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A procedure for estimating a bivariate density based on data that may be censored
is described. After the data are transformed to the unit square, the bivariate density is
estimated using linear splines and their tensor products. The combined procedure yields
an estimate of the bivariate density on the original scale, which may provide insight
about the dependence structure. The procedure can also be used to estimate densities that
are known to be symmetric and to test for independence.
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1. INTRODUCTION

In this article we develop a procedure for estimating a bivariate density based on pos-
sibly censored data. The procedure consists of two stages. First, the univariate marginal
distributions are estimated using hazard estimation with flexible tails (HEFT) (Kooper-
berg, Stone, and Truong 1995a) or logspline density estimation (LOGSPLINE) (Kooper-
berg and Stone 1992). Then, based on these estimates, the data are transformed to the
unit square to have approximately uniform marginal distributions, after which the bi-
variate density is estimated using linear splines and their tensor products. The combined
procedure, referred to as bivariate logspline density estimation, yields an estimate of the
bivariate density on the original scale, which may provide insight about the dependence
structure.

In a univariate setting, smooth estimates of density and hazard functions based on
splines are useful for exploratory data analysis (Kooperberg and Stone 1992; Kooperberg,
Stone, and Truong 1995a). Multivariate density estimation procedures can provide similar
tools for correlated data. There are several univariate density estimation procedures that
can deal with censored data (e.g., Kooperberg and Stone 1992; Koo, Kooperberg, and Park
in press). However, while a number of procedures for estimating multivariate densities
have been proposed (e.g., Koo 1996; Scott 1992), we are not aware of any bivariate
density estimation procedure for dealing with censored data that has explicitly been
studied.

Charles Kooperberg is Associate Member, Division of Public Health Sciences, Fred Hutchinson Cancer Re-
search Center, Seattle, WA 98109-1024 (E-mail: clk@fhcrc.org).

c©1998 American Statistical Association, Institute of Mathematical Statistics,
and Interface Foundation of North America

Journal of Computational and Graphical Statistics, Volume 7, Number 3, Pages 322–341

322



BIVARIATE DENSITY ESTIMATION WITH AN APPLICATION TO SURVIVAL ANALYSIS 323

Bivariate censored data arise, for example, in twin studies, where the age when one
of the twins get a disease may be correlated with the age when his or her twin sibling
gets the disease. Obviously, one or both of the twins may not get the disease at all; thus,
different types of censoring are possible. The dependence between the survival times of
the two twins may give us information about genetic or environmental influence on the
disease.

Although much research in multivariate survival analysis has focused on methods
for inference about the marginal survival times, there has also been substantial interest in
studying dependence structures. In particular, a popular topic of research in multivariate
survival analysis is nonparametric estimation of the survival function (e.g., Dabrowska
1988; Prentice and Cai 1992; Pruitt 1991). Although the bivariate survival function
contains information about the dependence structure (see Dabrowska, Zhang, and Duffy
1995), this structure may be hard to visualize because of the discreteness of the estimates
of the survival function that have been developed to date.

In Section 2 we describe logspline density estimates for bivariate survival data. In
particular, in Section 2.3 we discuss how they can be used in estimating symmetric
densities and in tests for independence of the components. Section 4 contains a small
simulation study and the analysis of two real data sets. We end the article with a few
remarks.

2. BIVARIATE DENSITY ESTIMATION FOR CENSORED DATA

In this section we describe a logspline density estimation procedure for bivariate
data in which one or both components may be right censored. For reasons that will be
discussed in detail in Section 2.2, the data are pretransformed from[0,∞)2 to [0, 1]2 in
such a manner that the marginal distributions are approximately uniform, after which the
bivariate density of the transformed data is estimated. Thus, bivariate logspline models on
the unit square and the associated model selection are first introduced. Then transforma-
tions from the domain of the data to the unit square and back again and the advantages of
such transformations are discussed in the context of bivariate density estimation. Finally,
some extensions and implications of the estimation methodology are considered.

2.1 LOGSPLINE DENSITY ESTIMATION ON THE UNIT SQUARE

Let T = (T1, T2) be a pair of random variables that takes values inU = [0, 1]2. In
bivariate logspline density estimation the logdensity ofT is modeled in a linear space
G that is adaptively chosen from a familyG of allowable spaces. The basis functions
B1(t), . . . , Bp(t), t = (t1, t2) ∈ U , are said to span an allowablep-dimensional space
G if each of the basis functionsBj(t), 1 ≤ j ≤ p, has one the following forms:

1. Bj(t) = tl, l ∈ {1, 2};
2. Bj(t) = t1t2, wheret1 and t2 are among the basis functions ofG;
3. Bj(t) = (al − tl)+, l ∈ {1, 2}, where 0< al < 1 and tl is among the basis

functions ofG (herex+ = x if x > 0 andx+ = 0 otherwise);
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4. Bj(t) = (al − tl)+t3−l, l ∈ {1, 2}, where(al − tl)+, t3−l and t1t2 are among
the basis functions ofG;

5. Bj(t) = (a1 − t1)+(a2 − t2)+, where(a1 − t1)+ and (a2 − t2)+ are among the
basis functions ofG.

Basis functions of types 1 and 3 are said to depend on one component, and the other
basis functions are referred to as tensor product basis functions;al is referred to as a
knot in tl. A function g in G is referred to as a bivariate linear spline.

Given β ∈ IRp, set

f(t; β) = exp(β1B1(t) + · · · + βpBp(t) − C(β)), t ∈ U , (2.1)

where

C(β) = log

(∫
U

exp(β1B1(t) + · · · + βpBp(t))dt
)

. (2.2)

Then f(·; β) is a continuous positive density onU for β ∈ IRp. For β ∈ IRp and
0 ≤ t1 ≤ 1, logf(t; β) is a linear function int2; for β ∈ IRp and 0≤ t2 ≤ 1, logf(t; β)
is a linear function int1. Two random variables havingf(·; β) as their joint density are
independent if and only if none of the basis functions depend on botht1 and t2.

Considern randomly selected pairsTi = (T1i, T2i), 1 ≤ i ≤ n. It is assumed that
Ti has densityf(·) on U and that the marginal densities ofT1i andT2i are uniform on
[0, 1]. For 1≤ i ≤ n and l ∈ {1, 2} let Cli be the censoring time for thelth component
of the ith pair (Cli = 1 if this component is uncensored). SetYli = min(Tli, Cli) and
δli = ind(Tli ≤ Cli). Also setYi = (Y1i, Y2i), Ci = (C1i, C2i), and δi = (δ1i, δ2i).
It is assumed thatT and C are independent. The random variableY is said to be
uncensored ifδ = (1, 1), censored in the first component ifδ = (0, 1), censored in the
second component ifδ = (1, 0), and doubly censored ifδ = (0, 0). The log-likelihood
corresponding toYi = yi, δi andβ is given by

φ(yi, δi,β) = f(yi; β) if δi = (1, 1),

φ(yi, δi,β) =
∫ 1

y1i

f(u1, y2i; β)du1 if δi = (0, 1),

φ(yi, δi,β) =
∫ 1

y2i

f(y1i, u2; β)du2 if δi = (1, 0),

and

φ(yi, δi,β) =
∫ 1

y1i

∫ 1

y2i

f(u1, u2; β)du2du1 if δi = (0, 0).

The log-likelihood function for the observed data is given by

`(β) =
∑

i

logφ(yi, δi,β), β ∈ B.
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Straightforward manipulation of these expressions yields formulas for the score function
and Hessian, which are similar to those in Kooperberg and Stone (1992). The Hessian is
guaranteed to be negative definite only when all the data are uncensored, but the possible
lack of negative definiteness of the Hessian does not appear to be a problem in practice.
The log-likelihood function can be maximized to obtain the maximum likelihood estimate
of β using, for example, a quasi-Newton algorithm.

The choice ofG from the familyG of allowable spaces is carried out using stepwise
deletion of basis functions. In particular, letK1 = max{0, b8(

∑
i δ1i).1 − 10c} and let

the potential knota1k in t1 be the empiricalk/(K1 + 1)th quantile of{Y1i : δ1i = 1}.
The potential knotsa2k in t2 are selected in a similar manner. Initially a saturated model
is fit; that is, a model with basis functionst1, t2, t1t2, t1(a2k2 − t2)+, (a1k1 − t1)+t2, and
(a1k1 − t1)+(a2k2 − t2)+, k1 = 1, . . . , K1 andk2 = 1, . . . , K2. (However, basis functions
of the form(a1k1 − t1)+(a2k2 − t2)+ for which fewer than three uncensored observations
are within each of the four quadrants defined by the linest1 = a1k1 and t2 = a2k2 and
basis functions that may otherwise cause singularities are not included in this model.)
The somewhat complicated form of the formula forKl is partly motivated by results
about theL2 convergence rates for nonadaptive versions of polynomial spline routines
(Stone, Hansen, Kooperberg, and Truong 1997); practical experience leads us to choose
the constants 8, 10, and .1.

After the initial model is fit thep-dimensional allowable spaceG is successively
replaced by a(p−1)-dimensional allowable subspaceG0 until no basis functions are left,
so that the “model”f(t) = 1 is finally considered. An arbitrary basis function depending
on one component is removed if the remaining subspace is allowable; otherwise a tensor
product basis function is removed, with that candidate space being chosen that decreases
the quadratic approximation to the log-likelihood function the least. (The usual Wald
statistic for testing that the coefficient of a basis function equals 0 is twice the decrease
of the quadratic approximation to the log-likelihood function (Stone, Hansen, Kooperberg,
and Truong 1997).) Because it is assumed that the marginal distributions ofT1 and T2

are uniform, the coefficients of the basis functions that depend on one component are
typically insignificant unless the corresponding basis function also appears as part of a
tensor product basis function.

During this stepwise deletion procedure, a sequence of models indexed byν is
obtained, with theνth model havingpν tensor product basis functions. The generalized
Akaike information criterion (AIC) can be used to select a model from this sequence.
Let ˆ̀

ν denote the log-likelihood for theνth model, and let AICa,ν = −2̂̀
ν + apν be the

Akaike information criterion with penalty parametera for this model. Among the models
from which no basis functions of the formt1, t2, (a1k1 − t1)+ or (a2k2 − t2)+ can be
removed, we select the model corresponding to the value ofν that minimizes AICa,ν .
In light of practical experience, we generally recommend choosinga = logn as in the
Bayesian information criterion (BIC).

Because the coefficients of the basis functions that depend on one component are
typically insignificant, the log-likelihood is not penalized for inclusion of these basis
functions in the model (to do so would effectively require the tensor product basis
functions to compensate for several parameters).
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2.2 TRANSFORMING DATA TO THE UNIT SQUARE

It is possible to apply a procedure similar to the one described in the previous
subsection to data on(−∞,∞)2 or [0,∞)2. For a variety of reasons, however, it is
better first to transform the data to the unit square. Since these reasons are the same
for densities on(−∞,∞)2 and on[0,∞)2, assume that we wish to estimate a bivariate
density on[0,∞)2 using a logspline model (2.1) and based directly on the untransformed
data. Then, for a given set of basis functionsB1, . . . , Bp only vectorsβ ∈ IRp for which
the normalizing constant

C(β) =
∫ ∞

0

∫ ∞

0
exp(β1B1(t) + · · · + βpBp(t))dt2dt1

given by (2.2) is finite or, equivalently,

lim
tl→∞ β1B1(t) + · · · + βpBp(t) = −∞, t3−l ∈ [0,∞) and l ∈ {1, 2}, (2.3)

yield densities on[0,∞)2. These conditions result in a number of linear constraints on the
coefficients. The decrease of the quadratic approximation to the log-likelihood function is
no longer the usual Wald statistic since the constraints (2.3) have to be handled; however,
it is conveniently computed using a quadratic optimization package such as LSSOL (Gill,
Murray, Saunders, and Wright 1986a).

Although this approach appears straightforward, its problems become more apparent
when we consider the quadrant of the plane wheret1 > a1K1 and t2 > a2K2. In each
rectangle on which the logdensity is a polynomial, it is of the formb0+b1t1+b2t2+b3t1t2.
Therefore, to satisfy (2.3) fort1 > a1K1 or for t2 > a2K2 it is required thatb3 ≤ 0.
However, only tensor product basis functions can model dependence betweenT1 andT2.
A positive dependence is associated with a positive coefficient oft1t2. Thus, a positive
dependence for values of both random variables larger than the largest knot cannot be
modeled.

An alternative to direct estimation of the joint density ofT1 andT2 is first to esti-
mate the marginal densities and then to transform the data using the estimated marginal
distribution functions. In our approach we use hazard estimation with flexible tails
(HEFT) (Kooperberg, Stone, and Truong 1995a) or (univariate) logspline density es-
timation (LOGSPLINE) (Kooperberg and Stone 1992) to estimate the marginal densities.
Both methodologies use cubic splines. LOGSPLINE models the logdensity and HEFT
the log-hazard function. HEFT can be used only when the range of the data is[0,∞).

Let f̂1 andf̂2 be estimates of the marginal densities ofT1 andT2 respectively, and let
F̂1 and F̂2 be the corresponding estimated distribution functions. SetY ∗

li = F̂l(Yli), l ∈
{1, 2}, and apply the procedure described in the previous subsection toY∗

i = {Y ∗
1i, Y

∗
2i}

andδi, i = 1, . . . , n, to obtain an estimatêf∗ of the density ofT∗ = (F̂1(T1), F̂2(T2))
on U . The logspline estimate of the bivariate density ofT is then given by

f̂(t) = f̂∗(F̂1(t1), F̂2(t2))f̂1(t1)f̂2(t2), 0 ≤ t1, t2 < ∞. (2.4)

Logspline estimates of the distribution functionF (t) and survival functionS(t) =
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P (T ≥ t) = P (T1 ≥ t1, T2 ≥ t2) are given by

F̂ (t) =
∫ F̂ (t1)

0

∫ F̂ (t2)

0
f̂(u1, u2)du1du2,

and

Ŝ(t) =
∫ 1

F̂ (t1)

∫ 1

F̂ (t2)
f̂(u1, u2)du1du2.

Another advantage of transforming the data to the unit square is that the number
of knots in the final model is typically much smaller in the estimation of the bivariate
density on the unit square (often zero or one in each component) than it would be if the
density were estimated directly. Moreover, since the estimates of the marginal densities
are smooth, the final estimate of the bivariate density is smoother than it would be if it
were estimated directly.

From a theoretical viewpoint we lose nothing by first transforming the data. In
Stone (1994) and Kooperberg, Stone, and Truong (1995b) it is established that theL2

convergence rate for nonadaptive versions of logspline density estimation and hazard
estimation with flexible tails isn−p/(2p+d), wherep is the degree of the spline andd is
the dimension of the domain of the function that is estimated provided a number of mild
conditions onf are satisfied. Thus, the convergence rate for nonadaptive versions of the
univariate procedures LOGSPLINE and HEFT isn−3/7 sinced = 1 andp = 3 (cubic
splines), while the rate for bivariate logspline density estimation isn−1/4 sinced = 2
andp = 1 (linear splines). (The degree of smoothness required off to get the indicated
rate of convergence is larger for the procedures withp = 3 than for the procedure with
p = 1.) Thus, the convergence rate for the univariate procedures is so much faster that
in practice the convergence properties are determined by the bivariate procedure, whose
rate is independent of a possible transformation.

2.3 MORE ABOUT BIVARIATE L OGSPLINE DENSITY ESTIMATION

2.3.1 Symmetric Densities

The framework for bivariate density estimation described in this article is particularly
well suited to applications in which it is known in advance that the density is symmetric
in its arguments—that is,f(t1, t2) = f(t2, t1) for all t. In such situations HEFT or
LOGSPLINE can be used to estimate one marginal density based on the combined
data for the two components, while symmetrized versions of the basis functions can be
used to estimate the density on the unit square. Thus, when the density is symmetric,
t1 + t2, t1t2, (a − t1)+ + (a − t2)+, (a − t1)+t2 + t1(a − t2)+, (a − t1)+(a − t2)+, and
(a1 − t1)+(a2 − t2)+ + (a2 − t1)+(a1 − t2)+ with a1 6= a2 are used as basis functions.
(Note that in this context the basis functionst1 + t2 and(a − t1)+ + (a − t2)+ play the
role of the basis functions that depend on one component in Section 2.1: they do not
count in the AIC criterion, and they are removed whenever possible.) The twin study in
Section 4.2 is an example in which the density is known a priori to be symmetric.
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2.3.2 Integration

Because linear splines are used to model the logdensity on the unit square, all bivari-
ate integrals can be reduced analytically to univariate integrals. The resulting univariate
integrals are closely related to the exponential integral (Abramowitz and Stegun 1965),
for which fast algorithms exist. This is particularly important when some data may be
censored, since integrals then have to be computed for every censored observation. If
cubic splines were used to model the density, it would no longer be possible to reduce
the bivariate integrals to univariate ones. (Note that if cubic splines were used to model
the density, it would be even more critical first to transform the data to the unit square
to avoid complications because of tail constraints.)

2.3.3 Numerical Details

After the data have been transformed to the unit square, we use NPSOL (Gill, Murray,
Saunders, and Wright 1986b) to find the maximum likelihood estimates. Although the
log-likelihood function is not necessarily concave when some data are censored, we have
not experienced any numerical difficulties when the knots are positioned such that there
are no rectangles(t1i, t1i+1) × (t2j , t2j+1) without a couple of uncensored observations.
This experience is in agreement with the experience of Kooperberg and Stone (1992) in
the context of univariate logspline density estimation. The real and simulated data sets in
Section 4 all took less than 10 seconds of CPU time on the Sparc ULTRA workstation
that we used. A crucial aspect of getting fast code is the efficient organization of the
computation of the score function and the Hessian involving the integrals discussed
previously.

2.3.4 Testing for Independence

There are several ways that model selection can be used to develop tests for inde-
pendence. One possibility is to fit a model

f(t1, t2) = exp(b1t1 + b2t2 + b3t1t2 − C(β)), t ∈ U , (2.5)

without knots to the density of the transformed data and to use a likelihood ratio test
of the hypothesisH0 : b3 = 0. Alternatively, we can forgo the formal testing procedure
and see if the AIC-based model selection procedure keeps any interaction terms in the
model.

Tests for independence for uncensored data are well established. Tests for indepen-
dence in the context of censored data are often based on ranks (see, for example, Oakes
1982). Commenges and Andersen (1995) and Gray (1995) gave procedures that can be
used for tests of independence in the context of the proportional hazards and frailty
models.
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2.3.5 Odds Ratios

In many epidemiological studies the odds ratio is the preferred measure of depen-
dence between two random variables. A local version of this ratio can be defined as

θ(t) =
f(t)S(t)∫ ∞

t1
f(v1, t2)dv1

∫ ∞
t2

f(t1, v2)dv2

(Clayton 1978; Oakes 1989). The relation with the odds ratio is clarified by rewritingθ

as a ratio of conditional hazard rates:

θ(t) =
λT1(t1|T2 = t2)
λT1(t1|T2 > t2)

=
λT2(t2|T1 = t1)
λT2(t2|T1 > t1)

.

In particular, whenθ(t) > 1 there is a local positive association, and whenθ(t) < 1
there is a local negative association. In certain circumstances the local odds ratio, together
with the marginal distributions, determines the bivariate distribution ofT (Oakes 1989).
In the context of bivariate logspline density estimation it is straightforward to compute
the estimatêθ(t) of the local odds ratio corresponding to the density estimatef̂(t). Note
that the local odds ratio is invariant under monotone transformations of the individual
coordinates; thus, in the notation of (2.4),

θ̂(t) = θ̂∗(F̂1(t1), F̂2(t2)), 0 ≤ t1, t2 < ∞.

It is easy to establish that iff∗
2 is a continuous, positive density function on[0, 1]2,

then limt1↑1 θ∗(t1, t2) = 1 for 0 ≤ t2 < 1 and limt2↑1 θ∗(t1, t2) = 1 for 0 ≤ t1 < 1.
In particular, for bivariate logspline models, the local odds ratio is 1 if eithert1 = 1 or
t2 = 1 on the transformed scale or, equivalently, ift1 or t2 approaches infinity on the
original scale.

3. RELATED WORK

3.1 BIVARIATE DENSITY ESTIMATION USING SPLINES

In a recent paper Koo (1996) introduced tensor logspline density estimation (TELDE).
This procedure, like the one described in the present paper, is a bivariate density esti-
mation methodology based on tensor product splines and a stepwise deletion algorithm.
However, there are a number of differences between TELDE and bivariate logspline den-
sity estimation: (1) TELDE cannot deal with censored data; (2) since in TELDE the data
are not transformed to a bounded region the tail behavior is much harder to control (Koo
(1996) did not fit tails to his density, but rather restricted his estimates to the rectangle
shown in the figures in his paper; Ja-Yong Koo, private communication); and (3) TELDE
employs cubic splines and therefore usually produces smoother estimates than bivariate
logspline density estimation. Although in principle it would be possible to employ cubic
splines in bivariate logspline density estimation, the integrals can no longer be reduced
to univariate integrals, which is an important consideration when some data are censored
(see Sec. 2.3).
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3.2 BIVARIATE SURVIVAL ANALYSIS

In univariate survival analysis the distribution of the survival times is uniquely deter-
mined by its hazard functionλ(t) = f(t)/S(t). For bivariate survival analysis, however,
such a unique representation in terms of hazard functions does not exist. Although there
are several consistent estimators of the bivariate distribution function, efficient estimation
has proven to be a difficult problem (van der Laan 1996). The two representations of the
bivariate survival distribution that are most commonly used are due to Dabrowska (1988)
and Prentice and Cai (1992). Andersen, Borgan, Gill, and Keiding (1993) discussed both
representations and their connections in detail.

Dabrowska (1988) modeled the joint survival function in terms of two conditional
hazard functions and a “double” hazard function, representing the instantaneous rate
of “double failures” at timet given that both components were alive until that time.
Cumulative versions of each of these three hazard functions can be estimated using
a Kaplan–Meier type estimate. For further properties of this estimator see Dabrowska
(1989), Gill, van der Laan, and Wellner (1995), and Pruitt (1991). Prentice and Cai (1992)
modeled the bivariate survival function in terms of the two marginal cumulative hazard
functions and a covariance rate function, which measures the covariance between two
martingales defined in terms of counting processes.

Both representations have attractive properties, such as the direct link to the Kaplan–
Meier estimate (Dabrowska representation) or the relation to the estimation of dependence
parameters and the possibility of combining the bivariate model with a marginal propor-
tional hazards model (Prentice and Cai representation). However, neither representation
is well suited for estimation with a polynomial spline model since there are no explicit
conditions under which the double hazard function (Dabrowska representation) or the
covariance rate function (Prentice and Cai representation) yields a valid joint survival
function. As a result, the optimization problem has complicated constraints which are
hard to handle; also, the corresponding log-likelihood is nonconcave even if none of the
data are censored.

Neither representation yields a direct estimate of the bivariate density. While it is
possible to obtain an estimate of the bivariate density as the derivative of the convolution
of any estimate of the bivariate distribution function with a kernel, we know of no
methodology other than that presented in this article for directly estimating a bivariate
density when some data are censored.

4. EXAMPLES

4.1 SIMULATED EXAMPLES

Clayton (1978) proposed the family of bivariate distributions

S(t; θ) =

{
[S1(t1)1−θ + S2(t2)1−θ − 1]−(θ−1)−1

, t1, t2 ≥ 0, θ > .5, θ 6= 1,

S1(t1)S2(t2) t1, t2 ≥ 0, θ = 1,

(4.1)
whereS1 and S2 are the marginal survival functions ofT1 ≥ 0 andT2 ≥ 0. WhenT
has such a distribution, the local odds ratioθ(t) equalsθ for all t, independently of the



BIVARIATE DENSITY ESTIMATION WITH AN APPLICATION TO SURVIVAL ANALYSIS 331

 0
2

4
6

8 10

T 1
 0

1
2

3
4

5

T
 2

0

0.05

0.1

0.15

Density

 0
2

4
6

8 10

T 1 0
1

2
3

4
5

T
 2

0

0.1

0.2

0.3

Conditional density of T  given T1 2

Figure 1. True Bivariate Density From Which Data Were Generated for the Simulated Example (correlation is
.6).

marginal distributions. The random variablesT1 andT2 are positively correlated ifθ > 1,
negatively correlated ifθ < 1, and independent ifθ = 1.

In the following examplesT is generated from (4.1) withT1 having the gamma
distribution with shape parameter 4 and mean 4 andT2 having the gamma distribution
with shape parameter 1.5 and mean 1.5. In Figure 1 we show the density ofT and
the conditional density ofT1 given T2 when θ = 2 (left), so that cor(T1, T2) = .605.
Perspective plots of the bivariate density tend to look very similar for a wide range of
values ofθ; plots of the conditional density, like the one on the right side, show more
dependence onθ.

In the simulation studies we looked at the performance of the bivariate logspline
density estimate for a variety of values ofθ with both uncensored data and data censored
by independent exponential random variables. For the censored data,C1 was generated
from the exponential distribution with mean 8 andC2 was generated from the exponential
distribution with mean 3, yielding about 38% censoring forT1 and 35% censoring for
T2. We considered sample sizes ofn = 100 andn = 500 pairs.

Table 1 summarizes the simulations with 100 pairs and with 500 pairs. For both
the censored and the uncensored data we report how often, out of 200 simulations, the
logspline procedure estimated a model in whichT1 and T2 were independent (using
AIC with the default parameter of logn for model selection) and how often the test
H0 : b3 = 0 was not rejected at the 5% level (see Sec. 2.3).

We see from Table 1 that the test for independence based on the bivariate logspline
model has good power, even whenθ is small. Actually, the formal likelihood ratio test
appears to perform almost the same as the model selection procedure using BIC.

As a measure of accuracy of the estimate of the bivariate density after back-
transformation, we computed the integrated squared error (ISE) between the true un-
derlying density and the estimated density,

∫ ∞
0

∫ ∞
0 [f̂(t) − f(t; θ = 2)]2dt1dt2 for each

of the simulated densities withθ = 2. By comparison, the integrated squared difference
between the underlying density withθ = 2 and the underlying density withθ = 1 (i.e.,
whenT1 andT2 are independent) is .00556. The results are summarized in Table 2. From
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Table 1. Results of 200 Simulations

n=100 n=500

Uncensored Censored Uncensored Censored

cor(F1(T1), indep. b3 = 0 not indep. b3 = 0 not indep. b3 = 0 not indep. b3 =0 not
θ F2 (T2 )) models rejected models rejected models rejected models rejected

1.0 .000 188 192 180 185 198 189 200 193
1.2 .138 140 160 163 166 46 28 123 117
1.4 .247 39 44 106 102 0 0 9 7
1.6 .338 8 8 57 58 0 0 0 0
1.8 .415 1 1 28 23 0 0 0 0
2.0 .478 0 0 6 4 0 0 0 0

this table we see that the density estimates are quite accurate whenn = 500, but they
are substantially more variable whenn = 100. The amount of censoring in this example
seems to have relatively little influence on the rate of change of the ISE asn changes:
for both the censored and the uncensored data, the average ISE is reduced by about a
factor of 3–4 when the sample size is increased from 100 to 500.

In Figure 2 we show the estimates of the density and conditional density for the
simulation that was at the median ISE among the simulations withn = 500 and censored
data. In the right side of this figure for large values ofT2, it is easy to recognize the
location of a knot int1. Actually, for this data set 77 observations were doubly censored;
for 103 observationsT1 was censored but notT2; for 105 observationsT2 was censored
but notT1; and 215 observations were uncensored. The ISE was .00175. After examining
this and many similar figures, we are convinced that the bivariate logspline density
estimation procedure does a good job in estimating bivariate densities, even when some
of the data are censored.

In many practical situations the censoring distribution will essentially be supported
on a bounded subset of the failure distribution; for example, because of the limited
period of follow-up in clinical research or because the majority of people never get a
certain disease (we could say they die before they get the disease). This is the case
for the Australia twin data example in the next section. In such situations the interest
is typically in the density restricted to the region where data are observed. While the
bivariate logspline density estimate provides an estimate on[0,∞)2, the procedure really
extrapolates outside the region where data are observed. In particular, the univariate
logspline and HEFT procedures extrapolate the marginal densities using exponential and
Weibull-like tails, respectively.

When the data are limited to a region[0, c1]×[0, c2] there are two possible approaches
to bivariate density estimation:

Table 2. Integrated Squared Error (ISE) with θ = 2

n = 100 n = 500

uncensored censored uncensored censored

Average ISE .00499 .00651 .00133 .00196
SD ISE .00334 .00453 .00062 .00097
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Figure 2. Bivariate Logspline Density Estimate and the Corresponding Conditional Density ofT1 givenT2;
n =500, 36% Censoring.

• we can use only the data for which both times are within this region, and estimate
the conditional density ofT given thatt1 ≤ c1 and t2 ≤ c2; or

• we can use all the data to estimate the density ofT on [0,∞)2, but only consider
the estimate on[0, c1] × [0, c2].

We would expect the second approach, which is the one used by the bivariate logspline
procedure, to be more accurate, unless the dependence is extreme, since it makes use of
the data for which one of the two components is uncensored to estimate the marginal den-
sity, which would conceivably help in estimating the marginal densities more accurately.
We carried out a small simulation study to confirm this.

For the computations reported in Table 3 we generatedT from the same distributions
as before, but now the censoring times are fixed atC1 = 4.5 andC2 = 1.7 for each
observation. This results in about 34% censoring ofT1 and 33% censoring ofT2; for
the bivariate data between 56% (θ = 0) and 47% (θ = 2) were censored. In Table 3 we
report the average ISE over 200 simulations on the rectangle[0, 4.5] × [0, 1.7] for the
logspline procedure using only the uncensored data to estimate the density function (the
conditional density function, rescaled by the inverse of the fraction of data that were
uncensored) and for the logspline procedure using all the data. As a comparison we also
give the ISE over the relevant rectangle based upon the completely uncensored data. As
can be seen from this table, it is indeed advantageous to include the singly censored

Table 3. Integrated Squared Error (ISE) on [0,4.5]×[0,1.7]

n = 100 n = 500

using only using without using only using without
θ uncensored data all data censoring uncensored data all data censoring

1.0 .00262 .00087 .00062 .00068 .00016 .00010
1.2 .00279 .00116 .00097 .00071 .00023 .00020
1.4 .00326 .00137 .00125 .00077 .00033 .00026
1.6 .00344 .00149 .00146 .00088 .00049 .00033
1.8 .00360 .00189 .00169 .00095 .00064 .00037
2.0 .00378 .00224 .00191 .00121 .00081 .00041
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Figure 3. Density Estimate for the Geyser Data.

observations even if there is a fairly strong dependence.

4.2 REAL EXAMPLES

4.2.1 Geyser Data

Although bivariate logspline density estimation was developed with survival analysis
in mind, it is interesting to see how it performs on data without censoring when the
underlying density is bimodal. The geyser data set consists of 274 measurements of the
duration in minutes of an eruption of the Old Faithful geyser and the waiting time until
the next eruption of this geyser. This data set has been widely used in the literature.
There are several versions of the data set; here we use the one published in Härdle
(1990), which was also used by Koo (1996). Figure 3 contains a perspective plot and
a contour plot of the bivariate logspline estimate (the data are displayed in the contour
plot).

For the bivariate logspline estimate, both marginal distributions were first estimated
using LOGSPLINE. After the data were transformed to the unit square, we computed
the bivariate logspline estimate using four knots in each variable, resulting in a 35-
dimensional starting model. The stepwise deletion procedure removed 13 interaction
terms. None of the knots were completely removed.

When we compare this figure to the estimates shown in Härdle (1990) and Koo
(1996) we note that the bivariate logspline procedure provides reasonable estimates. In
particular, keeping in mind that while the bivariate part of the procedure is based only
on linear splines, the estimate is smoother than expected. It is our experience that the
bivariate logspline density estimation procedure usually gives reasonable estimates, even
when the density has several modes. However, because of the piecewise linear nature of
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the estimates and the relatively small number of knots that are being used, the estimates
may sometimes be somewhat rough, for example, in comparison to those presented in
Koo (1996). The power of the bivariate logspline density estimation procedure becomes
more evident when we consider censored data.

4.2.2 The Australian Twin Study (Duffy, Martin and Mathews 1990)

The Australian twin study was a retrospective cohort study for analyzing the corre-
lations between monozygotic twins (MZ) and between dizygotic twins (DZ) for various
diseases. Such twin studies allow one to separate effects of shared environment and ge-
netic components. While it is generally assumed that twins share the same environment,
monozygotic twins (MZ) are genetically identical, while dizygotic twins (DZ) have half
their genome in common. In the Australian twin study, between 1980 and 1982 a ques-
tionnaire was mailed to all registered 5,968 twins over the age of 18 asking them for
their history of diseases and operations. A total of 3,808 complete pairs returned the
questionnaire.

Appendicitis is an inflammation of the vermiform appendix and is usually acute. It
occurs in approximately 10–15% of the population, mostly adolescents and young adults.
The causes of appendicitis are not fully understood, According to a leading theory, the
initial event is obstruction of the lumen by factors such as foreign bodies, intestinal
parasites, tumors, or lymphoid follicular enlargement due to a viral infection. However,
obstructive elements have been identified in only 30–40% of the removed inflamed
appendixes. Additional factors may contribute to the occurrence of appendicitis, such
as genetic predisposition, perhaps interacting with diet or other environmental factors.

Here we investigate the age of appendectomy for twin female pairs. There were
1,218 MZ and 735 DZ such pairs. Of these pairs 770 MZ twins (63%) and 464 DZ twins
(63%) were doubly censored; that is, neither sibling had undergone appendectomy; in 304
MZ twins (25%) and 208 DZ twins (29%) one sibling had undergone appendectomy; in
144 MZ twins (12%) and 63 DZ twins (9%) both siblings had undergone appendectomy.
While only about 30% of the people will eventually get an appendectomy, the use of
the logspline procedure requires us to make the usual survival analysis assumption that
eventually everybody would have gotten an appendectomy, but that most people die
before this happens. (According to the HEFT fit shown in Fig. 4, after approximately
29,000 years 90% of the people would have gotten an appendectomy.) As such, the
interesting part of the density will be on the region[0, 60]2, since very few people get
appendectomies after age 60. However, this region represents only about 10% of the
probability mass of the density.

HEFT was used to estimate the marginal density of the age to appendectomy for
the MZ twins and for the DZ twins. Since it is reasonable to assume that the marginal
distribution of the age to appendectomy is the same for the MZ and DZ twins, data
for both types of twins were combined to get one preliminary estimate of the marginal
density, which is shown as the solid line in Figure 4. Because we prefer to detect
details using the bivariate estimation on the unit square, we oversmoothed this estimates
somewhat by doubling the default penalty parameter.
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Figure 4. Marginal Density Estimates for the Twin Data. Solid: all data, using HEFT; dotted: MZ, combined
procedure; dashed: DZ, combined procedure.

In this situation the bivariate density estimate is required to be symmetric in its
arguments, that is,̂f(t1, t2) = f̂(t2, t1). For the MZ twins, we initially fit a model with
four knots and 19 basis functions; for the DZ twins we fit a model with three knots and
11 basis functions. After the stepwise deletion procedure, two basis functions, neither
involving knots, were left for the DZ twins and four for the MZ procedure. The fits are
summarized in Table 4.

The fitted densities, back-transformed to[0,∞)2, are shown in Figure 5. After the
bivariate densities are fit on the unit square, the (back-transformed) marginal densities
are no longer identical to the estimate we obtained by HEFT. In particular, in the present
situation, where both data sets were combined to estimate one marginal density, differ-
ences could occur. However, as can be noticed from the new estimates of the marginal
densities (shown as the dashed and dotted lines in Fig. 4), there is little difference be-
tween the combined estimate of the marginal densities and the separate marginals for
the MZ and DZ twins. This is comforting since, as the response patterns of the DZ and

Table 4. Fitted Densities for the Twin Data on the Unit Square

Basis function MZ twins DZ twins

t1 + t2 −2.15 −1.65
t1t2 4.47 3.56
(.13−t1)+ + (.13− t2)+ 3.03 —
(.13−t1)+ t2+ t1(.13−t2)+ −13.32 —
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Figure 5. Logspline Estimates of the Bivariate Densities. Left: monozygotic twins; right: dizygotic twins.

MZ twins differed somewhat (Duffy, Martin, and Mathews 1990), there may have been
differences between the two groups.

In a twin study, such as the Australian twin study, two of the questions of interest
are: are the survival times (age of appendectomy) of the twins correlated? If so, are the
correlations in the survival time identical for MZ and DZ twins? A positive answer to
the first question would suggest that either environmental or genetic factors play a role
in appendicitis. A negative answer to the second question would suggest that genetic
factors play a role in appendicitis.

Although the fact that the AIC procedure did not remove the basis functiont1t2

already suggests that the two survival times are not independent for either of the two
types of twins, we can carry out a formal likelihood-ratio test to investigate this further.
For the MZ twins the difference in log-likelihood between the models with and without
the basis functiont1t2 is 54.11; for the DZ twins it is 10.21. Both results give strong
support to the hypothesis of dependence. Actually, the fitted correlation between the two
survival times on the unit square was .42 for the MZ twins and .28 for the DZ twins.

To answer the second question, first a model with the same basis functionst1 + t2

and t1t2 as were used for the DZ twins were fit to the MZ twins and to the combined
data for all twins, still using the transformed data. The test for differences between MZ
twins and DZ twins now becomes a test for differences in the coefficient oft1t2. This test
can conveniently be carried out as a likelihood ratio test (with one degree of freedom).
The relevant statistics can be found in Table 5. As can be seen, the difference in log-
likelihood is 3.40 (p = .009) so that we can conclude that the MZ twins have a higher
correlation than the DZ twins.

Table 5. Statistics for Testing the Difference Between MZ and DZ Twins

Data Coefficient of t1 t2 Log-likelihood

MZ twins 6.18 −440.70
DZ twins 3.56 −290.77

−731.47

All twins 5.25 −734.87
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Figure 6. Logspline Estimates of the Local Odds Ratio. Left: monozygotic twins; right: dizygotic twins.

As discussed in Section 2.3 the local odds ratio gives a local measure of dependence.
In Figure 6 the estimated local odds ratio for the MZ and the DZ twins are shown. For
the MZ twins the estimated local odds ratio varies between 4.9 (att1 = t2 = 0) and
1.7 (at t1 = t2 = 60); for the DZ twins it varies between 2.0 (att1 = t2 = 0) and 1.5
(at t1 = t2 = 60). When examining these plots one should keep in mind that for either
t1 = ∞ or t2 = ∞ the odds ratio equals one for logspline models. Note that the local
dependence betweenT1 and T2 is everywhere stronger for the MZ twins than for the
DZ twins. Because the local odds ratio is larger than 1 everywhere, the risk of getting
an appendectomy for a twin increases if her sibling also got an appendectomy. From the
left side of Figure 6, we are led to believe that this increase in risk is particularly large
when a MZ twin is young and her sibling got the appendectomy at a young age.

To investigate the validity of this belief or, equivalently, that the local odds ratio for
the MZ twins is indeed much larger near (0,0) than elsewhere, we analyzed simulated data
that was generated from a Clayton model (4.1) having the same marginal distributions
and censoring pattern as the MZ twin data. In particular, we generated a new setT◦

i =
(T ◦

1i, T
◦
2i), i = 1, . . . , 1,218, of survival times from a Clayton model withθ = 2.5 and

marginal densities as shown in Figure 4. For the twin data the censoring timesC1i andC2i

are identical for all pairs; furthermore, analysis of the data suggested that the distribution
of of C1−20 is reasonably modeled by an exponential distribution with mean 18. We thus
generated censoring timesC◦

1i = C◦
2i accordingly. For eachi we setY ◦

1i = min(T ◦
1i, C

◦
1i),

Y ◦
2i = min(T ◦

2i, C
◦
2i), δ◦

1i = ind(T ◦
1i ≤ C◦

1i) and δ◦
2i = ind(T ◦

2i ≤ C◦
2i). This yielded 744

doubly censored, 314 singly censored and 140 uncensored pairs in the simulated data
set. We applied the bivariate logspline procedure to(Y◦

i , δ◦
i ), i = 1, . . . , 1218, requiring

a symmetric density, as we did for the MZ twin data. The fitted bivariate density and
the corresponding local odds ratio are shown in Figure 7. (We actually repeated this
experiment ten times and got very similar results each time.) While the estimated density
in the left side of Figure 7 looks similar to the one in the left side of Figure 5, the local
odds ratios are very different. In particular, we note that the local odds ratio in Figure 7
is fairly constant at a level between 2 and 2.5. Since the true odds ratio for the simulated
data was indeed constant at 2.5, this adds credence to the conclusion of Figure 6 that
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the dependence between the two survival times is stronger for low values ofT1 andT2

for the MZ twins. (Actually, this stronger dependence for low values ofT1 andT2 was
also found in other investigations [Dr. R. L. Prentice, private communication].) A similar
simulation for the DZ twins suggested that their odds ratio may very well be constant.

5. DISCUSSION

In this article we have introduced a procedure for estimating bivariate densities based
upon data that may be censored. By first estimating the marginal densities in order to
transform the data to the unit square, we facilitate the computations, avoid an artifact
that would prevent us from estimating a positive dependence for large values of the
components, and obtain a final estimate that is smoother than it otherwise would have
been.

From the examples in Section 4 we see that our procedure can be used in visualizing
dependencies, which can provide further insight in our data. Also, it yields a powerful
test of independence.

The present methodology cannot deal with covariates beyond what was done with
type-of-twins in the Australian twin study example. However, it should be possible to
extend this methodology to include covariates by combining hazard regression (HARE)
(Kooperberg, Stone, and Truong 1995a) with a bivariate conditional density estimation
procedure. While in principle it would be possible to extend the present methodology
to estimate densities in more than two dimensions (the numerical problems would not
become harder; in particular, all multivariate integrals would still reduce to univariate
ones), we expect that there are few situations in which such a procedure would be useful
because of the large amount of data that would be required to obtain a reasonably accurate
estimate of such a multivariate density.
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