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In this article we introduce the Triogram method for function estimation using piecewise linear, bivariate splines based on an
adaptively constructed triangulation. We illustrate the technique for bivariate regression and log-density estimation and indicate
how our approach can be applied directly to model bivariate functions in the broader context of an extended linear model. The
entire estimation procedure is invariant under affine transformations and is a natural approach for modeling data when the domain
of the predictor variables is a polygonal region in the plane. Although our examples deal exclusively with estimating bivariate
functions, the use of Triograms for modeling two-factor interactions in analysis of variance decompositions of functions depending

on more than two variables is straightforward.
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1. INTRODUCTION

Many of the spline-based solutions to multivariate es-
timation problems involve tensor product spaces that by
necessity depend on the choice of coordinate system (see,
e.g., Friedman 1991; Gu 1993; Kooperberg, Bose, and Stone
1997; Kooperberg, Stone, and Truong 1995; and Stone,
Hansen, Kooperberg, and Truong 1997). Because these pro-
cedures are also highly adaptive, the estimates can change
significantly when the data are rotated. This property is
clearly undesirable when the given coordinate system is ar-
bitrary, as is the case with spatial or compositional data.
Moreover, the tensor product structure of these spaces im-
plicitly defines the domain of an unknown function to be
a hyperrectangle and can restrict the resulting estimators
from capturing major features in the data that are not ori-
ented along one of the major axes.

In the last 15 years, very few applications of multivari-
ate splines other than tensor product spaces have appeared
in statistical journals. During the same period, however, ap-
proximation theorists, numerical analysts and computer sci-
entists have amassed a considerable body of literature on
constructing and representing smooth, piecewise polyno-
mial surfaces over meshes in many variables. In particu-
lar, much has been written about the case in which the un-
derlying partition consists of triangles or high-dimensional
simplicies. Because of their invariance to affine transforma-
tions, barycentric coordinate functions are often the starting
point for constructing spline spaces over such meshes. In
this article we develop a procedure for bivariate function es-
timation that borrows heavily from well-known properties
of these coordinate functions.

Our estimates, christened 7Triograms, are continuous,
piecewise linear functions defined over adaptively selected
triangulations in the plane. The fitting is done via maximum
likelihood, and the methodology can be applied to any of
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the so-called extended linear models, including density and
conditional density estimation, generalized linear models,
polychotomous regression, and hazard regression (Stone et
al. 1997). In a process similar in spirit to stepwise knot
addition and deletion in a univariate spline space, the un-
derlying triangulation is constructed adaptively by adding
and deleting vertices. These computations are made efficient
through the use of the Rao (score) statistic for addition and
the Wald statistic for deletion.

The spline spaces from which our Triogram models are
built have existed in the approximation literature for many
years. Data-driven adaptations to an underlying triangula-
tion have been considered by many authors in the case of
interpolation and least squares approximation. Our goal is
to bring these ideas to the statistics community, and in so
doing shift the focus to estimation problems. We revisit this
issue in Section 3.5, where we make a more complete con-
nection with approximation theory. Before describing our
methodology in detail, we briefly discuss an example to il-
lustrate the essential features of our Triogram models.

1.1 A Regression Surface With a Ridge

Cleveland and Fuentes (1996) analyzed data collected
during an experiment to better understand the processing
of liquid crystal mixtures. The response is the voltage V/
necessary to turn the material from opaque to clear. In our
analysis we use two predictors: the percentage P of liquid
crystal in the mixture and the temperature 7' of the mix-
ture, measured in degrees Celsius. The experiment origi-
nally contained a third factor (the intensity of the light used
in the processing) that was dropped half way into the ex-
periment. Cleveland and Fuentes (1996) fitted a model con-
sisting of two half planes that join along a line in 7" and P
space. Triograms are a natural approach for automatically
fitting such a piecewise planar model.

Figure la shows an initial triangulation together with the
data points chosen by the experimenters. To this triangula-
tion, we added vertices sequentially subject to the constraint
that each triangle had to contain at least four data points.
The largest model fit during this addition phase consisted
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Figure 1.
edge fitted by Cleveland and Fuentes (1996).

of nine vertices, as shown in Figure 1b. From this maximal
model, we deleted vertices sequentially, until we returned to
the original triangulation. These addition and deletion steps
generated a chain of nested models that we evaluated via
generalized cross-validation (GCV). The best GCV model
contained six vertices and is shown in Figure lc. A per-
spective plot of this fit is given in Figure 2.

It is interesting to notice that the Triogram procedure
puts an edge at almost the same location as the one fit-
ted by Cleveland and Fuentes (the dashed line in Figure
I¢). A second prominent feature of the Triogram surface
is the downward fold near T = 40 and P = 76. Further
data analysis suggested that just four observations were re-
sponsible for this fold. Through personal communication,
the researchers who conducted this experiment indicated
that these four observations were actually obtained from a
different set of experiments than the remaining 43. In Sec-
tion 4 we return to this example in more detail, comparing
Triograms to other automatic procedures like multivariate
adaptive regression splines (MARS).

Although this article focuses on estimating bivariate
functions, Triograms can be applied much more generally.
For example, let ¢{u;.u».u3) denote an unknown func-
tion of three variables. Following the analysis of variance
(ANOVA) framework developed by Hastie and Tibshirani
(1990) and Stone (1994) for multvariate function estima-
tion, subject to certain identifiability constraints, we can
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Figure 2. Triogram Fit for the Crystal Data.

(b)

Initial Triangulation (a), Largest Triangultation (b), and Final Triangulation (c) for the Crystal Data. The dashed line in panel (c) is the

write
(p(ul. Un. 71,3) = ¢p + @1 (u1) +(J)Q(UQ) + os(ug) + 012(711. ua)
(1

By ignoring higher-order interaction terms in this expan-
sion, the convergence rate of the remaining problem is gov-
erned by the largest of the dimensions of the terms that are
estimated, taming the ““curse of dimensionality.” Polynomial
splines can be used to model the main effect spaces, and
tensor products of univariate spline spaces can be used to
estimate the various interactions in the ANOVA decomposi-
tion (1). Alternatively, we can use the Triogram method pre-
sented in this article to model any of the two-dimensional
components, or two-factor interactions. Although we ignore
this possibility in most of this article, this is an important
consideration in the theoretical framework for extended lin-
ear models developed by Hansen (1994), which we summa-
rize in Section 5.

In Section 2 we define barycentric coordinate functions
and derive some basic facts to motivate their usefulness in
representing polynomials over triangles in the plane. In Sec-
tion 3 we introduce Triogram models together with general
stepwise algorithms used to adaptively refine the under-
lying spline spaces. The barycentric coordinate functions
again prove convenient for computing the various statis-
tics required to perform this adaptation. In Section 4 we
present a number of examples in which Triograms are used
to construct bivariate regression and bivariate log-density
estimates. As mentioned earlier, we reserve Section 5 for
more technical remarks concerning theoretical rates of con-
vergence for Triograms in the context of an extended linear
model. Finally, in Section 6 we give some concluding re-
marks.

+ o13(ur. ug) + O23(ug. ua) + O123(ur- . ugz)

2. MULTIVARIATE SPLINES AND TRIANGULATIONS

We begin our discussion with a few definitions to cement
our notation. Let ¢/ be a compact region in the plane, and
let A be a collection of closed subsets of ¢/ having disjoint

interiors satisfying
u=1Je.
sea

The set A is said to form a tessellation of /. If each element
& € A is a planar triangle, then A represents a triangula-
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Non-Conforming

Figure 3.
the Collection.

tion of Y. A triangulation A is said to be conforming if the
nonempty intersection between pairs of triangles in A con-
sists of either a single shared vertex or an entire common
edge (see Fig. 3). Throughout this article, we reserve the
symbol A for this special type of tessellation.

Let G denote the space of continuous, piecewise linear
functions over a given triangulation A. Each ¢ € G is con-
tinuous on U, and the restriction of g to § € A is a linear
function. Defined in this way, G is a finite-dimensional lin-
ear space and there is a natural association between the
vertices vi.....vy of the triangles in A and a set of ba-
sis functions Bi{u),.... Bj(u) that span G. Define B;(u)
to be the unique function that is linear on each of the tri-
angles in A and takes on the value 1 at v; and O at the
remaining vertices in the triangulation. This collection of
tent functions was originally proposed by Courant (1943)
and is frequently used in the finite element method. As we
show at the end of this section, these simple elements have
also been used as the starting point for defining multivari-
ate splines of higher degrees (see Chui 1988; de Boor 1987;
and Farin 1986).

Many of the important properties of this basis can be
obtained from a local representation of the tent functions.
For the moment, we focus our attention on a single trian-
gle 6 € A having vertices v,. vy, and vs. The barycentric
coordinates of any point u = (u;,us) € R? are defined as

v2

v v3

Figure 4. The Barycentric Coordinates of a Point u Relative to the
Triangle With Vertices vy, v, and vz are Expressed as Ratios of Signed
Areas. In this case, the function p1(u) is the ratio SignedArea(u, v,
v3)/SignedArea(vy, Vo, V3).
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Conforming

In a Nonconforming Triangulation, at Least One Vertex of a Triangle in A Falls Along the Interior of an Edge of Another Triangle in

a triple ¢ (u) = (@1(u). p2(u). p3(n)), such that
u = p1(u)vy + pa(u)va + 3(u)vs
and

P1(u) + p2(u) + p3(u) = 1.

These conditions are equivalent to the following set of lin-
ear equations:

Vil U21 U3l »1(u) Uy
1o U2 032 wafu) | = w2 |. (2)
1 1 1 ws(u) 1

which can be solved explicitly using Cramer’s method pro-
vided that & has a nonempty interior. The solution to this
system of equations is best expressed in terms of the func-
tion SignedArea(v;.va.vs), which we define by

[ V11 21 V31
V2 U22 U32

111

B =

SignedArea(vy. va, v3) =

As its name suggests, the absolute value of SignedArea(vy,
va, v3) is just the area of the triangle with vertices vi. v,
and vs. Applying Cramer’s method to the set of equations
in (2), we find that ;(u) is given by the ratio

A o _ SignedArea(u. vy.v3)
A1) =21 (- uz) = SignedArea(vi.va.vs)’ @)

This relationship is illustrated in Figure 4.

From the expression in (3), we see that the barycentric
coordinates are linear functions of w;, and wuy, where u =
(uy,uz), and satisfy the interpolation conditions

0 it
ei(vy) :{ 1 iij

hence the vertices v;.v», and v3 have barycentric coordi-
nates (1, 0, 0), (0, 1, 0), and (0, 0, 1). Furthermore, from (3)
we see that the points on the edge connecting v, and vj
have barycentric coordinates of the form (0.a.1 — a).a €
[0,1]. In general, any point on the boundary of & has at
least one zero coordinate. The interpolation conditions (4)
can be used to demonstrate that the functions 1 (u). p2(u),
and ¢3(u) are linearly independent and hence constitute a
basis of the space of linear functions of u = (u;.us) € R2.
Although it is customary in statistical applications to choose

ij=1.2.3 (4)
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the basis comprised of the constant function 1 and the two
coordinate functions u; and w2, the barycentric basis has
the advantage that it is invariant under affine transforma-
tions such as rotations; given any nonsingular, 2 x 2 matrix
A and any vector b € R?,

pifu) = 2 (Au+b). for i=1.2.3 and ueR? (5)

where 7 (u). #5(u), and 23(u) are the barycentric coordi-
nate functions of the vertices Av; + b.i = 1,2.3. For our
applications, this means that the barycentric coordinate ba-
sis functions have a natural invariance under rotations and
translations.

Returning to our triangulation A and the space of con-
tinuous, piecewise linear functions G, we let 6 € A be a
triangle with vertices v;.v,, and v3 and observe that from
the interpolation conditions (4), the functions 1 (u), p2(u),
and p3(u) are exactly the basis functions By(u), B>{(u), and
Bj(u) for u € 4. As an immediate consequence of this con-
struction. we find that the basis of tent functions By, . ... B
associated with the triangulation A are bounded between 0
and | and satisfy

Bi{uy+ -+ Bs{u)=1. uey,

a property shared by univariate B-spline bases. From (5),
we also find that for any nonsingular, 2 x 2 matrix A and
any vector b € R?,
Bj{u) = Bj{Au+b). Vue RZ,

5 is the basis associated with vertices
Av, +b.. ... Av; +b of the transformed set ¢/* = {Au+
b.u € U}. This means that models built from functions in
G have a natural invariance under affine transformations.
Using the barycentric coordinate functions, we show in the
next section that this invariance carries over to our adaptive
methodology as well.

We have chosen to work with linear splines for a num-
ber of reasons. Even a brief survey of the literature on
multivariate approximation theory indicates that there are
many ways to generalize the classical univariate B-splines.
Some procedures start with a triangulation A and attempt
to construct smooth, piecewise polynomial basis functions
that have small support by enforcing smoothness condi-
tions across the edges in A. This finite element construction
imposes rather severe restrictions on the resulting spline
spaces even for functions in two variables. For example,
given an arbitrary triangulation in the plane, any spline
space consisting of functions with  continuous derivatives
must have degree at least 3r + 2 (see de Boor and Hollig
1988). This restriction can be alleviated somewhat by sub-
dividing the triangles in A, but with added computational
complexity (see Chui and He 1990). Other approaches de-
fine the mesh and the basis functions at the same time,
a procedure analogous to “pulling apart knots” in a space
of univariate B-splines. Recall that as knots coalesce in a
univariate spline space, the functions have fewer continu-
ous derivatives. One can envision reversing this process by
starting with a space of discontinuous, piecewise polyno-
mials having multiple knots at a single point and smooth-
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ing the space out by separating or pulling the knots apart.
In the plane, one can start with discontinuous, piecewise
polynomials over a triangulation A (see the description at
the end of this section) that can be smoothed by separat-
ing multiple knots occurring at the vertices in the triangu-
lation. Interestingly, in both the univariate and multivari-
ate cases, the resulting functions can be described by con-
sidering marginal distributions of random vectors having
support on high-dimensional polyhedra. The resulting poly-
hedral splines also come with considerable computational
complexity (see Dahmen 1980 and de Boor 1976). (For a
probabilistic interpretation, the reader is referred to Karlin,
Micchelli, and Rinott 1986.) The simplest examples of this
type of spline are the so-called box splines, which are de-
fined with respect to very regular grids (see de Boor and
Hollig 1982; de Boor, Hollig, and Riemenschneider 1993).
We have chosen our space of tent functions because it is the
starting point for these two approaches to spline construc-
tion. Additionally, data-driven rules for adaptively choosing
A are more ecasily explored in this rather simple setting.
We have more to say on this topic in Section 3.5, where
we compare the Triogram algorithm with well-known tech-
niques from approximation theory.

The price for this simplicity is that our Triogram esti-
mates are crude. In Section 5 we make this notion precise
by demonstrating how the L. rate of convergence for a
nonadaptive version of our procedures depends on the ap-
proximation rate of the underlying spline space. By select-
ing linear splines, we are certain to suffer when estimating
functions that are known to be very smooth. These subop-
timal theoretical results for nonadaptive Triograms are less
of a problem in practice, however, because our adaptive
procedure uses the data to decide where to introduce new
vertices. This effect was observed by Rippa (1992a) when
he noted that even (theoretically) badly behaved triangula-
tions consisting of long, thin triangles can have exceptional
performance in bivariate interpolation problems when used
in conjunction with an adaptive procedure.

As mentioned earlier, the barycentric coordinate func-
tions can be used to generate spaces of higher-order poly-
nomials defined relative to a triangle in the plane. For ex-
ample, the space of quadratic polynomials spanned by the
functions

2 2
Lowg.uy.ouzousougun

is also spanned by the functions
el (e ()l () for iy +iytiz =2 (6)

where u = (u;1.u9) and ¢;.17o, and i3 are nonnegative inte-
gers. For polynomials defined over triangles, this basis is
again more natural because of the invariance given in (5).
When moving from a single triangle to a collection of trian-
gles A, the B-net representation (Chui 1988; de Boor 1987;
Farin 1986) can be used to define these basis functions so
that the resulting spline spaces are continuous. Using this
framework, elegant conditions can be derived to enforce
higher-order smoothness across edges and vertices in A,
reducing the task to a straightforward accounting problem
(see Chui and Lai 1990). Although this procedure is still
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subject to the severe conditions linking smoothness and de-
gree, regular subdivision of A can also make use of the
B-net structure to generate, for example, quadratic splines
with continuous first partial derivatives in each coordinate
direction over arbitrary triangulations (see Chui and He
1990).

3. TRIOGRAM MODELS

3.1 Maximum Likelihood Estimation

In the previous section. we derived some simple prop-
erties of a basis for the space G of continuous, piecewise
linear functions defined over a conforming triangulation A
of aregion 4. In a Triogram model we estimate an unknown
bivariate function ¢*{u).u € i, as a member of G. To be
more precise, let Wy, . ... ‘W, be a random sample from the
distribution of a random vector W, and let (¢, W). g € G,
denote the log-likelihood linking the distribution of W to
functions in G. Using this notation, the Triogram estimate
o € G is given by

o= argmax/{, (g).
gel
where
I

big) =D 9. W), M

1=1

Equivalently, [,,(g) can be written as [,,(3), where 8 =
(31 3;) € R and

glu) = H Bi(u)+ -+ 3;B;(u). ucu.

Seen in this way, the estimate o is obtained by choosing
the coefficients 3 that maximize the log-likelihood. In many
cases, the random vector W can be partitioned into (U. V),
where U is a random vector over f € R? and V is a re-
Sponse vector.

We digress for a moment and present two simple exam-
ples to clarify these definitions.

Regression. Let W = (U.V) with VV ¢ R and set
o*(U) = E(V|U). Then, given observations Wy, .... W,
we estimate o(-) by

yielding the normal equations

31<B,.Bl>n Sl 3J<Bi-BJ>n

={B;. V(). 1<i<J (8)

where V(u).u € U is any function that interpolates the
value V; at U;.1 < { < n; here for any two functions ¢;
and g- defined on U/, we define the inner product {-, -}, by

/ 1 n \
g1-92)n = - ;gl(Ui)QQ(UiJ~
By construction, the /th equation in (8) involves only those

coefficients 3, for which the vertices v; and v; are joined
by an edge in A. The maximum of i — j|, taken over all
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pairs 7, j such that v; and v, are connected by an edge in
A, is referred to as the bandwidth of A. Schwarz (1988) de-
scribed a number of well-known algorithms that renumber
the vertices of an existing triangulation A to minimize its
bandwidth. In our implementation of the Triogram fitting
routine, we use one such procedure in conjunction with a
band-limited Cholesky decomposition (Golub and Van Loan
1989) to solve the normal equations (8).

Density Estimation. Let ¢ represent the joint density
of U € Y. In this context the vector W equals U, because
we do not have a response. Now, given coefficients 3 =
(B31.....87) € R/, we can define a density f(u:3) over U
with the form

flu:B) = exp(h Bi(u) + -+ + 3;B,(u) - C(8)).

where
C(B) :/exp(;%Bl(u)+~~+3JBJ(u))du
u

is the normalizing constant. Therefore, based on a random
sample U;. ..., U, from the distribution of U, we estimate
&~ by the function ¢ = f(-:3). where 3 is chosen to max-
imize the log-likelihood

L,(B) = log f(U,: 8).
i=1

As in univariate logspline density estimation (Kooperberg
and Stone 1992), the likelihood equations take on the simple
form

EsB,(U) = E,B;(U).  1<j<.J. )
where
EsB,(U) = | By () f(us)du
and

Because the functions B; are piecewise linear over I, it is
possible to evaluate the required integrals exactly. a definite
advantage of Triogram models in the context of density es-
timation. In our Triogram software, Newton-Raphson iter-
ations are used to solve the likelihood equations. To obtain
the Hessian associated with this problem, we must compute
quantities of the form E3[B;, (U)B,,(U)] for 1 < ji.j» <
J, which again have closed-form expressions because our
basis functions are piecewise linear.

The aforementioned examples serve both to cement no-
tation and to highlight some computational advantages of
Triogram modeling. Regression and density estimation are
part of a larger class of extended linear models that also
includes generalized regression, polychotomous regression,
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and hazard regression (Stone et al. 1997). The methodol-
ogy discussed in this article can be applied to any of the
extended linear models when the unknown ¢* is a bivariate
function defined on a domain /. When ¢* depends on more
than two variables, the Triogram methodology can be used
to estimate two-factor interactions in a general ANOVA de-
composition (Hansen 1994).

So far in this section, we have considered applying max-
imum likelihood to fit a Triogram model only for a fixed
mesh A (and hence a fixed space ). In the remainder of
this section, we describe a stepwise approach to Triogram
model building that at each step alters an existing triangula-
tion by adding or deleting a single vertex. After describing
this algorithm in the context of estimation problems, we
end this section by making connections between Triograms
and similar adaptive procedures in the literature on approx-
imation theory.

3.2 A Stepwise Algorithm

The adaptive Triogram procedure starts with an initial tri-
angulation Ay and a maximum likelihood estimate C)Q e Gy.
In many applications a natural initial configuration may be
determined by the shape of ¢ or a priori knowledge about
¢*. For situations in which the initial triangulation is not
so clearly defined, we provide several choices for Ag in
our Triogram software: the user can choose between the
smallest triangle. the smallest equilateral triangle, and the
smallest axis-oriented rectangle that contain all the data
U;..... U,,. with a possible magnification factor to avoid
boundary problems. Note that only the procedures for de-
termining the first two of these triangulations are invariant
under affine transformations of the data. Figure 5 presents
an example of each of these three initial triangulations cor-
responding to a random sample of 75 pairs of bivariate
normal observations. From the discussion in the previous
section, it is clear that for the first two configurations in
this figure, the initial fit ¢ is just a plane. In general, if
the initial model is not sufficiently flexible to capture the
major features of the data, then we enrich G, by stepwise
refinements to the triangles ¢ € A.

During the addition phase we produce a sequence of
nested spaces Gy C G, C --- C G, of continuous, piece-
wise linear functions with dimensions p.p +1...., p+m.
As usual, associated with each space G; 1s a conforming tri-
angulation A; of U. Given the strong connection between
vertices in a triangulation and the basis of tent functions de-
scribed in the previous section, the most natural procedure
for constructing the space G, from G; involves adding a
single new vertex to the underlying triangulation A,;. There

Figure 5. Three Standard Initial Triangulations.
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are obvious constraints on this process, because the mesh
A4 corresponding to G541 must also be a conforming tri-
angulation, and G; must be a subspace of G,+4. In addition,
we must only make changes to A, that yield a space G in
which the maximum likelihood equations (7) can be solved
uniquely. For the moment, however, assume that at the ith
stage in the addition process. we generate a number of can-
didate vertices that can be added to A; to produce a refined
triangulation A, and a new space G, -, representing a sin-
gle degree-of-freedom change to G,. We choose between
these candidate vertices by a heuristic search that is de-
signed approximately to maximize the Rao statistic (score
statistic) associated with adding the corresponding new ba-
sis function. When ¢* is a regression function, for example,
we select the vertex that produces the greatest decrease in
the residual sum of squares when it is added to A,. The
user can specify the maximum number of vertices to add
to an initial triangulation, and the addition phase continues
until either this maximum is reached or we have exhausted
the set of viable candidate vertices.

During the deletion phase of our Triogram procedure,
we again construct a set of nested spaces G, > G| D --- D
G .. this time of decreasing dimension p’.p'—1..... P —m'.
By again appealing to the close connection between ver-
tices and basis elements in spaces of continuous piecewise
linear functions, we see that the most natural process for
generating these subspaces involves sequentially removing
vertices from the maximal triangulation Aj. This process is
also subject to a number of constraints imposed by our re-
quirements that G’ ; be a subspace of G and that the mesh
associated with each space must be a conforming triangula-
tion. Details about how vertices are identified as candidates
for deletion are given in Section 3.4. For the purpose of this
discussion, however, we simply assume that at each step ¢
a number of vertices can be removed from A} to produce
a smaller triangulation A} , and a new space G, rep-
resenting a single degree-of-freedom change to G'. From
among these candidates, we choose the one that minimizes
the Wald statistic associated with deleting the correspond-
ing basis element from G/ ;. For example, when ¢” is a re-
gression function, we select the vertex that yields the least
increase in the residual sum of squares when it is deleted
from Al. As was the case with the addition phase, the user
can specify the size of the smallest triangulation to be con-
sidered, and the deletion phase continues until either this
minimum is reached or we have exhausted the set of viable
candidate vertices.

By evaluating candidate vertices on the basis of Rao
statistics during the addition phase and Wald statistics dur-
ing the deletion phase, we avoid having to compute maxi-
mum likelihood estimates corresponding to each candidate
space, improving the speed of our algorithm. Both statistics
are based on quadratic approximations to the log-likelihood
function (Stone et al. 1997). Regression is the only estima-
tion context for which this does not represent a compu-
tational advantage, because the log-likelihood function is
already quadratic.

During the combination of stepwise addition and step-
wise deletion, we get a sequence of models indexed by v,
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with the vth model having p, parameters. When ¢* is a
log-density function or a generalized regression function,
the (generalized) Akaike information criterion (AIC) can
be used to select the best model from this sequence. Let I,
denote the fitted log-likelihood for the vth model, and for
a fixed penalty parameter a set

AIC,, = —2l, + ap,. (10)

We take as our final model the member of the sequence
that minimizes AIC, ,. In light of practical experience, we
generally recommend choosing a = logn as in the Bayesian
information criterion (BIC) due to Schwarz (1978), and set
this as our default in the Triogram software. (Choosing
a = 2 as in classical AIC tends to yield models that are
unnecessarily complex, have spurious features, and do not
predict well on test data.) When ¢* is a regression function,
we discriminate between models on the basis of their GCV
score (Friedman 1991)

Gov,, - LRSS
")

(1n

where RSS, is the residual sum of squares for the vth model
and a is a fixed penalty parameter. We select as our final
model the member of the sequence that minimizes the GCV
criterion. Note that we do not correct (11) for the number
of parameters used in the initial model, because not all our
initial models are of the same size. We have found that
taking ¢ = 4 approximately minimizes the mean squared
error in a number of simulated examples, which agrees with
the results of Friedman (1991), so this is our default choice
in the Triogram software.

In the remainder of Section 3 we discuss in detail our
implementation of the addition and deletion phases of an

W
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N

Original Triangulation

Splitting an Interior Edge
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adaptive Triogram procedure, using many of the properties
of the barycentric coordinate functions. Readers who are
satisfied with the discussion given so far can safely skip
to Section 4 for applications, or to Section 5 for an out-
line of the convergence properties of nonadaptive Triogram
models.

3.3 Stepwise Addition

Inserting a new vertex into an existing triangulation A
requires a rule for connecting this point to the vertices in
A so that the new mesh is also a conforming triangulation.
Figure 6 illustrates three options for vertex addition: We
can place a new vertex on either a boundary or an interior
edge, splitting the edge, or we can add a point to the interior
of one of the triangles in A. Note that the space obtained
by adding a vertex v to an interior edge of a triangle 6 € A
cannot be achieved as the limit of spaces constructed by
adding v to the interior of 4. In this case, if v is very close
to an edge of &, then the new triangulation is essentially non-
conforming, and the associated space of linear functions G
contains elements that are discontinuous along that edge.
Similar discontinuities arise when the new point v is posi-
tioned extremely close to an existing vertex. Degeneracies
such as these are encountered in the context of univariate
spline spaces when knots are allowed to coalesce (de Boor
1978).

Given a triangulation A, we construct a set of candidate
vertices by considering the points with barycentric coordi-
nates

ESAY

(12)

K+1—k —ko
K+1 P

/‘Cl /STQ
K+1 K+1’

Splitting Boundary Edge

Subdividing a Triangle

Figure 6. Three Ways to Add a New Vertex to an Existing Triangulation. Each addition represents the introduction of a single basis function,

the support of which is colored gray.
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Candidates for K=2

Candidates for K=5

Figure 7. Candidate Vertices for K = 2and K = 5.

where ki.k;, and K are nonnegative integers satisfying
ky + ks < K + 1 and no coordinate equals 1. We have
introduced a subscript “4” to make it clear that these points
are calculated for each triangle in A. Figure 7 plots the
positions of the candidate knots calculated with K = 2
and K = 5 in (12). To avoid the aforementioned degenera-
cies, we suggest modest values of K, with 5 the default in
our Triogram software. At this stage, we allow the user to
impose other restrictions on the set of candidate vertices.
For example, partitions A with many long, thin triangles
or triangles containing little or no data tend produce highly
unstable estimates. This notion is made precise in Section
5 when we examine the mean squared error properties of
a nonadaptive Triogram procedure. For now, however, it is
sufficient to indicate that the user can further restrict the
set of candidate vertices by setting the minimum number
of data points per triangle A/ and the minimum angle per
triangle A in any allowable triangulation.

Recall that once we have identified a set of viable can-
didate vertices, we select the point that minimizes the Rao
statistic. By evaluating a large number of potential vertices,
we can generate a Rao surface that is useful in understand-
ing both the behavior of the Triogram procedure as well
as the placement of significant structures in a particular
dataset. Figure 8 presents the Rao surface associated with
adding a new vertex to a partition A consisting of just one
triangle. In this case we are using ordinary least squares to
estimate ¢, the simple quadratic u3 + u3 plotted in Figure
8a. We generated 100 points uniformly in the triangle and
added independent, normal noise to ¢* so that the signal-to-
noise ratio was 3 to 1. Figure 8b presents the Rao surface
for adding a new node to the triangle. Because we are es-
timating a regression function, the height of this surface at
a particular point u is equivalent to the drop in the residual
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sum of squares when a new vertex is added to A at u. Not
surprisingly, it can be seen that the maximum Rao statistic
is obtained when adding a vertex near the center of the tri-
angle. In this example, the edges in the initial triangulation
A form the boundary of U/, and hence we do not observe any
of the discontinuous features in the Rao surface associated
with splitting interior edges.

Rather than choosing a new vertex from among a num-
ber of candidate vertices, we have also investigated the use
of continuous, low-order polynomial approximations to the
Rao surface. In this case, for each triangle 6 € A, we also
calculate the Rao statistic at a small number of points fol-
lowing the recipe in (12), but fit a polynomial ps(u) using
the basis (6). The new vertex is then defined to be

for &€ A.

argmax o sps(u)
This approach allows for more flexibility in knot placement,
with only minor computational overhead.

Once a new vertex has been identified, there is a sim-
ple procedure for generating the associated basis function
B(u), again using the barycentric coordinate functions de-
scribed in Section 2. Suppose for the moment that we want
to introduce a vertex v in the interior of a triangle  with
vertices vi, vy, and vs. Recall that the barycentric coordi-
nate functions @(u) = (¢1(u). w2(u), p3(u)). u € R?, asso-
ciated with é form a basis for the space of linear functions
in u = (uy,u2). Therefore, any line in the plane can be
expressed in the form

arp1(u) + agpa(u) + agps(u) =0, u € R

for suitable constants «;,«s, and «s3. In particular, the
points u that lic on a line passing through the vertex v,
and any other point v € R? are given by

pa(V)ps(u) — p3(V)pa(u) =0.  ueR.  (13)
If v is contained in &, then this line intersects the edge con-
necting vo and vy, splitting 6 into two subtriangles. The
points u € ¢é satisfying pa(v)ps(u) < @3(v)pa(u) fall
in the subtriangle that contains v, whereas the remaining
points in & belong to the subtriangle containing v;. Similar
statements can be made about lines connecting v and the
other vertices vy and vs.

Figure 8. Rao Statistics for Adding Knot. (a) Truth; (b) the Rao surface for adding a single knot to simple linear fit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Hansen, Kooperberg, and Sardy: Triogram Models

With this relationship in mind, we define the quantities

ei(u) = )

2 B @2(v)
and

e _ w3(u)

vs(u) oa(v)

From the discussion in the previous paragraph, we see that
the points u € ¢ that fall within the triangular subregion
with vertices v, v and v, (the shaded area in Fig. 9) satisfy
the relationship ¢3(u) < 7(u) and 5(u) < @3 (u). Apply-
ing (3) in Section 2, we also find that within this region, the
new basis function B(u) is given by 3(u). Similar expres-
sions can be derived for the remaining two subtriangles,
yielding the following simple rule for constructing B(u):

w5 i pf <l and 3 <3
B(u) =4 ¢7 if o] <95 and @] <}
ey ifph <l and  gf < i

Using these expressions, it is easy to construct B(u) from
the existing basis elements associated with the vertices
vi.vg, and v3. When v is on the boundary of 4, at least
one of the barycentric coordinates of v is 0. In this case,
one of the ¢! must be infinite, and the foregoing conditions
simplify. For example, if v is on the edge connecting v;
and v, then 5 is infinite, and we find that within 4,

This set of equations creates B(u) for u € ¢. If v is on the
boundary of &, then we might also have to produce a sim-
ilar set of equations to construct B(u) for u belonging to
a neighboring triangle of é. Because various inner products
and empirical moments are already known for 5, po, and
3 from the previous step in the addition process, these re-
lationships can be used to derive simple updating formulas
for computing the Rao statistic for adding v to the parti-
tion A.

Once a vertex has been chosen, we can again use the
current barycentric coordinate functions to update the set
of basis functions. Returning to the left hand triangle in

vi vi

Original Triangulation Updated Triangulation

va v3

Figure 9. Adding a New Vertex at the PointV = @ (VN + po (VN2 +
w3V V3. In this case we are adding to G the continuous piecewise linear
function that takes on the value one at the pointv and 0 at each of vy,
Vo, and vj.
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Figure 9, suppose that we want to add a vertex v on the
interior of . Now if we let By(u), B2(u), and Bz(u) rep-
resent the piecewise linear basis functions associated with
the points v;. v, and v3 in the updated triangulation, then
it is straightforward to demonstrate that for all points u in
the shaded triangle on the right in Figure 9,

¢1(u) = Bi(u) + p1(v)Bs(u).

¢2(u) = Ba(u) + p2(v)Bs(u),

and

p3(u) = p3(v)Bs(u).

We have seen the last equation in the definition of the new
basis function B(u). Similar expressions can be obtained
for the remaining two unshaded regions in é and can be
easily extended when v is on a boundary of 4. Again, be-
cause so much is known about ;. 5, and 3 from the
previous step in the addition process. simple and efficient
updating rules can be created for generating the new set of
basis functions.

3.4 Stepwise Deletion

When discussing strategies for reducing the dimension
of a space of continuous, piecewise linear splines, so far
we have only considered removing a vertex from an exist-
ing triangulation. In fact, this process can be viewed much
more generally as enforcing continuity of the first partial
derivatives along an edge in an existing triangulation. We
now discuss both procedures in some detail.

Removing Vertices. In Figure 6 we outlined a rule that
allows us to place a new vertex at any point in I/ to refine
an existing triangulation. Unfortunately, when we remove
a vertex from a partition A in an attempt to reduce the
dimension of G, there may not be a way to reconnect the
remaining vertices to form Aq so that the updated space Gy
is a subspace of G. For example. the central vertex in any
of the panels of Figure 6 cannot be removed if we want to
obtain a subspace of G. Clearly, if any of the vertices high-
lighted in this figure are added to the initial triangulation in
the upper left corner, then they can be immediately removed
and still produce the proper nesting of spaces. Only vertices
falling into one of the three categories listed in Figure 6 are
legitimate candidates for removal in this restricted deletion
strategy.

Enforcing Continuity of the First Partial Derivartives
Along An Edge. This approach to stepwise deletion is more
natural when we realize that removing a vertex amounts to
enforcing the condition that a function in the space be con-
tinuously differentiable across a given edge in the existing
triangulation. Observe that a continuous piecewise linear
function has continuous partial derivatives across an edge
if and only if the function is linear on the union of the
two triangles that share the edge. In each of the examples
in Figure 6, enforcing continuity of the first partial deriva-
tives across any of the gray edges is equivalent to removing
the added vertex, returning us to the original partition in the
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upper left corner of the figure. These are the only cases for
which this equivalence exists. (The strategy that we use in
the examples in Section 4 involves using the Wald statistic
to choose between continuity constraints across edges that
fall into one of the three special categories.)

The alternative approach is somewhat more aggressive
and involves choosing from among all the continuity con-
straints, regardless of how the edge is positioned relative
to the other edges in the partition. The important distinc-
tion between these two procedures is that only in the first
case are we actually guaranteed that the structure of A is
simplified at each step.

Using the barycentric coordinate functions, we can de-
rive a simple procedure for determining the constraint that
a function in G be continuously differentiable across a given
edge in A. To make this more precise, consider the trian-
gulation on the left in Figure 10 and let <1 (u), ¢2(u)}, and
3(u) denote the barycentric coordinates of a point u € R?
relative to the triangle with vertices vi, vy, and v3. Given a
function g € G, let J1. 35, and 33 denote the coefficients of
the basis functions associated with these vertices. Then for
all points u in this triangle, g(u) is the linear function given
by Jie1{u) + Jaee(u) + 3523(u). Now, if we let 34 denote
the coefficient of the basis function of ¢ associated with
the vertex vy, then g(v,) = 3,. Therefore, the function g is
linear on the union of the two triangles in left hand portion
of Figure 10 provided that

34 = g(vy) = Bre1(va) + Bapalvy) + Fapa(va).

By swapping the roles of vy and v, in this argument, we
find that the C'!' continuity of a function g € G can also be
assured by the constraint

31 = g(vi) = Bada(vi) + F3Z3(v1) + Fa@a(vi).

where 22(u), 23(u), and Z4(u) denote the barycentric co-
ordinates of a point u relative to the triangle with vertices
va. vy, and vy, It is not hard to demonstrate that these two
constraints are equivalent up to a multiplicative constant.
Observe, however, that when this condition is enforced, we
are left with a single linear function over the pair of trian-
gles that constitute A, but we have not produced a simpler
triangulation in the process.

Suppose instead that we want to remove the vertex v, in
the middle of the triangle in the right hand portion of Figure
10. Given ¢ € G and 1 </ < 4, we again let 3; correspond
to the coefficient of the basis function associated with the
vertex v;. It can be shown that each of the C'! continuity

£% vi

Deleting an Edge va Deleting a Vertex V3

v

Figure 10. The Effect of Enforcing the Constraint That Functions in
G be Continuously Differentiable Across Edges in Two Triangulations.
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constraints across the shaded interior edges shown in the
figure is of the form

B4 = p1(va) 3 + p2(vy) 3o + ¢3(vy) 5. (14)
where 1(u), ¢2(u), and p3(u) are the barycentric coordi-
nates of a point u relative to the outer triangle on the right
in Figure 10. Observe that the expression on the right is
the value at v, of the unique linear function interpolating
831,082, and 35 at the points v, v, and v3. Recalling that
g(vy) = 34, we see that the constraint in (14) has consider-
able intuitive appeal.

3.5 Triograms and Approximation Theory

As should be clear from the previous discussion, our
choice of continuous piecewise linear splines has made the
stepwise Triogram algorithm relatively easy to implement.
It is precisely because of this computational simplicity that
these spaces are at the heart of many well-known numerical
procedures like finite element analysis. (In fact, procedures
for automatic mesh or grid generation have a long history
in the finite element literature, and the interested reader is
referred to George 1991 for a discussion of the relevant
issues.) Data-dependent adaptations to an underlying trian-
gulation have also been suggested by a number of authors
in the context of interpolation and approximation problems.
For example, Dyn, Levin, and Rippa (1990a,b) and Rippa
{1992b) obtained an “optimal” triangulation of a set of ver-
tices vq.....vy by successively swapping edges in some
initial triangulation. In the configuration on the left in Fig-
ure 10, this operation involves removing the edge joining v,
and vs and replacing it with a segment connecting v, and
v4. By creating various smoothness penalties for piecewise
linear surfaces, Dyn et al. (1990a,b) swapped edges until
they achieved a triangulation with minimum cost. Although
originally designed for interpolation problems, this proce-
dure has been applied to least squares approximation and
has even been extended to include a vertex-addition phase in
which data points (members of the collection Uy..... U,
defined at the beginning of this section) are added until
some specified approximation error has been achieved. Sim-
ilar procedures have been considered by Quak and Schu-
maker (1991).

Closer in spirit to our Triogram algorithm, various knot
addition and deletion procedures have been discussed by a
number of authors. Again focusing on interpolation or least
squares approximation, these procedures attempt to either
simplify an existing piecewise linear surface or approxi-
mate a sampled bivariate function to within a given toler-
ance. Lyche (1993) gave an excellent review of the knot
deletion schemes in this literature. The main strategy out-
lined in this survey involves ideas taken from Le Méhauté
and Lafranche (1989, 1992) in which vertices are assigned
weights that roughly correspond to the error incurred by
removing the given vertex. Vertices are then removed se-
quentially, with low-valued points being removed first. To
remain within the class of conforming triangulations, each
removal necessitates a retriangulation, so that unlike our
deletion procedure, it is not likely that triangulations ob-
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tained from each deletion step nest. Similar ideas appear in
the work of Hamann (1994), in which local curvature esti-
mates are used to rank entire triangles for removal from an
existing triangulation.

As for knot addition, Dierckx, Van Leemput, and Ver-
meire (1992) propose a technique based on a popular finite
element refinement strategy (see Rivara 1984) that begins
by splitting edges as in Figure 6. In this case, however, at
each step they split not one but possibly many edges, intro-
ducing the extra structure to achieve a more “stable” trian-
gulation. Ultimately, the authors want to ensure that in the
final triangulation, the transitions between large and small
triangles are gradual, and the smallest angle among the tri-
angles is bounded from below, Hamann and Chen (1994)
also have considered adding vertices, but (as in Hamann
1994} used local curvature measures to rank the candidate
data points Uj..... U,,.

Although far from a complete survey of the literature,
these references serve to highlight the fact that strategies
for forming data-dependent triangulations have been con-
sidered in depth in the approximation literature. In addition,
these citations serve to illustrate the differences between ap-
proximation and estimation. In the regression context, for
example. we rarely have prior knowledge about the variance
of the noise terms, and hence prespecified tolerances can-
not be used for model selection. Furthermore, by consider-
ing nonlinear problems like density estimation, the models
encountered at each stage must nest so that the computa-
tionally efficient Rao and Wald statistics can be used to
decide between candidate vertices for addition or deletion.
Our Triogram procedure borrows from the experience of
numerical analysts, balancing, for example, the concept of
a stable triangulation with the available degrees of freedom
in the classic bias and variance trade-off. In the next section
we apply the Triogram procedure to regression and density
estimation problems to demonstrate the usefulness of these
techniques in statistical applications.

4. EXAMPLES

In this section we present examples to illustrate the Tri-
ogram methodology. Our first three applications are each
regression problems. We begin by studying how our proce-
dure performs on data simulated from a model that has been
widely studied in the literature on surface estimation. The
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next dataset was obtained from an experiment that studied
the behavior of liquid crystal mixtures. Simple exploratory
data analysis indicates that the regression surface has a clear
ridge, and hence the piecewise linear structure of our Tri-
ogram models is ideal for this problem. The third regres-
sion example arises in the manutacture of integrated circuits
and requires a slight modification of our adaptive routines
that allows us to “borrow strength” between various mea-
surements and construct a common triangulation for a suite
of functionality tests. In our final application we estimate
a series of bivariate densities encountered in the so-called
protein-folding problem. In this case the data are naturally
restricted to a triangle, suggesting that Triogram models are
appropriate.

In each example we present contour and perspective plots
of our Triogram fits. Unfortunately. static displays of these
piecewise linear models have their limitations. An inter-
active environment for rotating the faceted surfaces of a
Triogram model provides the best possible format for un-
derstanding these models. The authors can provide various
programs implementing this type of visualization.

4.1 Simulated Data

Our first example involves data simulated from a bivariate
regression model proposed by Gu, Bates, Chen, and Wahba
(1990). The design consists of 300 “semirandom” points
x; = (&1;.w2;) in the unit square. At each point x; our re-
sponse is y; = f(x;)+z;, where the true regression function
[ is given by

40 exp{8[(x1 — .5)? + (x2 — .5)%]}

exp{8[(r1 = .2)* + (x2 — .7)*]}
+exp{8[(ry —.7)%2 + (x2 — .2)%]}

flx) =

and £;.¢ = 1,.... 300, are independent, standard normal
random variables. This problem has been considered by
a number of authors for evaluating the performance of
various schemes based on tensor-product splines (Breiman
1991; Friedman 1991).

In the computations reported here we used the same de-
sign points as used by Gu et al. (1990). For our initial tri-
angulation Aq, we divide the unit square into four triangles
by drawing in both diagonals. yielding an initial model with
5 df. Figure 11a presents both the design points and Ag. (In
Figure 11a, b, and c the point (1, 1) corresponds to the bot-

.....

(a)

Figure 11.

(b) (©

Initial Triangulation (a), Largest Triangulation (b), and Final Triangulation (c) for the Simulated Example.
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tom left corner.) Because this dataset is fairly small, it is
computationally feasible to fit models with many triangles
and to consider many possible candidate vertices. With this
in mind, we set K = 5 in (12) and entertain new vertices
at the points given in the right hand panel of Figure 7. The
maximum number of vertices was set equal to 35, although
this number was rarely reached in our simulations, because
we required a minimum number of four data points in each
triangle. The penalty parameter « in the GCV criterion (11)
was set equal to 4. Although this choice seemed to result in
the smallest mean integrated squared error (MISE) across
our simulations, taking « in a neighborhood of 4 yielded
very similar results.

Figure 12 displays both the underlying regression func-
tion f and a Triogram fit ¢ to this data. As was the case
with the plots in the previous figure. the bottom corners in
Figure 12a and b correspond to the point (1, 1). For this
example, the largest triangulation (32 vertices) encountered
during the addition phase is given in the center plot of Fig-
ure 11b, whereas the triangulation associated with the best
mode] (nine vertices) selected by GCV is given in Figure
Ilc. This process was repeated 30 times, using the same
semi-random design points x;.7 = 1..... 300. The average
MISE over these simulations was .139. The average mean
squared error over the design points was .129, and the aver-
age number of vertices in the model selected by GCV was
9.3. The example shown in Figures 11 and 12 corresponds
to the dataset with the median MISE (.138) among these 30
simulations.

When we compare our estimate to those presented by
Breiman (1991) and Friedman (1991) we notice that the Tri-
ogram fit does not seem to have any of the local ridges and
extrema that are evident in figure 11 of Friedman (1991).
On the other hand, because the Triogram model is locally
planar, it has difficulties accurately approximating such a
smooth surface. To demonstrate this, we applied the Tri-
ogram algorithm to the true function without noise. For
these data, Triogram selected a model with 24 vertices and
a MISE of .019, whereas the Triogram model with nine
vertices, like the model in Figures 11 and 12, had a MISE
of .065. Thus a substantial fraction of the MISE of .139
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of the Triogram procedure may be attributable to the fact
that a piecewise linear surface with a moderate number of
pieces does not provide an accurate approximation to a very
smooth function. Presumably, Triograms using higher-order
polynomials (see the discussion in Sec. 2) would do a bet-
ter job.

Finally, we repeated the aforementioned computations
starting from a smaller initial triangulation. For these simu-
lations, Ay consisted of the two triangles formed by either
dividing the unit square along the diagonal with slope equal
to 1 or —1. The results were almost identical to those re-
ported earlier, because the first vertex added during these
new simulations was usually at the point xy = 19 = .5, es-
sentially returning us to the starting configuration used in
our initial experiments.

4.2 A Regression Surface With a Ridge

Consider again the Triogram example given in Section
1. Because the complete experiment involved just 47 data
points, we selected the smallest initial model possible, a
single triangle. To be more precise, Ay was taken to be a
15% enlargement of the smallest triangle that contained all
of the data. We obtained the 15% expansion by positioning
the barycenter of the original triangle at the origin, multi-
plying the shifted coordinates by 1.15, and then moving the
triangle back to its original position. Figure la shows this
triangle together with the data points. As in the previous ex-
ample we required the minimum number of data points in
each triangle to be four. As mentioned in Section 1, subject
to this constraint, the maximal model encountered during
the addition phase consisted of just nine vertices. In addi-
tion, because this dataset is so small, it seemed reasonable
to consider a somewhat smaller number of possible new
vertices than in the previous simulated example, and so we
set K = 4.

The Rao surface introduced in Section 3 is a useful di-
agnostic for uncovering structure in this data. Figure 13
evaluates the Rao statistic associated with adding a vertex
at the points (12) for K = 20 and connects the points with
a continuous piecewise linear surface. (Recall that in the
regression context, the Rao statistic is simply the amount

(a)

(b)

Figure 12. True Function (a) and Triogram Fit (b) for the Simulated Example.
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Rao
o 50 100 150 200 250

Figure 13. Rao Statistics for the First Added Vertex for the Crystal
Data.

by which the residual sum of squares drops after the addi-
tion of a new basis function.) Notice that the Rao surface is
fairly constant near its maximum in a strip along the edge
corresponding to T' = 40, and it drops considerably when
the potential new vertex is moved to the interior of the trian-
gle. It seems to make little difference whether we locate the
first new vertex on this edge or close to this edge. because
the data are sparse and the edge in question is a boundary
of the initial triangulation. As mentioned earlier, Cleveland
and Fuentes (1996) fitted two “hinged” planes and thus one
interior edge to this data. They found that the piecewise
planar model having a break along the line 7= —334.5 +
4.5P is optimal in the sense that it has the smallest residual
sum of squares among all such single-hinged fits. This break
corresponds to the dashed line appearing in Figure 1c. The
Triogram algorithm places an edge in almost the same loca-
tion, and in fact if we follow the more aggressive deletion
scheme outlined in Section 3, we can obtain a model very
similar to that derived by Cleveland and Fuentes (1996).
Although the true surface for the artificial regression
function from Gu et al. (1990) is better approximated by cu-
bic splines and their tensor products than by Triograms, the
significant features in a regression surface like the one con-
sidered here should be more easily captured by the piece-
wise linear character of a Triogram fit. To examine this
further, we conducted a small simulation study. Figure 14
presents five triangulations corresponding to a set of contin-

model 1 model 2

23\6 16

0 vd

model 3
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nous piecewise linear functions. In each example the func-
tions take on the value 0 at all but one vertex. The values at
these remaining vertices are given explicitly in Figure 14.
We evaluated each surface at 50, 200, and 1,000 randomly
sampled points inside the triangle and added standard nor-
mal errors to the regression surface. Both the height of the
examples in Figure 14 and the variance of the errors were
such that the signal-to-noise ratio was approximately the
same as in the data from Cleveland and Fuentes (1996).
We repeated this process 25 times, giving us a total of 75
datasets on which we can compare the performance of Tri-
ograms to other popular surface-fitting routines.

Although each function in Figure 14 is a Triogram model,
the first and third triangulations also correspond to (piece-
wise linear) MARS models (Friedman 1991). To make more
realistic comparisons, we have placed the vertices in each of
these examples so that the Triogram algorithm with K = 4
would not consider the correct vertex locations in its initial
addition phase. For n = 50, we fitted models with at most
10 vertices and at least four data points in each triangle,
mimicking the situation for the voltage data; for n = 200,
we fitted models with at most 15 vertices and at least seven
data points in each triangle; and for n = 1.000, we fitted
models with at most 20 vertices and at least 10 data points
in each triangle.

We computed the MISE over the 25 simulations for
fits from Triogram. MARS (Friedman 1991), and Pimple
(Breiman 1991); the results are summarized in Table 1. The
typical standard errors of the estimates in Table | are 10—
20% of the estimates themselves, for all models, sample
sizes, and methods. From Table 1 we see that Triogram
outperforms MARS and Pimple considerably on models 2,
4, and 5 for all sample sizes. For model 3, MARS has an
edge, whereas for model 1 MARS wins for n = 50 and
Triogram wins for n = 1.000. We should keep in mind that
for models 1 and 3, MARS can pick the “correct” model in
one step, whereas several steps would be required for Tri-
ogram, as the correct vertices are not in the initial search
set. When we reran model | with K = 5, so that the correct
vertex was in the initial search set, the MISE for Triogram
was reduced by 50%, so that MARS was outperformed for
all sample sizes. It is surprising how much difficulty MARS
and Pimple have with model 5, even when n = 1.000. In
this context Triogram models are clearly more natural than

model 4 model 5

23 19

L/

0 1 0 1 0

1 0 1 0 1

Figure 14. Five True Regression Models for a Simulation Studly.
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Table 1. Mean Integrated Squared Error (25 Simulations)
n Model 1 Model 2 Model 3 Model 4 Model 5

Triogram 50 1649 1706 .6938 2707 6662
Pimple? 50 .2347 4101 .2348 8172 3.0816
MARSP 50 .1098 4192 .2439 1.0294 2.7530
Triogram 200 .0447 .0639 1673 .0232 .0709
Pimple 200 .0654 1457 .0805 1877 6124
MARS 200 .0436 1363 .0665 .2658 7242
Triogram 1,000 .0081 0112 .0299 .0090 .0227
Pimple 1,000 .0269 .0359 .0336 .0588 .2587
MARS 1,000 .0103 .0383 .0066 .0806 3207

2 Excluded one simulation for model 4 with MISE of 11.0 and ane simulation for model 5 with
MISE of 36 6.
5 Excluded one simuiation for model 5 with MISE of 43.6.

MARS, Pimple, and smoothing spline estimates and have
superior MISE performance. Ultimately, the piecewise lin-
ear character of our Triogram models is either a blessing
or a curse, depending on the smoothness of the underlying
functions. Clearly, each methodology has it strengths and
its weaknesses. We feel that these five examples and the
simulated regression problem of Gu et al. (1990) demon-
strate that the Triogram models reliably capture the major
features even in smooth models, and that their true advan-
tage is in capturing ridges in the data.

4.3 A Surface Estimation Problem from the
Manufacturing of Integrated Circuits

The manufacture of integrated circuits (ICs) is a complex
and costly process involving hundreds of separate steps and
lasting up to 12 weeks. Several hundred ICs, or chips, are
fabricated simultaneously on a wafer, and the wafers them-
selves are processed together in groups called lots. Figure
15a presents a diagram of the location of the good and
bad devices on a single wafer. The black squares denote
ICs or chips that have failed one of a number functional-
ity tests; the white squares represent good chips that will
be cut from the wafer, mounted, and sold. After the fab-
rication process is complete, besides testing the individual
devices, measurements are also taken on test structures in
the “streets” or gaps between the chips. (For simplicity, we

(a)
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have not separated the chips in our graphical summary in
Fig. 15.) Each type of test structure is repeated many times
across the wafer, so that the collection of measurements
corresponding to a given structure forms a surface over the
wafer. Typically, these measurements are highly correlated
and exhibit many similar patterns. By relating the shapes
of these surfaces to the maps of defective devices on the
wafer, we can learn a great deal about the manufacturing
process.

Toward this end, we use a variant of the Triogram
methodology in the regression context to smooth this data,
isolating common patterns. We consider 16 sets of mea-
surements, each set consisting of observations from 73 dif-
ferent test sites. Because we know that there most likely
are many similar shapes we will not model the various sets
of measurements individually, but will instead combine the
data when performing the stepwise addition procedure. Let
(Vit).k = 1....,16 denote the (normalized) test results at
the point U;.i =1..... 73 and consider models of the form

J
ox(u) = Z.djkBj(u) €G.

J=1

where B;(u), j = 1......J is the Triogram basis of the space
G associated with a given triangulation A. The estimates
¢y are obtained by minimizing the pooled residual sum of
squares

16 73

DN (Vie - gx(Ui)*

k=1:i=1

g €G.k=1...., 16. (15)

Now, given an initial triangulation and a set of candidate
vertices, we add the vertex that produces the greatest drop
in the combined residual sum of squares (15). This proce-
dure corresponds to adding new vertices based on the aver-
age Rao statistic for the different models. Once a maximum
model is obtained, we perform stepwise deletion on each
model separately, arriving at 16 final models, each having
an underlying triangulation that is a subset of the largest
model derived by the group addition procedure. Figure 15b
displays the positions of the 73 test structures at which the

o 0 o
o 0 o o /o O o o
0 \0 0O\ © o of o o © 0o o
o\ o o o o o 0 o o
o o o/fo o o o
IO o o o o
o o o o

(b)

Figure 15. The Pattern of Defective ICs on a Single Wafer (a) and the Location of Test Structures on the Wafer and the Final Triangulation
Obtained by Our Combined Stepwise Addition Procedure (b). In (a), black squares denote failed devices and white squares represent chips that

meet specifications and can be sold.
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Figure 16. Sixteen Final Fits.

16 sets of measurements were taken. Starting with an initial
triangulation consisting of the smallest box and both diago-
nals containing the data, we added vertices until a maximal
model consisting of 15 basis functions was obtained. This is
the triangulation in Figure 15b. The 16 final fits are given in
Figure 16. (We manually ordered the test so that Triogram
fits that look alike are adjacent.)

From Figure 16, we see that indeed some of the tests
provide almost identical information. The Triogram fits for
the middle two tests in the bottom row are almost identical
to each other, and the same holds for the second, third,
and fourth tests in the top row. Many of the tests seem
unrelated to the patterns of failing and working devices
displayed in Figure 15a. The almost planar patterns of most
Triogram fits in the middle two rows, for example, may
very well be related to some important characteristics of the
production process, but they seem to contain no information
whether the ICs are operating properly. On the other hand,
the middle two Triogram fits in the bottom row have their
lowest values, and the second, third, and fourth Triogram
fits in the top row have their highest values in the middle
front, which is the region of the wafer that contains most
of the ICs that operate properly. More systematic modeling
procedures can be used to perform this type of analysis, but
we present these examples to illustrate how the Triogram
procedure can be used as a tool for exploratory data analysis
in this context.

4.4 Estimating an Unknown Density Function

The top row of Figure 17 presents three datasets that
are natural candidates for Triogram density estimation.
The points in these plots represent a collection of amino
acids obtained from 100 protein structures taken from the
Brookhaven Protein Data Bank (Hobohm, Scharf, Schnei-
der, and Sander 1992). To characterize the local environ-
ment of each amino acid within a given protein structure,
three pieces of information were recorded: the local context
of the protein at the given amino acid (e.g., whether the pro-
tein is twisting around a helix), the fraction of the amino
acid side-chain area buried in the protein structure, and the
fraction of the side-chain area covered by polar atoms. Be-
cause the unburied portion of the amino acid is exposed to
a polar solvent, the final two quantities are restricted to the
upper triangle of the unit square. The plots in the top row
of Figure 17 correspond to data collected from the amino
acid lysine found in a helix, a coil, and a sheet.

Bivariate density estimates computed for each amino acid
and each local protein structure are the basis for an ap-
proach to solving the so-called inverse folding problem
(Bowie, Luthy, and Eisenberg 1991; Zhang and Eisenberg
1994). Evaluating the structure of a given protein is ex-
tremely difficult. Fortunately, determining the sequence of
amino acids that comprise the protein is relatively sim-
ple. Thus it would seem reasonable to attempt to infer the
protein’s structure from its amino acid sequence. Unfortu-
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Figure 17. Triogram Density Estimates. Separate density estimates are fit for the three local protein contexts (691 amino acids found in a helix,
341 in sheets, and 593 in coils). In the bottom row the separate log-densities are contoured.

nately, many rather different sequences produce very similar
structures, so the objective of the inverse folding problem
is to determine which amino acid sequences might result
in a given known structure. This can be accomplished by
studying the propensity for certain amino acids to occur in
certain local environments in a large collection of known
protein structures. The procedure described by Zhang and
Eisenberg involves a log-odds calculations, the main ingre-
dient of which is a set of bivariate density estimates for the
type of data given in the top row of Figure 17.

Along the top row of Figure 17 are three data clouds, one
corresponding to each local context. There are 591 points in
the first plot, 341 points in the second plot, and 593 points in
the third plot. We first applied the Triogram procedure sep-
arately to each dataset corresponding to the three different
local environments. At each step in the addition process,
the set of candidate vertices consisted of the points with
barycentric coordinates given in (12) with K = 5 relative
to each of the triangles in the current triangulation A. We
did not enforce shape restrictions on the updated triangula-
tion when choosing between the candidates, but did insist
that each triangle must contain at least 25 points. After the
deletion phase, we selected a final model using BIC. In each
case, the best fits were encountered during stepwise dele-
tion. The underlying triangulations for these final models
are plotted in the middle row of Figure 17, with contour

plots of the corresponding log densities given in the last
row of the same figure. Although the piecewise linear char-
acter of our Triogram models makes these plots somewhat
jagged, they are clearly capturing the essential features of
the data.

As mentioned earlier, one approach to the inverse fold-
ing problem involves a log-odds calculation based on these
estimated densities. With this in mind, it is advantageous to
have each of the underlying triangulations nested in some
larger triangulation, and in fact it might be possible to sta-
bilize the adaptation process somewhat by considering all
three datasets simultaneously. For a given triangulation A,
let G denote the associated space of continuous piecewise
linear functions. Next, let U,..i = 1....,n., denote the
observations associated with local environment ¢ € {helix,
sheet, coil}, and, as in Section 3.1, let [.(3.) denote the
log-likelihood of these observations as a function of the
coefficients 3, corresponding to the Triogram basis con-
structed on A. During the stepwise addition phase of our
model building, we now compute Rao statistics using the
likelihood

l(IBhelixt 5sheet? Iacoil)
= lhelix(ﬁhelix) + lsheet (:Bshect> + lcoi](,Bcoil) (16)

and add the vertex that maximizes this combined Rao statis-
tic. Restrictions on the shape of the resulting triangulations
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Figure 18. Log-Odds Ratios for Lysine in the Three Contexts: Helix, Sheet, and Coil. In each case the dark solid lines follow contours with value

log(.5). and the light solid lines follow contours with value log(2).

as well as minimum data requirements can be enforced in
the obvious way. In general, we believe that when simi-
lar functional forms are expected, this type of fitting can
effectively pool the datasets to determine a common trian-
gulation A from which to start the deletion phase.

Figure 18 presents the final triangulation as well as the
log-odds ratios associated with the three different contexts
for lysine. The plots are shaded so that as the color changes
from black to white, the log-odds ratios vary from —2 ~
log .13 to 3 = log 20. The dark and light lines intersect the
surfaces at log .5 and log 2. For example, the difference of
the log of the estimated density for helix and sheet when
percent-buried is close to 0 and the percent-polar is almost
100 is seen to be approximately log .2, as the left top corner
of this panel is very dark gray.

Now, consider the difference between lysine in a helix
and lysine in a sheet. Although the scatterplots in Figure
17 indicate that the center of the distribution for the sheet
context is shifted more toward the barycenter of the tri-
angle relative to the distribution of the data collected in a
helix, Figure 18 suggests that if we want to decide whether
unidentified lysine is in a helix or a sheet, the percent-polar
(along the vertical axis) provides more evidence than the
percent-buried, because the vertical color changes are more
pronounced than the horizontal color changes. The same is
essentially true if one wants to distinguish between helix
and coil, but for distinguishing between sheet and coil, the
percent-buried seems to be more informative.

5. RATES OF CONVERGENCE

In this section we discuss the rate of convergence cor-

responding to nonadaptive Triogram estimates; that is,
Triogram models in which the triangulations are refined
independent of a response. (Details can be found in
Hansen 1994.) Suppose initially that given a random sample
(U,. V1) (U,,V,) from the distribution of (U.V), we
are interested in estimating the unknown regression func-
tion ¢(u) = E(VIU = u).u € U C R We assume
that there exists a sequence of conforming triangulations
Ap,n=1.2,...,0of Y and for each n construct the space
G, of piecewise linear functions described in Section 2. As
our sample size n grows, we envision the triangles in A,
shrinking in size and increasing in number subject to some
regularity conditions. By making these conditions precise,
we gain insight into how we should constrain the adaptive
Triogram procedure to guard against spurious effects. From
a theoretical standpoint, it is not necessary for the triangu-
lations A, to be nested, and hence A,,,; need not be a
refinement of A,,.

5.1 The Distribution of (U, V)

We assume that the density of U is bounded away from
0 and infinity on U, so that as n — oc the points of

..., U, fill ¥ somewhat regularly. We must also in-
sist that the conditional variance var(V|U = u).u € U be
bounded.

5.2 Enlarging A,

As mentioned in Section 2, the basis that we have chosen
for G,, is well known in the finite element literature. An
important property of this basis is that the L, norm of any
function in G, is equivalent to the /s norm of its coefficients
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provided that there exists a constant M such that for each
§eA,.n=1,2.... there exists a ball Bs C 6 such that

(dl’dm é)g/(VOI B(S) < M.

We use this equivalence to demonstrate that with probabil-
ity tending to 1, the empirical norm |jg[|2 = >, ¢*(U;)
is close to its theoretical counterpart ||g||? = Eg¢*(U) for
all ¢ € G,. Next, set h,, = max{diam & ¢ € A,} and
h,, = min{diam é: § € A, } and assume that A, increases
with sample size so that as n — x.h, — 0, while log
h2+ nﬁi — oc. When combined with the stability require-
ment just mentioned, this condition is sufficient to guarantee
that with probability tending to 1, the space G, is identi-
fiable or, equivalently, the design matrix corresponding to
G, has full rank.

5.3 Approximation Rate

For sufficiently smooth functions f, a simple Taylor ex-
pansion can be used to demonstrate that as n — oc,

inf [lp— fll..qn = ORS).
pEGH
subject to the refinement conditions noted earlier.

Under these assumptions, the rate at which én, the maxi-
mum likelihood estimate in G,,, approaches ¢* was derived
by Hansen (1994). In the simple case described so far, if we
assume that the unknown function ¢* has two continuous
derivatives, then

. ‘ _ ho2
& — Q*HZ =0Op <h;17 + :?T> .

The first term on the right in this expression is the square
of the approximation rate obtainable from G,. Written in
this way, we see precisely the penalty that we pay for using
only piecewise linear functions. Improving the approxima-
tion rate will improve our rate of convergence, assuming
that ¢* is sufficiently smooth. Now, as we collect more and
more data, if we let the sets in our partition shrink so that
Ry ~ h, ~n~1/6, we obtain the rate

lon — 071> = Op(n=2/%). (17)

Under some mild extra conditions on the triangulations A,,,
Hansen (1994) also derived the rate of convergence of the
nonadaptive Triogram models in the case of a general ex-
tended linear model, which implies that (17) holds in the
case of density estimation as well. We must be very clear
that this is the rate associated with a nonadaptive version
of the Triogram procedure. As is the case with the models
discussed by Stone (1994) and Stone et al. (1997), theoreti-
cal rates such as these are useful in pointing out practically
important methodologies and in indicating what types of
regularity conditions should be imposed on the correspond-
ing adaptive procedures.

In addition, this calculation indicates that we should ex-
pect certain limitations on the performance of our proce-
dure simply because we are using linear splines, an effect
studied extensively in Section 4. A word of caution is in
order here, however. Although the basis that we are using
appears suboptimal for smoothing functions like the exam-
ple of Gu et al. (1990), data-driven adaptation ameliorates
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this effect considerably. This effect was observed in the case
of bivariate interpolation by Rippa (1992a), who found that
classically poor approximation spaces {long, thin triangles)
were very effective when constructed in a data-dependent
fashion.

Hansen (1994) also developed L, rates of convergence
for general ANOVA models in the context of an extended
linear model. Multivariate spline spaces of higher order are
considered, as are functions involving more than two vari-
ables. In that context, an ANOVA decomposition is used to
ameliorate the curse of dimensionality. In our simple Tri-
ogram setup, this is analogous to using Triogram to model
selected two-factor interactions.

6. DISCUSSION

In this article we have introduced the Triogram method
for function estimation using piecewise linear, bivariate
splines based on an adaptively constructed triangulation.
We have illustrated the technique for bivariate regression
and log-density estimation and have indicated how we can
directly apply our approach to model bivariate functions
in the broader context of an extended linear model. The
entire estimation procedure is invariant under affine trans-
formations and is the most natural approach for model-
ing data when the domain of the predictor variables is a
polygonal region in the plane. Although our examples dealt
exclusively with estimating bivariate functions, the use of
Triograms for modeling two-factor interactions in higher-
dimensional functions is straightforward. In addition, we
have demonstrated that Triograms are sufficiently flexible
to capture the significant structure present in a variety of
bivariate datasets taken from a number of different esti-
mation contexts. These features set Triogram models apart
from other estimation routines that depend heavily on a
specific coordinate system and tend to be more sensitive to
features that are oriented along one of the coordinate axes.

Because our estimates are piecewise linear, the results
are rather crude, as made explicit by the rather slow con-
vergence rate discussed in Section 5. By using higher-order
polynomials, we not only smooth out our estimates, but also
achieve a better convergence rate. However, smoothing out
Triograms in this way is not trivial. We are currently inves-
tigating techniques based on the generalized vertex splines
of Chui and He (1990). Essentially, by subdividing the tri-
angles in a given triangulation, we can produce a space
of continuously differentiable quadratics. Besides increased
computational complexity, the price that we pay for this
smoothness is that the spaces generated by our simple step-
wise algorithm are no longer nested.

Finally, we are investigating alternatives to the greedy,
stepwise algorithm outlined in this article. In particular, by
casting the Triogram procedure into a Bayesian framework,
we have developed a more efficient method for exploring
“promising” triangulations. Model averaging in this con-
text corresponds to combining several Triogram fits, each
associated with a different triangulation. When applied to
a smooth function, averaging removes the sharp ridges in-
herent in a single Triogram fit. However, when the underly-
ing surface exhibits strong features, this averaging does not
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compromise adaptability; the Triogram models with high
posterior probability will all tend to share the same strong
features. For a general discussion these new procedures ap-
plied to spline bases in the context of an extended linear
model, the interested reader is referred to the rejoinder of
Stone et al. (1977) and Hansen and Kooperberg (1998).

[Received May 1996. Revised April 1997.]
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