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HAZARD REGRESSION

In survival analysis*, proportional hazards
models (see PROPORTIONAL HAZARDS MODEL,
Cox’s) are commonly used to estimate covari-
ate effects. Two advantages of this approach
are that the interpretation of the results is
similar to that for ordinary linear models,
and that the effects are estimated regardless
of the baseline hazard function.

Inspired by the success of polynomial
splines and their tensor* products in adaptive
multiple regression (MARS, Friedman [6]),
Kooperberg et al. [11] developed a similar
adaptive hazard regression (HARE) method-
ology for estimating the conditional log-
hazard function based on possibly censored
survival data with one or more covariates.
This methodology circumvents the propor-
tionality used in proportional hazards models
while still retaining the usual interpretation
of the estimated effects. HARE also provides
greater flexibility in modeling these effects
through the use of polynomial splines (see
SPLINE FUNCTIONS) and stepwise addition
and deletion of basis functions.

Early attempts to use splines in sur-
vival analysis are described in Abra-
hamowicz et al. [1], Anderson and Senthil-
selvan [2], Efron [4], Etezadi-Amoli and
Ciampi [5], Gray [8], Hastie and Tibshi-
rani [9], O’sullivan [13], Senthilselvan [14],
Sleeper and Harrington [15], and Whitte-
more and Keller [17]. Other nonparametric
methods, such as kernel estimates, have been
used to test for nonproportionality [7]. Intra-
tor and Kooperberg [10] compare the use of
trees and splines in survival analysis.

In this entry, hazard regression refers to
the HARE methodology [11]. Some authors
use “hazard(s) regression” or “proportional
hazard(s) regression” to refer to the Cox pro-
portional hazards model [3].

Let T be a (nonnegative) survival time
whose distribution may depend on a vec-
tor x=(x1,...,x)) of covariates ranging
over a subset x =jx1 x---xxy of RM.
Suppose f(t|x), F(t|x) = féf(u|x)du,k(t|x) =
ftx)/[1 —F@#x)], and «tx) = logA(t|x)
denote the corresponding conditional density,

distribution, hazard, and log-hazard func-
tions, respectively. Let G be a p-dimensional
linear space of functions on [0,00) x x, and
let By,...,B, be a basis, i.e., a collection of
basis functions, of G. The HARE model for
the log-hazard function is given by

p
altix; f) =Y BBtx), t>0. (1)

=1

The coefficient vector g = (81,...,8,) in (1)
is estimated by the maximum likelihood*
method. Specifically, consider n randomly
selected individuals. For 1 <i < n, let T; be
the survival time, C; the censoring time, and
x; the vector of covariates for the ith indi-
vidual; set Y; = min(T}, C;) and let §; be the
indicator function of the event {T; < C;}. The
random variable Y; is uncensored or censored*
according as §; =1 or § =0. The partial
likelihood* corresponding to Y; =y;, §;, X,
and B equals [f(y;|x;; 1% [1 — Fy;|x;: pI*%,
so the log likelihood for that individual is
given by

oWi, 8% B) = Sja(y;|x;; B)
Y;
—/ exp a(u|x;; )du,
0

yi > 0and é; € {0,1},

which is a concave function of 8.

The log-likelihood function corresponding
to the observed data is given by () =), ¢
(Y3, 8;1x;; B), B € RP. The maximum likelihood
estimate f can be computed efficiently using
the Newton—Raphson* algorithm, and the log
likelihood of the fitted model is then given by
L=1p).

The basis functions of G that HARE allows
are splines (smooth, piecewise polynomial
functions) in the covariates, splines in ¢, and
tensor products of two such splines. [The ten-
sor product of the functions g1(x1) and ga(x2)
is the function g1(x1)g2(x2).] Both the space
G and its dimension p are determined adap-
tively.

Note that if none of the basis functions
of G depend on both ¢ and x, then (1) is
a proportional hazards model. A particularly
interesting feature of HARE is that the model
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selection procedure may or may not result in
such a model. If any of the basis functions
in the selected model is a tensor product
of a function in ¢ and a function in one of
the covariates, then a proportional hazards
model may not be appropriate.

The selection of the dimension and basis
functions of G employs stepwise addition and
stepwise deletion of basis functions. Initially,
the one-dimensional model a(t|x; B) = B1 is
fitted; then stepwise addition is applied. At
each step a candidate basis function for addi-
tion to the model is chosen by a heuristic
search that is designed approximately to
maximize the Rao score statistic* for adding
a basis function to the model, which is similar
to what is sometimes done in generalized lin-
ear modeling. Typically, the candidate basis
functions that are considered are linear terms
for variables that are not yet in the model,
basis functions that introduce one new knot
for the spline in a variable already in the
model, and tensor products of two basis func-
tions for different variables already in the
model.

Upon stopping the stepwise addition stage,
a stepwise deletion algorithm is applied. At
each step the basis function corresponding
to the smallest Wald statistic is deleted (see
WALD’S W-STATISTICS).

During the combination of stepwise addi-
tion and stepwise deletion, a sequence of
models is obtained. Let p, denote the num-
ber of parameters and i, the log likelihood of
the vth model. HARE selects the model that
minimizes the Bayes information criterion
BIC = —2i, + p, log n.

The use of Rao statistics during the step-
wise addition and Wald statistics during the
stepwise deletion can be motivated by consid-
ering a quadratic Taylor approximation of the
log-likelihood function. As such, these statis-
tics give an approximation to the change in
the log likelihood due to adding or delet-
ing a basis function that does not require
finding the new maximum likelihood esti-
mates of the parameters. When all of the
basis functions Bj;(¢|x) in (1) are piecewise
linear in time, all integrals needed for the
Newton—Raphson algorithm to maximize the
log-likelihood function and to compute Rao
and Wald statistics can be computed analyti-
cally. However, when piecewise cubic splines

in time are used, integrals have to be com-
puted numerically.

Kooperberg et al. [11] give more details
about the HARE procedure. Under suit-
able conditions they extended the theoretical
framework in Stone [16] to obtain the Loy rate
of convergence for a nonadaptive version of
HARE [12].

Example. Data from six breast cancer stud-
ies conducted by the Eastern Cooperative
Oncology Group have been analyzed [8] using
a hybrid of penalized likelihood* and polyno-
mial splines, and using HARE [11]. The data
involve 2404 breast cancer patients, 1116
of whose survival times are uncensored and
1288 are censored. The response is the sur-
vival time (years) from entry into the study.
There are six covariates: estrogen receptor
status (ER: 0 is “negative”; 1 is “positive”);
the logarithm of the number of positive axil-
liary lymph nodes at diagnosis; the size of
the primary tumor (in centimeters); age at
entry; menopause (0 is premenopause, 1 is
postmenopause); and body mass index (BMI,
defined as weight/height? (in kg/m?).

In the example presented here linear
splines (continuous, piecewise linear func-
tions) are used. If quadratic or cubic splines
were used, the fitted conditional hazard
function would be smoother, but the model
description would be more complicated. The
use of linear splines has the additional advan-
tage of avoiding the need for numerical
integration®.

The HARE fit to the breast-cancer data
is summarized in Table 1. The fitted model
has knots in time located at 0.441, 1.889,
and 7.948 years. Note that this is not a
proportional-hazards model because of the
presence of the basis functions (7.948 —¢), x
ER and (1.889 —¢), x size. Also, the model
includes a nonlinear effect (knot) in age and
an interaction between log(nodes) and size,
and it is nonproportional with respect to ER
and size.

From a fitted HARE model, it is easy to
plot various functions of interest, such as
conditional hazard functions for given sets
of covariates. In Fig. 1 the fitted conditional
hazard and survival functions for three sets
of covariates are shown. As can be seen from
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the left side of this figure, ER has a distinctly
nonproportional effect: the solid and dotted
curves actually cross each other at ¢ = 3.22
years. On the other hand, the effect of the
number of nodes is proportional.

HARE is very convenient for fitting and
comparing linear proportional hazards mod-
els, additive proportional hazards models,
proportional hazards models with time-
varying coefficients, and nonparametric pro-
portional hazards models. For example, when
HARE was forced to fit an additive propor-
tional hazards model, there was a decrease of
40.55 in the log likelihood, which is substan-
tial compared to the decrease of three degrees
of freedom.

The HARE analysis of these data provides
us with a somewhat complicated, nonpro-
portional model for the conditional hazard
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function, which could not be found by fit-
ting a linear proportional hazards model in
the usual manner. Indeed, the HARE anal-
ysis suggests that a nonlinear term for age
and an interaction between nodes and size
should be included in the model. However,
the HARE model, which also includes inter-
actions between time and estrogen receptor
status and between time and size, is not a
proportional hazards model. Thus, even with
the appropriate nonlinear effects and inter-
actions between covariates, a proportional
hazards model could not be expected to pro-
vide a good fit to these data.

Table 1. HARE Analysis of the Breast Cancer Data

Basis Function Coefficient Basis Function Coefficient
1 —3.405 (0.441 — ), —5.743
ER 1.060 (1.889 — 1)+ —0.966
Log(nodes) 0.688 (7.948 —t), 0.365
Size 0.159 log(nodes) x size —0.065
Age -0.041 (7.948 —t); x ER —0.259
(Age-43), 0.041 (1.889 —#), x size 0.105
Menopause 0.404

Hazard function
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Figure 1. Fitted hazard and survival functions for a premenopausal woman of age 50 with body
mass index 25 kg/m2 and tumor size 3 cm. Solid, 4 nodes and ER negative; dotted, 4 nodes and ER

positive; dashed, 10 nodes and ER negative.
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