 + 4) with 4 being uniformly distributed on [-n, n]. (The 
constant 6 was chosen so that var (E;) = 2 var ( Z , ) . )  For both sample sizes 
LSPEC places an atom at n/5, the correct harmonic frequency. For the 
smaller sample size the mass of the atom was 8.05, and for the large sample 
size it was 8.43; the true mass at this frequency is 6’/4 = 9. As can be seen 
from Figure 2, the addition of an atom to the spectral distribution does not 
noticeably alter the LSPEC estimate of the spectral density function. The 
ARMABIC estimate also changes little from the estimates shown in Figure 1, 
except for the noticeable smaller estimate for T = 100 for frequencies close to 
zero. However, the ARBIC estimate changes dramatically, not only for 
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frequencies close to x / 5 ,  but also for frequencies close to zero. The ARAIC 
estimate changes slightly less when an atom is added; in particular, the peak 
near the location of the atom is narrower. However, the change is still quite 
large, and the ARAIC estimate even without the harmonic component is 
considerably more wiggly than the other estimates. 

For Figure 3 we generated sequences of length 100 and 500 from the 
MA(4) process = E ,  - 0 . 3 ~ , - ~  - O . ~ E , - ~  - 0 . 3 ~ , - ~  + 0 . 6 ~ , - ~ ,  where E ,  -]Id 

N(0, 1). As can be seen, the LSPEC and ARMABIC estimates look more 
like the true spectral density function than the ARBIC estimate. For the 
ARAIC estimate, the difference is far more dramatic. In particular, from 
Table I we note that the ARAIC models are of the order 5 and 14 for 
T = 100 and T = 500, respectively. This is typical of the erratic behavior of 
ARAIC estimates for MA models that cannot be well approximated by 
low-order AR models. 

Both our examples with spectral densities are ARMA processes. To 
investigate what would happen if the true underlying process is not an 
ARMA process we generated sequences of length 100 and 500 from the 
process Y14’ = 0.423Y;” + Y13’, where Yj’) is the same data that was used for 
Figure 1 and YY’ is the same data that was used for Figure 3. The constant 
0.423 was chosen so that the contributions to the marginal variances of the 
two components were approximately equal. As can be seen from Figure 4, all 
estimates are quite good in this situation, except for the ARBIC estimate for 
the smaller sample size. 

In the remainder of this section we focus on processes of the form 
P 

X ,  = R, cos ( [ A ,  + @,) + E ,  ( 5 )  
J = 1  

(a) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 (b) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 

FIGURE 3. Estimated spectral density functions for samples from an MA(4) process: (a) T = 100; 
(b) T = 500; -, LSPEC; -----, ARBIC; - - -, ARMABIC: . . . . ., true. 
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I I I I I I 

(a) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 (b) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 

FIGURE 4. Estimated spectral density functions for samples from an AR(3) process mixed with 
an MA(4) process: (a) T =  100; (b) T =  500; -, LSPEC; ----- , ARBIC: - - - ,  

ARMABIC; . . . . ., true. 

where R, are positive constants, @j are independent and uniformly distributed 
on [-x, x] and E, -iid N(0, 1). 

First let p = 0. Then X, is Gaussian white noise. In this case the LSPEC 
estimate should have one knot and no atoms, while the two AR estimates 
should have order zero and the two ARMA estimates should have order 
(0,O). To find out how frequently this actually happens, we generated 100 
samples of various sizes and applied the LSPEC, ARAIC and ARBIC 
estimates to each sample. The results are summarized in Table 11. According 
to this table the ARBIC and ARMABIC estimates consistently pick the right 
model for large sample sizes, LSPEC picks the right model most of the time, 
while the ARAIC and ARMAAIC estimates are inconsistent. 

In Figure 5 we display LSPEC, ARBIC and ARMABIC estimates for 
several models generated from ( 5 ) ,  all with T = 500. (The AIC estimates are 
extremely close to the BIC estimates.) Only the part of the spectrum near the 
true atoms is shown. In this figure we show either the estimated line spectrum 
or the estimated spectral density function. The actual values for p ,  Rp and Ap 
are given in Table 111. 

TABLE I1 
NUMBER OF TIMES THAT THE CORRECT MODEL IS ESTIMATED WHEN THE TRUE PROCESS IS 

GAUSSIAN WHITE NOISE 

Sample size LSPEC ARAIC ARBIC ARMAAIC ARMABIC 

50 76 71 93 54 84 
100 90 77 99 48 97 
500 90 74 100 42 98 

lo00 92 70 100 48 100 
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0.90 1 .oo 0.90 1 .oo 0.90 1 .oo 0.90 1 .oo 
( 4  

FIGURE 5. Estimated line spectrum (-, LSPEC) and spectral density functions (----, 
ARBIC; - - -, ARMABIC) for various samples of size 500 from harmonic processes with 

white Gaussian noise. 

TABLE I11 
ACTUAL VALUES FOR p ,  R ,  AND A,, IN FIGURE 5 

Figure P Rl 1, R2 4 R3 A3 

5(b) 
5(c) 
5(d) 

5(a) 1 12 0.3056~ 
2 6 0.300n 6 0 .312~  
2 6 0 . 2 9 2 ~  6 0 .316~  
3 4 0 . 3 0 0 ~  4 0 .304~  4 0 . 3 0 8 ~  

In Figure 5(a), the atom is not of the form 2nk/T with k an integer. Note 
that LSPEC handles this by estimating two atoms, one at 0 . 3 0 4 ~ ~  and one at 
0 . 3 0 8 ~ ~ ,  the two closest frequencies at which LSPEC may locate atoms. The 
true atoms for Figures 5(b) and 5(c) are of the form 2nk/T with k an integer. 
We note that LSPEC places both atoms in each of these two plots correctly. 
The ARBIC and ARMABIC estimates, on the other hand, ‘lump’ both atoms 
together in one peak in Figure 5(b), although the true atoms are separated by 
3 x 2n/T in the corresponding model. Observe that ARBIC correctly fits twin 
peaks in Figure 5(c), in which the true atoms are separated by 6 x 2n/T ,  
while ARMABIC still lumps both peaks together. If there are three consecu- 
tive atoms, as in Figure 5(d), LSPEC estimates the spectral distribution as 
having a density function. The two spectral density estimates are on the same 
scale in this figure. Here one could argue that ARBIC and ARMABIC are 
better than LSPEC, since the latter underestimates the variance of the 
corresponding process. 

To investigate how frequently the various estimates separate two atoms, we 
carried out the following simulation. We generated 100 series of length 500 
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from model (5) with p = 2, R ,  = R2 = R ,  A, = 0 . 3 ~  and 4 = A, + 2dn/500 for 
various values of R and d. For LSPEC we counted how often it places atoms 
at A, and 4. For ARAIC and ARBIC we counted how often 2f^{(A, + 4)/2} 
< min { f ^ ( A , ) ,  ?(a)}. The results are summarized in Table IV below. 

As can be seen from this table, LSPEC essentially always estimates two 
atoms when two atoms are present. For ARAIC to yield two peaks, the 
atoms must be at least about 6 x 2n/T apart even when the signal to noise 
ratio is very large. For ARBIC the two atoms need to be even further apart. 
The ARMA procedures perform better; for them to yield two peaks, the 
atoms must be at least about 4 x 2n/T apart. It should also be noted that if 
ARBIC and ARAIC both estimate two atoms, then the two estimates are 
usually very similar, while the two ARMA estimates are virtually always 
identical in this set-up. Because of the convergence problems that we 
mentioned above for the ARMA procedures, when R was 500 all high-order 
models produced errors on a few occasions out of the 100 simulations, 
making it impossible for ARMAAIC and ARMABIC to score a 100 in these 
situations. 

8. REAL EXAMPLES 

Figure 6 shows the result of applying LSPEC, ARBIC and ARMABIC to the 
Canadian Lynx data, which has been studied extensively in the time series 
literature; see, for example, Campbell and Walker (1977), Tong (1977), 
Bhansali (1979) and Priestley (1981). (Actually, we applied the various 
estimates to the logarithm to the base ten of the data as has been done in 
previous analyses of this data.) An interesting issue involving this data is the 
existence of an atom at an angular frequency near (24/114)x, which cor- 
responds to a period of 9.5 years. This cycle is usually explained as being due 
to a predator-prey relationship between the Canadian Lynx and the snow- 
shoe hare, its most important source of food. When we applied LSPEC to 
this data we actually did obtain an atom at this frequency. The mass of this 
atom is about 0.089, and it explains 56% of the variability in the data. Both 
the ARMAAIC and the ARMABIC models are of order (3,3).  As can be 
seen from Figure 6, these models agree with the LSPEC estimates with 
respect to the possible existence of an atom. The ARBIC model has order 2, 
while the ARAIC model has order 11. 

Our second real example involves Wolfs sunspot data (Morris, 1977). The 
data consists of the annual average value of the daily index of the number of 
sunspots for the years 1755-1964. Again the discussion centers around the 
existence of an atom in the spectral distribution. Newton (1988) summarizes 
this as: ‘The basic property of these data is that there appear to be cyclic 
patterns but that these patterns are not perfectly cyclic.’ Here the LSPEC 
estimate, shown in in Figure 7, has no atoms and five knots, thus suggesting 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 

 FIGURE^. Estimated spectral density functions for the Canadian lynx data ( T  = 114): -, 
LSPEC; -----, ARBIC; - - -, ARMABIC. 

I 
I I I I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

FIGURE 7.  Estimated spectral density functions for the sunspot data ( T  = 215): -, LSPEC; 
_ _ _ _ _  , ARBIC; - - -, ARMABIC. 

that an absolutely continuous distribution fits the data. The ARAIC model 
has order 8, the ARBIC model has order 2, the ARMAAIC model has order 
(8 , l )  and the ARMABIC model has order (3,4). Note that the ARBIC 
estimate is considerably smaller near zero than the other estimates, while the 
ARMABIC estimate has a considerably higher peak near the frequency n/6. 

The final example involving real data is a series of length 600 of monthly 
water levels in Lake Erie from 1921 to 1970, which is one of the running 
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examples in Newton (1988). The estimates for this example are shown in 
Figure 8. Here LSPEC assigns mass 0.4 to an atom at the angular frequency 
n/6, which corresponds to a period of one year. This atom explains about 
22% of the variation in the series. The ARAIC and ARBIC estimates both 
have order 13 and the ARMAAIC and ARMABIC estimates both have order 
( 8 , 5 ) .  

9. DISCUSSION 

In light of the examples in Sections 7 and 8 and much additional experience 
with LSPEC, we are convinced that this methodology is of considerable 
practical value in data analysis. As can be seen from Figures 1-5, the LSPEC 
estimates of both the line spectrum and the spectral density function are fairly 
accurate, whether the true spectral distribution is discrete, continuous or 
mixed. In particular, when the true spectral distribution is mixed, the 
estimate of the spectral density function is not influenced by the discrete 
component of the spectral distribution (see Figure 2). Even if two atoms are 
close together, LSPEC estimates them as two separate atoms. If three or 
more atoms are close together (i.e. at consecutive frequencies), however, 
then LSPEC typically assigns the corresponding mass to the spectral density 
function. 

The performance of LSPEC when the true underlying spectrum is discrete 
is in sharp contrast to that of ARAIC and ARBIC. For the AR procedures to 
separate two atoms, they need to be at least about 6 X 2n/T apart. Generally, 
in our experience, when the underlying spectral distribution is mixed, the AR 

I 
I 1 I I ! 1 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

FIGURE 8. Estimated spectral density functions for the Lake Erie data ( T  = 600): -, LSPEC; 
----- , ARBIC; - - -, ARMABIC. 
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estimates of the spectral density function near the atoms are rather poor and 
ARBIC performs worse than ARAIC. When one atom is present, ARMA 
estimators perform better than AR estimates, .and they are comparable with 
LSPEC estimates. However, when there is more than one atom, as is the case 
in Figures 5(b)-5(d) and Table IV, LSPEC performs much better than the 
AR and ARMA procedures. 

When the true spectral distribution is absolutely continuous, LSPEC 
is competitive with ARBIC and ARMABIC, while the ARAIC and 
ARMAAIC estimates are more wiggly. In particular, when the underlying 
process is an AR process, ARBIC, not unexpectedly, performs slightly better 
than LSPEC. However, if the underlying process cannot be well approxi- 
mated by a low-order AR process as in the case of Figures 3 and 4, then 
LSPEC and ARMABIC usually outperform ARBIC. 

A limitation of LSPEC is its ability to distinguish between very narrow 
peaks in the spectral density function, which might be only 2 x 2x/T wide, 
and a few tightly clustered atoms. On the other hand, AR and ARMA 
estimates do not disginguish at all between peaks in the underlying spectral 
density function and atoms. Another current limitation of LSPEC is that the 
fitted atoms are restricted to the form 2nj/T.  If a true atom is not of this 
form, the LSPEC estimate typically has two atoms, one on either side of the 
true atom. Presumably, a refined version of LSPEC could be developed that 
would allow atoms at any frequency. In the mean time, however, we feel that 
the present LSPEC implementation is a useful addition to the toolbox for the 
analysis of time series. 

Under suitable conditions, Kooperberg et a l .  (1995) obtain the L2 rate of 
convergence for a nonadaptive version of logspline spectral density estima- 
tion. This result lends theoretical support to LSPEC. 

10. NUMERICAL IMPLEMENTATION 

10.1. The Rao statistic 

We elaborate here on the implementation of the Rao statistic for the addition 
of a knot to a model. (For the addition of an atom all but one of the terms in 
equations comparable with (6)-(8) below are zero, so the computation of the 
corresponding Rao statistic is trivial.) Given a model with K, - 1 knots t l ,  
. . ., t K , - l ,  Kd atoms a l ,  . . ., a K d  and a potential knot at t:, define a new 
basis function B: by 

3{(n - t l )2  - (n - t* 
BZ(A) = K ,  )A2 + (A - t:): - (A - t,): 0 zs A c n 

2n 
where x, = max (0, x). Set 

K - 1  

g, = 4 e x p { - z l B k B k ( F ) }  1 c j c  T/2 
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where Bk are the maximum likelihood estimates of Pk for the model with 
K - 1 parameters. 

To compute the Rao statistic, the following new elements of the score 
function and Hessian need to be computed: 

and 

1 s  k C K, - 1 (8) 

where n = [ T / 2 ] .  

compute 
Before we compute the Rao statistic for any potential knot t g ,  we first 

I 

amI = 5'9) gj 1 s m G T / 2  and 0 G 1 6 
]=1 

and 

bmIk = $ ( y ) ' g j B k ( F )  1 6  m C n ,  0 G I < 3 and 1 S k G K, - 1. 
j=l  

Since B g  is a cubic polynomial, on each of the three intervals 
[O,min(tl, t g ) ] ,  [min(tl, t : ) ,  max(tl, t t ) ]  and [max(t,, t g ) , ~ ]  we can com- 
pute all the new elements in O( K )  CPU-time using the values of a,, and bmIk. 
(Note that S(@O)k equals 0 unless k = K . )  It follows by elementary matrix 
algebra (see Rao, 1973, Problem 1.2.6) that the Rao statistic equals 

{ S ( B O > K > 2  

H ( B 0 ) K K  - h'A-'h 
where h is the column vector of length K - 1 with the elements H ( f i o ) K k ,  
1 G k G K - 1 ,  and A is the ( K  - 1 )  X ( K  - 1) matrix with the elements 
H ( B O ) j k ,  1 S j ,  k s K - 1 .  Therefore, we can compute the Rao statistic for 
all frequencies 2 n j / T ,  1 6 j S T / 2 ,  in K 2 T / 4  + O ( K T )  operations. 

10.2. Quadratic approximation to the log-likelihood 

Let Q be a quadratic polynomial on [Wq having a negative definite Hessian 
matrix H ,  and set Z = - H .  Also, let 8 maximize Q on [Wq and let Bo E [Wq. 

Then 

0 = V Q ( B )  = VQ(Bo)  + H ( B  - B o )  
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so - Po = Z-'VQ(Bo),  hence 

Q ( B >  = Q ( B o >  + (B - BdTvQ(Bo) + %B - B o ) ~ H ( B  - B o )  

= Q @ o )  + ; {VQ(BO))~Z- 'VQ(BO> 
and therefore 

2 { Q ( B >  - Q(h> = { V Q ( @ O ) > ~ I - ' V Q ( B O ) .  (9) 
Suppose now that BO maximizes Q ( P )  subject to the constraint that A/? = 0, 
where A is a p x q matrix having rank p .  Then A &  = 0. By the Lagrange 
multiplier theorem, there is a A E Rp such that V Q ( B o )  = ATA. It follows from 
(9) that 

2 { Q ( B )  - Q(Bo)}  = ATAZ-'ATA. 

2 { Q ( B )  - Q ( B o ) )  = (AB>T(AZ-'AT)- ' (AB) .  

(10) 

(11) 

Moreover, B - Bo = Z-'ATA, so A B  = A ( B  - Po) = AZ-'ATA. Thus, by (lo), 

If Q is the quadratic approximation to the log-likelihood function at Bo, 
then the right side of (9) is the Rao statistic. If Q is the quadratic 
approximation to the log-likelihood function at B. then the right side of (11) 
is the square of the Wald statistic. 

10.3. Number of basis functions 

We stop the addition of basis functions when one of the following three 
conditions is satisfied: 

(i) the number K of basis functions equals K,,,,  where the default for 

(ii) 7, - 7,  < f (  K - k )  - 0.5 for some k with 3 S k zs K - 3, where 1 k is 
the log-likelihood for the model with k basis functions (this suggests that 
adding more basis functions would waste CPU time since it is unlikely to yield 
an improved fit); 

(iii) the search algorithm, as described above, yields no possible position 
for a new basis function. 

Note that the default value for K,,, is somewhat arbitrary and mainly the 
result of experience. However, the power rate is somewhat motivated by the 
theoretical results in Kooperberg et al .  (1995), the n/4 bound prevents 
models for small data sets from being too large, while the constant upper 
bound prevents models for large data sets from being too large. 

K,,, equals max (15, min(4n1'', n/4,30)}; 
A 

10.4. Niimerical problems 

Occasionally, there are numerical problems in carrying out the Newton- 
Raphson method when the LSPEC program is applied to a given time series. 
In particular, this happens when some Z,/r is very close to zero (of the order 
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of magnitude of where 1 is the average value of I j ,  1 6 j -‘ n.  It can 
also happen if, for a fairly long sequence, the algorithm puts knots too close 
together. We overcome these numerical problems by the following fixes: 

(i) the first time a numerical problem occurs, we restart the algorithm using 
ITinstead of 4,  where IT= Ii + 10-6T; 

(ii) the kth time such a problem occurs, where 2 s k S 5, we restart the 
algorithm but require that any knots that are added differ by at least 
( k  + 1)2x/T from the knots already in the model; 

(iii) the sixth time the problem occurs, we terminate the program with an 
error message. 

10.5. Autocovariances and random series 

Let M be a large positive integer. We approximate the spectral distribution 
having spectral density function fc by the discrete distribution having the line 
spectrum fc, where 

x , -  [ Mfc(A) if A = j n / M  with ljl G M - 1 

otherwise 

Note that (3) can be inverted to yield that y,(u) = ITn exp (iuA)$(A) dA. The 
fitted autocovariance function 7 is defined as the autocovariance function 
having the line spectrum = fc + (T/2n)f^d,  which is given by 

(see Isaacson and Keller, 1966, Section 5.1). Using the fast Fourier trans- 
form, we can compute p(u) ,  u = 0, . . ., M ,  in order M log M operations. 

1 6 j -‘ M ,  be independent normal random variables 
having mean zero and such that var ( Uo) = f(0) and var ( U , )  = var ( y )  = 
f c ( j x / M ) / 2 ,  1 -‘ j-‘ M .  Set Zo = Uo and 2, = U, + i y  and Z-, = U, - iq, 
1 S j S M .  Let R,, 1 6 j -‘ Kd, be independent nonnegative random variables 
such that 2R:/fd(a,)  has the 2 distribution with two degrees of freedom, and 
let S,, 1 s j 6 Kd,  be independent random variables each having the uniform 
distribution on [ - x ,  n]. Then 

Let U, and U, and 

K d  M 

j = l  j = - M  
XT = ~ , c o s  (taj + sj> + C, exp ( ?)zj 

is a real-valued Gaussian stationary time series with line spectrum f and 
hence autocovariance function 7 (see (1)). Using the fast Fourier transform, 
we can compute Xr, t = 1 - M ,  . . ., M ,  in order M log M operations. 

Alternatively, it is possible to set R, = 2{fd(a,>}”* in (1). In that case, XTis 
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a stationary time series that has the form of the mixed model studied in 
Mackisack and Poskitt (1990). 

As the default in implementing the above formulas, we choose M to be the 
smallest power of 2 that is greater than or equal to the maximum of 1024 or 
W, where W is the maximum of the length of the original time series or the 
largest lag among the autocovariances or the length of the random time series 
requested. 

10.6. Atoms with small mass 

In order to prevent spurious atoms from being included in the estimated 
spectral distribution, LSPEC avoids entering an atom having mass less than 
bTu2,  where u2 is the variance of the time series. In later stages, LSPEC will 
not add an atom at a frequency that was disallowed at an earlier stage 
because its mass was too small. Also, at the stepwise deletion stage, atoms 
having mass less than bTaZ are automatically removed. The default value for 
bT is motivated by the requirement that, when applied to Gaussian white 
noise, LSPEC should include an atom in the estimated spectral distribution at 
most 5% of the time. 

Specifically, let Xi, 0 S i s T - 1, be independent random variables with 
variance u2. Then I,, 1 S j S T / 2 ,  are asymptotically independent exponential 
random variables with mean u2/2x. If LSPEC fits one atom, we expect that it 
is at the frequency corresponding to the largest value I *  of 4. The estimate 
of f at this frequency would be I*  instead of u2/2x and the estimate of fd 
would be about ( 2 d *  - u 2 ) / T .  Thus bT is determined by the requirement 
that 

Here 2nZ*/(a2T) has approximately the distribution of the maximum of n 
independent random variables each having the exponential distribution with 
mean one, where n = [ T / 2 ] .  Thus (13) can be rewritten as P(Y < TbT + 1) 
= 0.95'/", where Y is a random variable having the exponential distribution 
with mean one. Therefore we get that 

-lOg(l - 0.95l1") - 1 
T 

bT = 

In particular, bloo = 0.059 and b500 = 0.015. 

APPENDIX: DOCUMENTATION OF S FUNCTIONS 

A. 1. 1spec.plot 

Description 
1spec.plot plots a spectral function fitted with Ispec.fit. 
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Usage 
Ispec.plot(fit, what = “b”, n, add = F, . . .) 

Arguments 
fit 
what 

A list like the output from Ispec.fit. 
What should be plotted: b (spectral density and line spectrum superim- 
posed), d (spectral density function), 1 (line spectrum) or p (spectral 
distribution function). 
The number of equally spaced points a t  which to plot the fit. Default is 
max (100, fit$sample). 
Indicate that the plot should be added to an existing plot. 
All regular plotting options as desired. 

n 

add ... 
Value 
This function produces a plot of an lspec fit at n equally spaced points from 0 to n 
(from -n to n if what = ‘p’). Use xlim = c(from,to) to  change the range of these 
points. If add = T ,  xlim is taken as the limits of the plot to which the present curve is 
added. If what = ’p’, the plotting range cannot extend beyond the interval [ -n, n]. 

A. 2. Ispec. summary 

Description 
Ispec.summarg summarizes an lspec fit. 

Usage 
Ispec.summary(fit) 

Arguments 
fit 

Value 
This function produces a printed summary of an lspec fit. 

A list like the output from Ispec.fit. 

A.3.  clspec, plspec, rlspec 

Description 
Autocorrelations, autocovariances, spectral distributions and random time series from 
a model fitted with Ispec.fit. 

Usage 
clspec(lag, fit, cov = T, mm = ((see below))) 
plspec(freq, fit, mm = ((see below))) 
rlspec(n, fit, mean = 0, cosfixed = F, mm = ((see below))) 

Arguments 
lag 

cov 

Vector of integer-valued lags for which the autocorrelations of autocova- 
riances are to  be computed. 
Compute autocovariances (T) or autocorrelations (F),  
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freq 
n 
mean 
fit 
cosfixed 

mm 

Vector of frequencies. Frequencies should be between -x and x. 
Length of the random time series to be generated. 
Mean level of the time series to be generated. 
A list like the output from 1spec.fit. 
Indicates that the data should be generated from a model with constant 
harmonic components rather than a true Gaussian time series. 
Number of points used in integration and the fft. Default is the smallest 
power of two larger than max (fit$sample, n, max (lag), 1024). 

Value 
Autocovariances or autocorrelations (clspec), spectral distribution (plspec) or a ran- 
dom time series (rlspec). 

A.4. dlspec 

Description 
Spectral density function and line spectrum from a model fitted with Ispec.fit. 

Usage 
dlspec(freq, fit) 

Arguments 
freq Vector of frequencies 
fit A list like the output from 1spec.fit. 

Value 
d 
modfreq 

m 

The spectral density function evaluated at the vector of frequencies. 
Modified frequencies of the form 2nj/T that are close to the frequencies 
that were requested. 
Mass of the line spectrum at the modified frequencies. 

A.5. 1spec.fit 

Description 
Ispec.fit fit a logspline spectral model. 

Usage 
Ispec.fit(data, period, penalty = ((see below)), minmass = ((see below)), knots, 
maxknots, atoms, maxatoms, maxdim = ((see below)), odd = F, updown = 3) 

Arguments 
data Time series (exactly one of data and period should be specified). If data 

is specified, Ispec.fit first computes the modulus of the fast Fourier trans- 
form of the series, resulting in a raw periodogram of length floor 
(length( data)/2). 
Value of the periodogram for a time series at frequencies 2xj/T, for 
1 < j T/2. If period is specified, odd should indicate whether T is odd 

period 
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penalty 

minmass 

knots 

maxknots 

atoms 

maxatoms 

maxdim 

odd 
updown 

Value 

C .  KOOPERBERG, C .  J. STONE AND Y. K. TRUONG 

(odd=T)  or even (odd=F) .  Exactly one of data and period should be 
specified. 
The parameter to be used in AIC. The method chooses the number of 
knots that minimizes -2 x loglikelihood + penalty X (number of knots). 
The default is to use penalty = log (period) as in BIC. 
Threshold value for atoms. No atoms having smaller mass than minmass 
are included in the model. If minmass takes its default value, in 95% of 
the samples, when data is Gaussian white noise, the model will not contain 
an atom. 
Ordered vector of values, which forces the method to start with these 
knots. If knots is not specified, the program starts with one knot at zero 
and then employs stepwise addition of knots and atoms. 
Maximum number of knots allowed in the model. Does not need to be 
specified, since the program has a default for maxdim and the number of 
dimensions equals the number of knots plus the number of atoms. If 
maxknots = 1 the fitted spectral density function is constant. 
Ordered vector of values, which forces the method to start with discrete 
components at these frequencies. The values of atoms are rounded to the 
nearest multiple of 2n/(length(data)). If atoms is not specified, the 
program starts with no atoms and then performs stepwise addition of knots 
and atoms. 
Maximum number of discrete components allowed in the model. This does 
not need to be specified, since the program has a default for maxdim and 
the number of dimensions equals the number of knots plus the number of 
atoms. If maxatoms = 0, a continuous spectral distribution is fit. 
Maximum number of basis functions allowed in the model (default is 
max (15, 4 x length(period)".')). 
See period. If period is not specified, odd is not relevant. 
The maximal number of times that Ispec.fit should go through a cycle of 
stepwise addition and stepwise deletion until a stable solution is reached. 

The output is organized to serve as input for lspec.summary, clspec, dlspec, plspec, 
rlspec and 1spec.plot. The function returns a list with the following members. 
call 
thetap 
nknots 
knots 

thetak 

natoms 
atoms 

mass 
log1 
penalty 
minmass 
sample 

updown 

The command that was executed. 
Coefficients of the polynomial part of the spline. 
The number of knots that were retained. 
Vector of the locations of the knots in the model. Only the knots that 
were retained are in this vector. 
Coefficients of the knot part of the spline. The kth coefficient is the 
coefficient of {x - t ( k ) ) : .  
The number of atoms that were retained. 
Vector of the locations of the atoms in the logspline model. Only the lines 
that Were retained are in this vector. 
The kth coefficient is the mass at atom[k]. 
The log-likelihood of the model. 
The penalty that was used. 
The minimum mass for an atom that was allowed. 
The sample size that was used, either computed as length(data) or as 
2 X length(period) (odd = F) or 2 X length(period) + 1 (odd = T). 
The actual number of times that Ispec.fit went through a cycle of stepwise 
addition and stepwise deletion until a stable solution was reached or minus 
the number of times that Ispec.fit went through a cycle of stepwise 
addition and stepwise deletion until it decided to quit. 
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NOTE 

1. LSPEC software is available from statlib. Send an email with the body send lspec from S to 
statlib@stat.cmu.edu 

ACKNOWLEDGEMENTS 

We wish to thank John Rice for some stimulating conversations. Charles J. 
Stone was supported in part by National Science Foundation Grant 
DMS-920427. Young K. Truong was supported in part by a Research Council 
Grant from the University of North Carolina. 

REFERENCES 

ANsLtY. C. F. (1979) An algorithm for the exact likelihood of a mixed autoregressive-moving 
average process. Biometrika, 66, 59-65. 

BEAMISH, N. and PRIESTLEY, M. B. (1981) A study of autoregressive and window spectral 
estimation. Appl. Statist. 30, 41-58. 

BECKER, R.  A., CHAMBER, J. M. and WILKS, A. R. (1988) The New S Language. Pacific Grove, 
California: Wadsworth. 

BELTRAO, K. I. and BLOOMFIELD, P. (1987) Determining the bandwidth of a kernal spectrum 
estimate. J .  Time Ser. Anal. 8, 21-38. 

BHANSALI, R. J. (1979) A mixed spectrum analysis of the Lynx data. J .  R.  Statist. Soc., Ser. A 

DE BOOR, C .  (1978) A Practical Guide to Splines. New York: Springer. 
BRILLINGER, D. R. (1981) Time Series, Data Analysis and Theory. San Francisco: Holden-Day. 
BROCLWELL, P. J. and DAVIS, R. A. (1991) Time Series: Theory and Methods, 2nd Ed. New 

York: Springer. 
CAMPBELL, M. J. and WALKER, A. M. (1977) A survey of statistical work on the MacKenzie 

River series of annual Canadian lynx trappings for the years 1821-1834, and a new analysis. 
J .  R .  Statist. SOC., Ser. A 140, 411-31. 

CHAMBERS, J .  M. and HASTIE, T. J. (1992) Statistical Models in S .  Pacific Grove, California: 
Wadsworth. 

FRANKE, J. and HARDLE, W. (1992) On bootstrapping kernel spectral estimates. Ann. Statist. 20, 

HURVICH, C .  M. and BELTRAO, K. I. (1990) Cross-validatory choice of a spectrum estimate and 

ISAACSON. E. and KELLER, H. B. (1966) Analysis of Numerical Methods. New York: Wiley. 
KOOPERBERG, C. and STONE, C. J. (1992) Logspline density estimation for censored data. 

-- and TRUONG, Y. K. (1995) Rate of convergence for logspline spectral density 

MACKISACK, M. S. and PO SKIT^-. D. S.  (1990) Some properties of autoregressive estimates for 

MORRIS, J. (1977) Forecasting the sunspot cycle. J .  R.  Statist. SOC., Ser. A 140, 437-47. 
NEWTON. H. J. (1988) TIMESLAB: A Time Series Analysis Laboratory. Pacific Grove, 

California: Wadsworth. 
PAWITAN, Y. and GANGOPADHYAY. A. K. (1991) Efficient bias corrected nonparametric spectral 

estimation. Biometrika 78, 825-32. 
PAWITAN, Y. and O'SULLIVAN, F. (1994) Nonparametric spectral density estimation using Whittle 

likelihood. J .  A m .  Statist. Assoc. 89, 600-10. 
POLITIS. D. N. and ROMANO, J. P. (1992) A general resampling scheme for triangular arrays of 

cu-mixing random variables with application to the problem of spectral density estimation. Ann. 
Statist. 20, 1985-2007. 

142, 199-209. 

121 -45. 

its connections with AIC. J .  Time Ser. Anal. 11, 121-37. 

J .  Comp. Graph. Statist. 1, 301-28. 

estimation. J .  Time Ser. Anal. 16, 389-401. 

processes with mixed spectra. J .  Time Ser. Anal. 11, 325-37. 



388 C. KOOPERBERG, C. J .  STONE AND Y. K. TRUONG 

PRIESTLEY, M. B. (1962a) The analysis of stationary processes with mixed spectra-I. J .  A. Statist. 

- (1962b) The analysis of stationary processes with mixed spectra-11. J.  R. Statist. SOC., Ser. B 

- (1981) Spectral Analysis and Time Series. London: Academic Press. 
RAO, C .  R. (1973) Linear Statistical Inference and Its Applications, 2nd Edn. New York: Wiley. 
SToicA, P., MOSES, R. L., S~DERSTROM, T. and LI. J .  (1991) Optimal high-order Yule-Walker 

SWANEPOEL, J. W. and VAN WYK, J. W. J. (1986) The bootstrap applied to spectral density 

TONG, H. (1977) Some comments on the Canadian Lynx data. J .  R.  Statist. Soc., Ser. A 140. 

WAHBA, G.  (1980) Automatic smoothing of the log periodogram. J .  A m .  Statist. Assoc. 75, 

WHITTLE, P. (1961) Gaussian estimation in stationary time series. BuN. Int. Statist. Inst. 39, 

SOC., Ser. B 24,214-33. 

24, 511-29. 

estimation of sinusoidal frequencies. IEEE Trans. Acoustics 39, 1360-68. 

function estimation. Biometrika, 73, 135-42. 

432-36. 

122-32. 

105 -30. 


