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During the past few years several nonparametric alternatives to the Cox proportional hazards model have
appeared in the literature. These methods extend techniques that are well known from regression analysis
to the analysis of censored survival data. In this paper we discuss methods based on (partition) trees and
(polynomial) splines, analyse two datasets using both Survival Trees and HARE, and compare the
strengths and weaknesses of the two methods. One of the strengths of HARE is that its model fitting
procedure has an implicit check for proportionality of the underlying hazards model. It also provides an
explicit model for the conditional hazards function, which makes it very convenient to obtain graphical
summaries. On the other hand, the tree-based methods automatically partition a dataset into groups of
cases that are similar in survival history. Results obtained by survival trees and HARE are often
complementary. Trees and splines in survival analysis should provide the data analyst with two useful
tools when analysing survival data.

1 Introduction

In this paper we discuss and compare two groups of nonparametric methodologies for
the analysis of censored survival data, methods based on recursive partitioning and
those based on polynomial splines. Traditional methods for analysing survival data
include exploratory methods such as the Kaplan-Meier estimate, the Nelson-Aalen
estimate, and various types of tests that summarize differences between two or more
survival distributions, and modelling methods such as the Cox proportional hazards
model and the accelerated lifetime model. The nonparametric methods discussed in
this paper can give insight into data that the traditional methods fail to provide.
The use of Classification and regression trees’ (CART) and other recursive partitioning

methods have allowed a more thorough examination of effects of variables on the
survival distribution. When modelling survival data, it is frequently of interest to
determine which variables affect the survival distribution and whether the effect is
valid across all individuals or within subsets. Statistically, these questions are often
posed as variable selection and detection of interactions. CART is used as a tool for
revealing structure in the data. It is the ease of interpretation of the results and the
ability to analyse complex nonlinear datasets with many variables by effectively
reducing the dimensionality of the data that are CART’s main advantages over other
methods. All these features are highly desirable for exploratory analyses.
Polynomial splines form a versatile tool for function estimation. They have been

used in many situations such as multiple regression,2 density estimation,3 estimation of
the spectral distribution,4 and polychotomous regression and classification.’ In the
polynomial spline approach, an unknown function is modelled in a linear space.
Stepwise algorithms make it possible to determine this space adaptively. In the
proportional hazards mode,6 the conditional log-hazard function is an additive
function of time and the vector of covariates. Traditionally, in this model the

dependence of the survival time on the covariates is modelled fully parametrically, so
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that the regression function can be estimated independently of the baseline hazard
function. When using polynomial splines, such parametric assumptions are not

needed. It also becomes convenient to fit and compare linear proportional hazards
models, additive proportional hazards models, proportional hazards models with time-
varying coefficients, and nonparametric proportional hazards models.

This paper is organized as follows: in Sections 2 and 3 we give overviews of the use
of trees and splines in survival analysis. In particular, we discuss survival trees (in
Sections 2.3 and 2.4) and HARE (in Section 3.2) in some detail. In Section 4 we apply
both methods to two examples. We end the paper by discussing the strengths and
weaknesses of the two methods.

2 Trees in survival analysis
2.1 Overview

Several extensions of CART to censored survival data, sometimes termed survival
trees, have been proposed in the literature. (See Section 2.2 below for a brief review of
CART.) These extensions typically require modification of the four basic building
blocks of CART: the prediction rule, the splitting rule, the pruning algorithm and the
tree selection. The prediction rule for survival analysis is typically based on the
estimate of the distribution function, which implies that the three other ingredients all
work nonparametrically on the space of distributions. Applications of survival trees
may be found in several articles.’- 

2

The extensions of CART to survival data fall into two groups. One approach uses a
statistic that determines within-node homogeneity: how similar are the survival

experiences of observations in a node. 11-17 The alternative approach is based on

separation measures. The main ingredient is now a (test) statistic that distinguishes
between survival experiences. 

18-23

Gordon and Olshenl3 presented the first extension of CART to censored survival
data, which involved a distance measure (the Wasserstein metric) between Kaplan-
Meier curves and certain point masses. Their approach amounts to assuming a
piecewise exponential model with one data-determined knot. Ciampi et al.’s method
is based on a parametric model and likelihood ratio statistics. David and Anderson 15
suggest a method based on the observed likelihood at a node, while assuming an
exponential model for the baseline hazard function. LeBlanc and Crowley use
deviance residuals based on the Cox proportional hazards model for the splitting rule.
These extensions of CART are based on a definition of a within-node homogeneity
measure. The use of within-node homogeneity based on likelihood statistics allows the
inheritance of all subsequent CART methodology, since the measures defined are all
subadditive, allowing comparison between subtrees. However, except for Gordon and
Olshen’s work, these methods are not devoid of parametric assumptions about the
underlying hazards model. Zhang 17 uses a within-node homogeneity measure that is
based on the idea that a homogeneous node should consist of subjects whose observed
failure times are close and who are mostly censored or mostly uncensored.

Segal 19 argued that tests for between-node separation can tell more about the

important prognostic factors associated with the survival phenomenon. under study
than within-node homogeneity. He introduced a totally nonparametric tree algorithm,
basing the partitioning on between-node separation using the Harrington-Fleming
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class of two sample rank statistics. Pruning based on between-node separation, as
discussed In, , , 18 19 2~ . is conceptually harder.

2.2 Review of CART
The Classification and Regression Trees (CART) method of Breiman et at. 

1

addresses the classification and regression problem by building a binary decision tree
according to some splitting rule based on the covariates. In this way, the space of
explanatory variables is partitioned recursively in a binary fashion. The partitioning is
intended to increase within-node homogeneity, where homogeneity is determined by
the dependent variable in the problem. The partitioning is repeated until a node is
reached for which no split improves the homogeneity, whereupon the splitting is

stopped and this node becomes a terminal node. Prediction is determined by terminal
nodes, and is either a class label in classification problems, or the average of the
dependent variable in least-squares regression problems.
A tree T has a root node whose subnodes falso called daughters) can be divided into

terminal nodes, collectively denoted by T, and decision nodes. The number of
terminal nodes is denoted by ~ 7~. The branch Tt that stems from node t includes t

itself and all its subnodes. This branch has terminal nodes collectively denoted ilt.
In the regression context let 5fit be the dependent variable and xi the vector of

covariates for the ith observation, 1 <_ i <_ N. Least squares regression trees look for a
predictor with constant value at each node t for which the splitting rule s*t maximizes
the difference of the weighted squared error between t and its daughters tL and tR over
the set S of all possible splits; that is.

where the risk at the node t is given by R(t) = p(t)s2(t) with p(t) = N(t)lN being the
proportion of observations that fall in t and s2(t) being the variance of the correspond-
ing values of the dependent variable.
A useful feature of CART is that of growing a large tree and then pruning it to get a

sequence of nested pruned subtrees. This is done using a penalty measure based on
the complexity of the tree and called the cost complexity. Thus

where R(7J = 1,,,I.R(t) and a is a penalty parameter for the complexity of the tree.
A sequence of nested trees is constructed in a bottom-up approach, starting with the

fully grown tree, which corresponds to the smallest value of a and with smaller nested
subtrees corresponding to increasing values of a. This is done by recursively pruning
the branch(es) with the weakest link; that is, the node t with the smallest value of a
such that ~,(r) ~=~(7D.

In least squares regression trees, R(t) - R(Tt) >- 0. This subadditivity of the risk
R(t) is of utmost importance in pruning in that it allows the comparison of different
branches of the tree as well as the definition of nested subtrees.
To select the best pruned subtree, CART suggests finding honest estimates of the

error R(T) using a test sample or crossvalidation. In regression the error denoted by
R(T) is the average squared error in the terminal nodes. Tree selection can also be
done in an exploratory manner by examining trees in sequence.
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2.3 Survival trees based on between-node separation
Sega119, Intrator 18 and LeBlanc and Crowley22 use as the prediction rule the Kaplan-

Meier estimate of the survival distribution, and as the splitting rule a test for measuring
differences between distributions adapted to censored data such as the logrank test or
Wilcoxon test, and more generally the GP;Y class of rank statistics.25,26 These statistics
are weighted versions of the logrank statistic, where the weights allow flexibility in
emphasizing differences between two survival curves for early times (the left tail of the
distribution), middle times or late times (the right tail of the distribution). In

particular, an observation at time t is weighted by Q(t) = S(t)P(1 - S(t))’’, where § is
the Kaplan-Meier estimate of the survival curve for both samples combined. Thus we
can obtain sensitivity to early occurring differences by taking p > 0 and y = 0, while
we emphasize differences in the middle by taking p -== 1 and y -~=1 and we emphasize
late differences if p = 0 and y > 0. The traditional logrank statistic is obtained when
p=y=0.
As mentioned in the previous sections, it is important that a risk measure, such as

R(t), is monotonic. In particular, for cost complexity pruning, the improvement in
node homogeneity or a measure of the quality of a branch relative to its root needs to
be measured. Once a measure met, Tt) of the quality of a branch is defined, it can be
used in cost complexity pruning by comparing it with the number of terminal nodes in
the branch I Tt I The quality should be monotonically decreasing down the decision
nodes of the tree. In Intrator’s version of survival trees, the definition of m(t,Tt) is

based on the significance level. Let v(t) be one minus the p value of a test statistic for
difference between survival distributions for tL and tR. Define the quality of a decision
node t by .

where p(t) is the probability of being in node t. The quality m(t) measures how much
the risk decreases if we use the best possible split on node t, relative to not splitting
node t at all. Sega119 used a similar measure of quality m(t), the maximal chi-squared
statistic of the branch Tt, but he did so without weighting by the probability of the
node.

In all of these measures, the maximization is done over all the decision nodes of the
branch Tt. This results in monotonicity of the quality down the tree, which is necessary
for defining effective nested pruning.

Cost-complexity pruning is possible by comparing m(t) with the number of terminal
nodes: m(t) = age [ T, ) ) where g(x) is some monotonically nondecreasing function. For
example, Intratorl chooses g(x) = x - 1. We get an increasing sequence of the critical
pruning values: for tree 7§.- 1 in the sequence we define aj as aj = mintET;m(t)~g( I T’t ~ ) ~
Tree T. is then tree 7§-i pruned at level aj. The sequence of as defines a nested

sequence of pruned subtrees.
As in CART, exploratory tree selection can be done by examining the plot of values

of the penalty parameter a versus tree size.
Tree selection may be based on goodness-of-prediction measures. Intrator 18

explores the measure given by

where Sts(t) is the estimated survival curve at node t based on a test sample, Sls(t) is
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that based on the learning sample, and 1 - v(-,-) is the p value of a test statistic for the
difference between survival distributions. Estimation of goodness-of-prediction may
also be done using a crossvalidation scheme. Another approach is to validate the
complexity parameters. The idea here is to test the credibility of the pruning and not
the goodness-of-prediction directly. This approach is currently being investigated by
Intrator.

Alternatively, LeBlanc and Crowley22 measure the quality of a branch T, as the sum
of the logrank test statistic values (chi-squared values) of the decision nodes of the
branch, denoted by G(Tt). They define split complexity pruning as G a (Tt) = G(Tt)
- a ~ Tt - Tt ~ , i.e. their complexity is based on the number of decision nodes in the
branch. LeBlanc and Crowley compute their split complexity measure (based on their
quality measure) on test data, using a fixed penalty term a which is usually selected to
be in the range of two to four or they employ resampling techniques.
Many other useful features of CART can be incorporated in survival trees. For

example, Intrator 18 explores tree robustness using a crossvalidation approach while
growing the tree, testing all possible splits on several samples and selecting the split
that was the best on most samples. The uses of surrogate splits for handling missing
data and variable importance, ideas initially presented in CART,1 are also extended to
the survival trees setting.

2.4 Survival trees based on within-node homogeneity
Tree building and pruning based on within-node homogeneity allows for trivial

inheritance of the CART algorithm. Often, tree growing is based on a between-node
separation measure, while tree pruning, and selection are based on a within-node
homogeneity measure. Once a split has been determined based on a between-node
separation measure, the statistic measuring within-node homogeneity can be evaluated
at the daughter nodes for further use in pruning, as done in CART for classification.
Gordon and Olshen’s within-node homogeneity measure is the Lp Wassertstein

distance between the Kaplan-Meier estimate of survival in a node and a survival curve
defined by a piecewise constant hazard function with a data-determined single point of
discontinuity. When L2 Wasserstein distances are used, the homogeneity corresponds
to the variance of the Kaplan-Meier estimate.

Davis and Andersonls define within-node homogeneity based on the negative log-
likelihood of an exponential model at the node. Their measure for homogeneity of
node t is -~(t) = D, - D)og(D/YJ where D, is the number of failure events in the
node and Yt is the total observation time (time on test) in the node.
LeBlanc and Crowley 16 assume a semiparametric proportional hazard model, where

the hazard X (t ) I Zi) at time t for individual i with covariates zi is the product of a baseline
hazard that depends only on time and a structural component that depends on the
individual through its covariates Bo(~)6(~,). Their within-node homogeneity measure is
based on a single step deviance residual. The deviance residual for individual i is
defined as 2[t;(saturated) - fi(6mLE)] where the log-likelihood t;(saturated) corre-

sponds to a saturated model, which allows a parameter for each individual and ~t(6MLE)
corresponds to the maximum likelihood estimate for the present tree based on the
proportional hazards model. LeBlanc and Crowley use a single step estimate of the
deviance, which is based on the Breslow2’ estimate of the baseline hazard using the
Nelson 28 estimate of the structural component (which is one for all individuals). The
resulting deviance residual for individual i is given by
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The baseline cumulative hazard at node k is given by the Breslow estimate

LeBlanc and Crowley show that this impurity measure can be interpreted as the
number of observed deaths for individual i minus an estimate of the expected number
of deaths under the assumption of the tree structured proportional hazards model.

Lastly, Zhang 17 introduces a totally different concept of splitting. He argues that a
homogeneous node should consist of subjects whose observed failure times are close
and who are mostly censored or mostly uncensored. Thus he suggests a splitting
criterion based on a definition of node impurity which is a weighted combination of
impurity of the censoring and of the times. The impurity is thus a combination of
CART’s original impurity measure for classification (of the censoring indicators) and
of regression (MSE). In his paper he discusses the merits of this splitting method, and
compares it with Segal’s method, Davis and Anderson’s method and Gordon and
Olshen’s method on simulated data. Zhang does not consider pruning or tree
selection: he believes that the pruning should be done manually from the full tree by a
practitioner in the field of application with the guidance of the computer output
(personal communication).

.

3 Splines in survival analysis 
’

3.1 Overview
The use of splines has led to a number of new methodologies for survival analysis.

These methods roughly divide into two groups: those that make use of penalized
likelihood estimation, which we refer to as smoothing splines methods, and those that
use polynomial splines often in conjunction with adaptive model selection.
The smoothing spline solution to a function estimation problem is typically the

maximizer of a penalized likelihood function. 29-31 In survival analysis, smoothing
splines have been used by Anderson and Senthilselvan,32 Whittemore and Keller,3 3

Senthilselvan,34 O’S II’ 3536 Gray,3’ Hastie and Tibshirani3o,38 and Gu.39,4o Most of
these papers use splines within the framework of the proportional hazards model.Gray3 and Hastie and Tibshirani38 use time-varying coefficients. Gu4° models the
complete log-hazard function, though the computational demands seem too formida-
ble to be applicable in situations with many covariates such as our examples in Section
4. To make the computations more feasible, Gray 37 uses a B-spline approximation to
the smoothing spline problem.

In the polynomial spline approach, an unknown function is modelled in a linear
space. Stepwise algorithms make it possible to determine this space more adaptively
than in the smoothing spline approach, which involves only a few smoothing
parameters. Adaptive algorithms for polynomial splines were first introduced in a
regression context.41 Other applications include multiple regression (MARS),2 density
estimation (LOGSPLINE),3 and spectral distribution estimation (LSPEC).~

In the context of survival analysis, Etezadi-Amoli and Ciampi,42 Efron43 and
Abrahamowicz, Ciampi and Ramsay44 use polynomial splines to model either the
unconditional distribution of the survival times or the baseline hazard function within
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a proportional hazards model. Kooperberg, Stone and Truong45 develop hazard
regression (HARE), in which the conditional log-hazard function is modelled using
polynomial splines. Kooperberg46 extends the HARE methodology to handle interval-
censored data. Under suitable conditions Kooperberg, Stone and Truong 47 obtain the
L2 rate of convergence for a nonadaptive version of HARE.

3.2 HARE
In hazard regression (HARE, Kooperberg, Stone and Truong,45 hereafter referred

to as KST), polynomial splines are used to estimate the conditional log-hazard
function based on possibly censored survival data and one or more covariates. An
automatic procedure involving maximum likelihood, stepwise addition, stepwise
deletion and BIC is used to select the final model. The possible models contain
proportional hazards models as a subclass, which makes it possible to diagnose
departures from proportionality. We now summarize the HARE algorithm.
Let Tbe a (nonnegative) survival time whose distribution may depend on a vector of

M covariates x = (xl,...,xM) ranging over a subset X = Xl X ... X Xm of R‘‘~. Let
f(tlx), F(tlx) = jof(u ~ x)du, ~ (t ~ x) = f(t ~ x)/[ 1 - F(t ~ x)] and a(tlx) = logX(t ) x)
denote the corresponding conditional density, distribution, hazard and log-hazard
functions, respectively.

Let G be a p-dimensional linear space of functions on [0,~) x X, and let Bl,...,Bp
be a basis of G. The HARE model for aCt x) is given by

The basis functions of G that HARE allows are piecewise linear functions (splines)
in the covariates, piecewise linear functions in t, and tensor products of two such
piecewise linear functions. (The tensor product of the functions gl(xl) and g2(x2) is the
function gl(xl)g2(x2).) Both the space G and its dimension p are determined adaptively.
To use HARE models we have to resolve two issues: (1) how to select p and G; and
(2) how to estimate (3&dquo;(32,...,~3p given G.
Before pursuing these issues further, we should point out that if none of the basis

functions of G depend on both t and x, then (3.1 ) is a proportional hazards model.6 It
is a particular interesting feature of HARE that the model selection procedure may or
may not result in such a model. If any of the basis functions in the selected model is a
tensor product of a piecewise linear function in t and a piecewise linear function in one
of the covariates, then a proportional hazards model might not be appropriate.
Given a p-dimensional linear space G with basis Bl,...,Bp, the coefficients

~3~,~32,...,(3p can be estimated by maximum likelihood. In particular, consider n
randomly selected individuals. For 1 :5 i:5 n, let Ti be the survival time, Ci the
censoring time, and xi the vector of covariates for the ith such individual, and set
Y. = min(7§,C;) and 8i = ind(Ti --5 Ci). The random variable Y, is said to be uncen-
sored or censored according as 8i = 1 or 8i = 0. Note that the partial likelihood

corresponding to Y = y;, 8i, xi and ~ equals [f(yt ~ x=;~3)]s‘[1 - F(yZ ~ x~; Q) 1-8’ (Miller,
p 16), 8 so the log-likelihood is given by

The log-likelihood function corresponding to the observed data is given by
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It is straightforward to compute the corresponding score S((3) and Hessian H(~). In
particular, it is easily established that the log-likelihood function is concave. The
maximum likelihood estimate (3 = arg maxRl(~i) can thus be found using the Newton-
Raphson algorithm, and the log-likelihood of the fitted model is given by I = l(~3).
The selection of p and G is carried out using an algorithm that employs stepwise

addition and stepwise deletion of basis functions. Initially we fit the one-dimensional
model a(t ~ x;(3) _ p 1. Then we proceed with stepwise addition. Here we successively
replace the (p - 1 )-dimensional space Go by a p-dimensional space G containing Go as
a subspace. Since it is computationally too time consuming to evaluate each candidate
for a new basis function by recomputing the maximum likelihood fit, we choose among
the various candidates by a heuristic search that is designed approximately to
maximize the absolute value of the corresponding Rao statistic.49 This is similar to
what is sometimes done for generalized linear models; see, for example, the function
step . glm in S and the discussion in Chambers and Hastie (p 235). ° (After the new
basis function has been added to the model, it is refitted using maximum likelihood
and the Newton-Raphson algorithm.) As mentioned earlier, the candidate basis
functions of G are piecewise linear functions (splines) in the covariates, piecewise
linear functions in t, and tensor products of two of such piecewise linear functions.
However, because of regularity conditions on G, not all potential basis functions can
be added at any time; for example, tensor products involving a basis function can only
be added to the model if the basis function itself has already been added. See KST for
more details.

Upon stopping the stepwise addition stage, we proceed to stepwise deletion. Here
we successively replace the p-dimensional space G by a (p - 1 )-dimensional subspace
Go until we arrive at a one-dimensional space, at each step choosing the candidate
space Go so that the Wald statistic for a basis function that is in G but not in Go is
smallest in magnitude. As in stepwise addition, we do not refit the model for each basis
function that is a candidate to be dropped.
During the combination of stepwise addition and stepwise deletion, we get a

sequence of models indexed by v, with the vth model having p, parameters. Let iv
denote the log-likelihood of the vth model, and let

be the Akaike information criterion with penalty parameter a for this model. In this
paper we will use a = logn as in the Bayesian information criterion (BIC). We select
the model corresponding to the value v of v that minimizes BIC, = AIC,ogn,v.
A program for implementing HARE has been written in C, and an interface based

on the statistical package 550,51 has also been developed. For a more detailed discussion
of the HARE procedure and its interface, see KST.
There are a number of similarities between the survival tree algorithm and the

HARE algorithm:

1) The cost complexity in survival trees (equation 2.1) corresponds to AIC in HARE
(equation 3.2).

2) The splitting algorithm in survival trees is similar to the stepwise addition in
HARE. (The heuristic search to maximize the Rao statistic in HARE addresses a
problem that is similar to one in survival trees: where to locate the next

cutpoint.)
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3) The pruning algorithm in survival trees can be compared to the stepwise deletion
algorithm in HARE. (Note, however, that in survival trees several nodes may be
pruned at the same time, while in HARE basis functions are removed one at a
time.)

4 Examples
4.1 Breast cancer data
The data for our first example come from six breast cancer studies conducted by the

Eastern Cooperative Oncology Group. It has been analysed in Gray 37 using a hybrid of
penalized likelihood and polynomial splines (see Section 3) and in KST using HARE
(see Section 3.1 ) . In this subsection we present a survival tree analysis, followed by a
summary and extension of the HARE analysis. We end the subsection with a
proportional hazards analysis and a comparison of the three methods.
There were 2404 breast cancer patients in the six studies. All patients had disease

involvement in their axillary lymph nodes at diagnosis indicating some likelihood that
the cancer had spread through the lymphatic system to other parts of the body;
however, none of the patients had evidence of disease at the time of entry into the
study, which was following surgical removal of the primary tumour and axillary
metastases. The response is survival time (years) from entry into the study. There are
six covariates, oestrogen receptor status (ER: 0 is ’negative’, 1 is ’positive’), the
number of positive axillary lymph nodes at diagnosis, size of the primary tumour
(in mm), age at entry, menopause (0 is premenopause, 1 is postmenopause), and body
mass index (BMI: defined as wPight/height2 in kg/m2) . Since the empirical distribution
of the number of nodes is highly skewed to the right, we used log(number of nodes)
instead of the number itself in the HARE analysis. Of the 2404 cases, 1116 were
uncensored and 1288 were censored. There were no missing values for any of the
covariates.

Survival trees analysis
In Sections 2.3 and 2.4 we briefly described a number of survival tree meth-

ods. ’ , , 13 15 16 18 &dquo; 1922 In the examples section we mainly present the results from Intrator’s
method, 18 and briefly describe results from Davis and Anderson’s method&dquo; and
LeBlanc and Crowley’s method.22

Variables analysed in survival trees are always reduced to dichotomies. The present
version of the program developed by Intrator does not automatically test all possible
break points for continuous variables, and a set of binary variables representing ranks
must be provided to it.

In the breast cancer data there are two dichotomous variables: ER and menopause,
and four continuous variables: number of nodes, size of the primary tumour, BMI and
age. Since the tree looks for binary splits, monotone transformation of the variables
(such as taking the log of the number of nodes as in the HARE analysis) is irrelevant.
The splits examined for number of nodes were less than or equal to k versus greater
than k, for k = 1,2,...,7. The possible split points for size were 10 mm,
15 mm,...,65 mm. The possible BMI split points were 20, 22.5, 25, 29 and 33 kg/m2.
The age split points examined were 30, 40, 50, 60 and 70 years.
The survival trees program of Intrator 18 was run using all splits, a partial set of splits,

and on different randomly selected subsamples to test for tree robustness and
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competing structures. A variety of pairs of values for p and y were used for

emphasizing early, middle and late differences between survival experiences. The tree
selection was carried out in an exploratory manner after examining the prediction
error. The trees appeared sensitive to changes in the splitting rule, suggesting a
complex structure and perhaps a more complicated nonlinear model.
The first split was always on the number of nodes, with split points usually at four to

six nodes. The branch with the smaller number of nodes was usually split on size, at
cutpoints between 35 and 50 mm, while the branch with the larger number of nodes
was typically split on ER. Age, BMI and menopausal state all occurred further down in
some trees, but there was no clear picture. This suggests that there may be no further
well defined strata, but that these variables are useful as predictors in a model that is
not easily described by a partition tree.

In Figure 1 we display a tree with nine terminal nodes obtained using the splitting
rule with p = 1 and y = 0.1, which emphasizes early differences. In Table 1 we show
the relation between the cost-complexity parameter a, the goodness-of-prediction
statistic PE(Ta) and the number of terminal nodes ! T~ ~ . Note that we get a tree with
nine terminal nodes with any choice of a between 0.162 and 0.277, while the range of
values for which we get a tree with eight terminal nodes or ten terminal nodes is much
smaller. We also note from this table that PE(Ta) starts to level off at about nine
terminal nodes. Considering cost complexity and prediction error together we decided
on a tree with nine nodes. Typically we expect a prediction error based on
crossvalidation to reach a minimum value, which has not yet happened in Table 1.
One reason why the prediction error might not have reached its minimum value is that
an accurate description of the data may require a larger but less interpretable tree.
Another possible reason is that PE is artificially reduced by the small numbers of cases
in the terminal nodes of the larger trees.
The next (tenth) split was a split of terminal node IV on ER and the eleventh split

was a split of terminal node VIII on BMI. There are two consecutive splits in the tree
on nodes, which effectively form a three-way split. Similarly there are two consecutive
splits on size of the group with four or less nodes. Note also that the tree has a four-way
interaction involving nodes, size, BMI and menopausal status and a three-way
interaction involving nodes, ER and menopausal status.

In Figure 2 we show estimates for the survival functions for the nine terminal nodes.
We show both the usual Kaplan-Meier curves (left side) as well as estimates using
Hazard Estimation with Flexible Ta jIS41 (HEFT). HEFT employs cubic splines and
has some additional log terms that make it possible to estimate tails more flexibly;
otherwise HEFT is very similar to HARE. See KST for more details.
Note that many of the survival functions cross each other. This suggests that a

proportional hazards model may not be appropriate for the data, which we will also
conclude in the HARE analysis below. We also notice that some curves, like those

Table 1 Cost complexity and tree size for the breast cancer data
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corresponding to terminal nodes IV and VII, cluster together, although their nodes
were in different parts of the tree. Thus our analysis, combining survival trees and
HEFT, enable us to identify different groups of people with similar survival experi-
ences.

The tree obtained using the method of LeBlanc and Crowley22 was very similar to
the tree we presented in Figure 1. It also first split on nodes at (nodes < 6). After
which the left side was split at (nodes ± 3) and the right side was split on ER. The two
next splits were also very similar: the node with (nodes :5 3) was split at (size :5 52)
and the node with ER positive was split on menopausal state. Splits further down the
tree were more different.
The tree obtained using the method of Davis and Andersonl5 split at the root node

to the left on (nodes ? 4), after which the left node split on (nodes ± 6) and the right
node split on (size < 25). This presents a model similar to that presented in Figure 1,
where the smaller number of nodes is split on size. However, the structure is much
smaller.

HARE analysis
Before applying HARE it is often advantageous to use (unconditional) hazard

estimation to transform time so that the transformed unconditional hazard function
will be approximately equal to one.52 The main advantage of such a transformation is
that because of the piecewise linear nature of HARE, the (baseline) hazard functions
may have big jumps in the first derivative. However, the HARE model for the
transformed data typically has fewer knots in time, while the remaining jumps in the
first derivative of the baseline hazard function tend to be smaller. Here, as well as in
KST, HEFT (see above) is used to get a smooth estimate of the unconditional hazard
function.
The HARE analysis of the transformed breast cancer data is summarized in Table 2.

Note that 40 = -log(1 - Fo) in this table, where F’o is the distribution function

corresponding to the estimate of the unconditional hazard function obtained by
HEFT. The fitted HARE model has knots located at the transformed times 0.194 and

0.514, which correspond to the real times 1.80 years and 4.68 years, respectively. Note
that the model in Table 2 is not a proportional hazards model because of the presence
of the basis functions ((0.514 - qo(t))+ X ER) and ((0.194 - qo(t))+ X size). Gray3’
noted nonproportionality with respect to ER using time-varying coefficients. In his
analysis, he felt that a proportional hazards model with respect to size was appropriate.
We investigate this further below. In Table 2 we notice a nonlinear effect (knot) in age

Table 2 HARE analysis of the transformed breast cancer data
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and an interaction between log(nodes) and size, which were also found in Gray’s
analysis.
Two of the advantages of HARE are direct results of its user-friendly interface. First,

it is easy to graph various functions that may be of interest, such as conditional hazard
functions for given sets of covariates. In Figure 3 we show the fitted conditional hazard
and survival functions for three sets of covariates. As can be seen from the left side of
this figure, ER has a distinctly nonproportional effect: the solid and dotted curves
actually cross each other at t = 3.22 years. On the other hand, the effect of the number
of nodes is proportional.

Secondly, it is very convenient to fit and compare linear proportional hazards
models, additive proportional hazards models, proportional hazards models with time-
varying coefficients and nonparametric proportional hazards models. As mentioned
above, in the analysis of Gray the effect of size was modelled proportionally, while in
the HARE analysis an interaction between time and size ended up in the model. To
investigate this further, we applied the HARE algorithm forcing an additive model for
the log-hazard function. The proportional hazards model that was obtained is partly
summarized in Table 3. As can be seen, there is a difference of 54.96 in the BIC value
between this model and the full model in Table 2. This difference is substantial, as is
the corresponding difference in log-likelihood.

It is also possible to force HARE to fit certain interactions. In particular, we applied
the HARE algorithm twice more. Once we required the model to be a proportional
hazards model but allowed interactions between covariates, and once we ran the
algorithm allowing interactions between covariates and time. These HARE models are
also summarized in ’rable 3. As can be seen from the difference 52.92 in BIC values
between the proportional hazards model and the model from Table 2, a proportional
hazards model is unsatisfactory. From Table 3 we also note that the model that allows
ER X time interactions but no other interactions with time is not as good as the model
in Table 2, but much better than the other models in Table 3. This suggests that the
size X time interaction in the model improves the fit, but it is not as important as the
other interactions.

Actually, it turned out that the three restricted HARE models were exactly nested in
the full HARE model. This is quite accidental, since the HARE runs are separate and
knots are placed independently. When standard methods of statistical inference are
applied to adaptive procedures, the results should be considered only as indicative.
Nevertheless, if the three restricted models were tested against the unrestricted model,
relying on standard X2 statistics, then all three smaller models would be strongly
rejected in favour of the larger model.

Proportional hazards analysis 
16 toWe also fit a Cox proportional hazards model6 to the breast cancer data, using a

backwards stepwise algorithm. There were two initial sets of covariates that we
considered:

1) the regular six covariates (using a log-transform for nodes);
2) the regular six covariates as well as an interaction between log(nodes) and size,

suggested by HARE and the survival trees, and an interaction between oestrogen
receptor status and menopausal status, suggested by the survival trees.

The results are summarized in Table 4.
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Table 3 Summary of several HARE models for the transformed breast cancer data

Comparison
The HARE and survival tree analyses provide us with complementary information.

The HARE analysis provides us with a rather complicated, nonproportional model for
the conditional hazard function. The survival tree analysis, on the other hand, provides
us with a clear indication of the most important variables. It also provides us with a
partition of all cases into groups with similar survival characteristics. Whether data is
adequately modelled by a proportional hazards model is not addressed in the survival
tree method.
For the present example, HARE and survival trees partially confirm each others

results. Both methods identify the number of nodes as the most important variable: the
first split using survival trees is based on nodes, while nodes has the smallest standard
error, relative to its coefficient, in HARE. Both methods find a nodes X size inter-
action and that the oestrogen receptor status is one of the most useful variables.
The proportional hazards model, on the other hand, misses important aspects of the

data. It does not find the nonlinear effect of age on the hazard function. Unless

explicitly told to include it, it would not find the strong interaction between nodes and
size. Moreover, as shown in the HARE analysis, a proportional hazards model does
not fit the data! Interactions between time and oestrogen receptor status and between
time and size should be included in a model.

4.2 Coronary heart disease data
Our second example has a much higher percentage of censoring than the first

example. The data come from a study of mortality due to coronary heart disease
(CHD) known as the Western Collaborative Group Study. Of the 3155 men who
entered the study 415 died of CHD, 329 died of cancer, 290 died of other causes and
2121 were still alive after 27 years. Since we are only concerned with CHD here, 2740
cases (86.8%) are censored. The study is described in Rosenman et al.,s3 Rosenman et
a1.54 and Ragland and Brand.55 A tree-based survival analysis, very much along the
lines of the one we describe below, has been reported in Carmelli et at. 

8

We used the same eight covariates as Carmelli et at. 8: the age at entry into the study,
the systolic blood pressure (SBP) at entry into the study, serum cholesterol at entry
into the study, a hostility index (originally 1-5, standardized to have mean zero and

Table 4 Summary of two stepwise proportional hazards models for the breast cancer data
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standard deviation one), an indicator for behaviour type A (1) or B (0), an indicator
for having ever smoked (1 = yes), the body mass index (BMI) and the waist-to-calf
ratio (WCR). There were 277 cases (55 being uncensored) for which either BMI or
WCR was missing. The survival tree method deals elegantly with missing values using
surrogate splits. HARE presently does not have the ability to deal directly with missing
values. (It is envisioned that future versions of HARE will have such an ability.)
As in the previous example, we present the survival tree analysis followed by the

HARE analysis and a proportional hazards analysis and we conclude the example with
a comparison between the three methods.

Survival tree anal~sis
Carmelli et al. presented their survival tree analysis of the CHD data. They used

logrank statistics to define the splitting rule, while the pruning and tree selection were
as in Gordon and Olshen,’3 in which the risk at a node is defined by the fourth power
Wasserstein distance between the Kaplan-Meier survival curve of the subjects in a
node and a piecewise exponential model with one knot.
An analysis using Intrator’s method 18 validated Carmelli’s results, using various

rank tests (p and y combinations) for splitting and the pruning algorithm presented
above, which is different from the pruning algorithm used by Carmelli et al. Other
splits were also examined, specifically those corresponding to the additional variable
WCR provided to us and splits determined by quartiles. As in the breast cancer data,
we ran the trees several times to determine structure stability.
Most analyses confirmed Carmelli’s tree. Other competing structures emerged from

the interchange of the first two splits, age (at a 48-year cutpoint) and systolic blood
pressure (at a cutpoint of 150 mg/dl). Carmelli et al. favoured the root node split of
blood pressure. If the root node split was on age, both second level splits were on
SBP. For the cases younger than 48 years there were further splits beyond the second
(SBP) split. In Figure 4 we summarize Carmelli’s tree. Note that the numbers of alive
and dead subjects in each node are different from those shown in Figure 1 of Carmelli
et <2/./ the reason being that the data we analysed here is slightly different from that
analysed by Carmelli et al.

In Figure 5 we show estimates for the survival functions for the six terminal nodes.
We show both the usual Kaplan-Meier curves (left side) as well as estimates using
HEFT, which was described in Section 4.1. As can be seen from Figure 5, the six
groups in which the survival tree method divided the data have all distinctly different
survival curves. (The groups correspond to terminal nodes I and II may be excep-
tional. However, those groups were separated on an earlier split of the tree.) We feel
that, since the HEFT estimates are nice and smooth, this difference between survival
curves is more easily recognized from the HEFT estimates than from the Kaplan-
Meier estimates.

Trees from the methods of LeBlanc and Crowley,22 and of Davis and Anderson’s
were obtained. Leblanc and Crowley’s method produced a tree in which the first split
is on age, followed by several splits (in both branches) on SBP. After four splits we
have the following five nodes:

1) a decision node for which (age ~ 48) and (SBP :5 151 ) . This node is then split on
cholesterol and SBP, yielding terminal nodes similar to nodes IV, V and VI in
Figure 4;
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Figure 4 Survival tree for the coronary heart disease data. Terminal nodes are indicated by squares and
nonterminal nodes by circles. Numbers in circles and squares indicate the number of alive (top) and deceased
(bottom) cases in that node.

2) a terminal node for which (age < 48) and (SBP > 151 ); 
3) a decision node for which (age > 48) and (SBP ± 133). This node is then split

on hostility, yielding terminal nodes similar to nodes II and III in Figure 4;
4) a decision node for which (age > 48) and (133 < SBP ~161) which is then split

on smoking;
5) a terminal node for which (age > 48) and (SBP > 161).

Thus, as for the breast cancer example, this tree is very similar to the one obtained by
Intrator’s method.

Davis and Anderson’s method produced a tree with a root node split on age
(breakpoint at age 48), followed by a split on blood pressure (breakpoint = 151 ) for
older people, and a split on cholesterol (breakpoint = 226) thereafter on blood

pressure for the younger people. In total the derived tree had very similar terminal
regions as those presented in Figure 4 (hostility was replaced by cholesterol level),
although the splitting scheme was somewhat different.

HARE analysis
As in the breast cancer example (Section 4.1 ), we first estimated the unconditional

hazard function using HEFT. The estimates of the unconditional hazard rate for all
3155 cases and for the 2878 cases without missing values are shown in the left side of
Figure 6. As can be seen from this figure, these estimates are very similar. Note that
while we show the conditional hazard rate until 32 years, there are no uncensored
observations beyond 28 years. HEFT extrapolates the log-hazard function smoothly.
On the right side of Figure 6 we show the corresponding complete unconditional
densities that HEFT fit to the data. They are noticeably different, but since we are
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Table 5 HARE analysis of the transformed coronary heart data

mainly concerned with time less than 30 years, this will not affect our conclusions. In
both HEFT estimates about 81 % of the probability mass is beyond 28 years.

Since the Western Collaborative Group Study is ongoing, the censoring is essen-
tially Type I.56 In particular, we note that of the 2121 men who have not died, 2091 1
(98.6%) have been in the study for over 20 years, while of the 415 men who died of
CHD 229 (55.2%) died before they had been in the study for 20 years. This type of
censoring substantially limits the conclusions that we can reach: our effective sample
size is much smaller than 3155 and there is no data beyond the 20th percentile of the
unconditional distribution function.

Keeping this in mind, we applied HARE to the transformed data, with the missing
cases deleted. The HARE model is summarized in Table 5. As it turned out, none of
the covariates SBP, age, serum cholesterol and smoking that ended up in the model
have missing values. This allows us to apply HARE to the complete dataset using just
the six covariates that have no missing values. This model is also summarized in Table
5. As can be seen, both models are linear proportional hazards models and they are
nearly identical to each other, the only difference being one extra basis function when
the cases with missing values are deleted. Since this basis function does not depend on
a covariate, it effectively corresponds to a knot in the baseline hazard function. Note
that when there are no knots in time and no interactions between time and covariates,
as is the case for the model based on all 3155 cases, the estimate of the unconditional
hazard function shown here in Figure 6 is, except for a scaling, a smooth estimate of
the baseline hazard function in the proportional hazards model.

In Kooperberg,46 where HARE was applied to some datasets with large amounts of
interval censoring, linear proportional hazards models were obtained. There it was
hypothesized that this was because of the ’lack of signal’ due to the large amount of
censoring. It also seems possible that HARE would not find certain interactions
because it never entered them in the model since other functions were considered
more useful. In Carmelli et at. the survival tree ended up including two three-way
interactions: one between SBP, age and serum cholesterol and one between SBP, age
and hostility. To compare a model with (some of) these interactions with the HARE
model, we fit a HARE model forcing it to look as much as possible like the model in
Carmelli et <2/. ~

Specifically, we included only the covariates SBP, age, serum cholesterol and

hostility, we forced the model to be a proportional hazards model, and we did not
allow an interaction between serum cholesterol and hostility. (Since all missing data
were in BMI and WCR, we included all cases in the analysis.) As it turned out, only
the constant and the covariates SBP, age and serum cholesterol, all linear, ended up in
the HARE model. If the penalty term a for AIC in equation (3.2) were reduced from
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logn = 1og3155 -~= 8.06 (BIC) to below 5.42 == log226, hostility would also be

included in the model. This correspond to a p value of about 0.02. Although we
usually would include a variable with such a p value, we are more cautious if our
procedure is as adaptive as the HARE procedure, since we consider many candidates
for basis functions. Furthermore, as mentioned above, the p value of hostility becomes
0.04 once smoking has been entered in the model.

If the penalty term in equation (3.2) were reduced to below 4.92 -= log 13 7 the
interaction between SBP and serum cholesterol would be included in the selected
HARE model. This corresponds to a p value of about 0.026. No other interaction had
a p value below 0.1. In summary, except for some support for a SBP X serum
cholesterol interaction, the HARE analysis does not support the interactions found
using survival trees.

P’roportional hazards analysis
If a proportional hazards model is fit to the coronary heart disease data, the four

variables SBP, age, serum cholesterol and smoking in the model are found to be very
significant (hostility has a p value of about 0.04) . If a linear proportional hazards model
with just these four variables is fit, the coefficients are virtually the same as in Table 5.
It is interesting to note that in the survival tree approach8 smoking did not end up in
the model.

Comparison
Whereas for our first example the main results from the survival tree analysis were

confirmed by the HARE analysis, this is much less the case for the second example.
Both analyses recognize that SBP, age and serum cholesterol are the most important
variables, but the survival tree method comes up with two three-factor interactions,
while the HARE analysis uses an additive model and does not confirm the inter-
actions. Also, HARE uses smoking as the fourth most important variable, while the
survival trees use hostility. HARE and the proportional hazards model are in complete
agreement about this dataset.
We started this example by noting that it has a particularly high percentage for

censoring. This may be one reason for the discrepancy between HARE and the
proportional hazards analysis on one side and the survival trees on the other side.

5 Discussion

When analysing real data, usually model assumptions are hard to verify. Thus, it is
important to analyse data by several methods. We believe that both survival trees and
hazard regression are worthwhile tools for the investigator to use in order to gain new
insights about the data that may easily be missed by immediately applying standard
proportional hazards models, as we saw for the breast cancer data.
The basic ingredients that are involved in actual applications using these methods

have been introduced here. Details about the programs can be found in the papers
where the methods were introduced. HARE and HEFT are available from statlib

(statlib@ stat . cmu . edu). Intrator’s program’8 is available by sending email to
msorna@olive.huji.ac.il. Davis’ program&dquo; 5 is available by sending email

directly to rdaids @ sdac . harvard . edu, LeBlanc and Crowley’s pro am22 is
available by sending email to mike 1 @ orc a . f hcrc . org, Segal’s program 1 is avail-
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able by sending email to mark@segal . ucsf . edu, Zhang’s program 17 is available by
sending email to heping@peace.med.yale,edu, and Gordon and Olshen’s pro-
gram is available solely for academic use by sending email to dstein@sa-
turn.sdsu.edu.

Hazard regression and survival trees are two new methods for the analysis of survival
data that deserve a place in the toolbox of the survival analyst. These methods have
their specific strengths. In particular, one of the appealing features of HARE is that it
provides an automatic check for the appropriateness of a proportional hazards model.
When a proportional hazards model is appropriate, HARE, especially when used in
conjunction with HEFT, provides a smooth estimate for the underlying baseline
hazard function. It also provides a MARS-like2 model for the conditional hazards
function. Another strength is a graphical interface that makes it very easy to look at
curves such as conditional hazards functions. Thus a HARE model is potentially
useful for a health care practitioner in coming up with a prognosis for a particular
patient.
Both HARE and survival tree methods reveal the hidden structure of the data by

reducing the number of important predictors. HARE does this by fitting a model with
main effect and two-factor interaction terms. On the other hand, survival trees provide
a hierarchical set of questions about the population associating it with a specific
survival distribution, without assuming any parametric form of regression dependence.
The important characteristics of terminal nodes are the estimated survival probabili-
ties, the probability of survival past a certain point, and quantiles of the survival
distribution.
An advantage of the survival tree method is that it has a number of features that the

present implementation of HARE lacks because survival trees are based on the more
established CART methodology. Examples are ranking of the covariates affecting the
process in order of importance (the importance ranking, though, is not a complete
answer since variables tend to act in concert and not alone) and an elegant way to deal
with missing values based on surrogate splits. However, in a proposed commercial
implementation HARE should be able to deal with missing values in a way that is
similar to the function no. gam. replace ( ) in S,5° and it will have an importance
measure for the covariates based on an ANOVA decomposition. 30
There is a similarity between the procedure by which variables are selected through

the splitting and pruning algorithm of survival trees and the stepwise addition and
deletion algorithm of HARE. But there are also major differences between survival
trees and HARE. While most variables selected by HARE act on the whole data, the
variables in a survival tree act on subsets of the data. In general, a method that looks
for effects within subsets may have a greater ability to detect interaction effects among
the variables than do methods in which variables act over the entire range of the vector
of covariates. Interactions that have an effect only within a subset may be important in
identifying (smaller) subsets with unique survival that would otherwise go unnoticed.
On the other hand, HARE allows variables to act additively and linearly, a capability
that the survival tree method lacks.
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