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ABSTRACT. In this paper we consider logspline density estimation for data that may be left-

truncated or right-censored. For randomly left-truncated and right-censored data the

product-limit estimator is known to be a consistent estimator of the survivor function, having

a faster rate of convergence than many density estimators. The product-limit estimator and

B-splines are used to construct the logspline density estimate for possibly censored or

truncated data. Rates of convergence are established when the log-density function is

assumed to be in a Besov space. An algorithm involving a procedure similar to maximum

likelihood, stepwise knot addition, and stepwise knot deletion is proposed for the estimation

of the density function based upon sample data. Numerical examples are used to show the

®nite-sample performance of inference based on the logspline density estimation.

Key words: Besov space, knot selection, left-truncation, MILE, product-limit estimator, rate

of convergence, right-censoring

1. Introduction

This paper proposes a method of density estimation for left-truncated and right-censored

data. Let X 1, X2, . . . be independent and identically distributed random variables, and let

Ci and Ti denote the right-censoring variable and left-truncation variable for the ith case,

respectively. We assume that (C1, T1), (C2, T2), . . . are independent and identically dis-

tributed random variables, and that they are independent of the X is. When the X is are

right-censored, only Yi � min(X i, Ci) and the censoring indicator äi � I(X i < Ci), where

I(X i < Ci) is 1 if X i < Ci and 0 otherwise, are observed. If the X is are also subject to

left-truncation, (Yi, äi, Ti) is observed only when Yi > Ti. The sample data consist of

(Y o
i , äo

i , T o
i ), 1 < i < n with Y o

i > T o
i . See Fleming & Harrington (1991) and Andersen et

al. (1993) for more discussion of right-censoring and left-truncation. An example of a data

set that involves both right-censoring and left-truncation is the mortality of diabetics in the

county of Fyn in Denmark (Andersen et al., 1993). We will discuss this example in detail

in section 5.

Flexible exponential families have been used for the estimation of density functions. Stone &

Koo (1986), Stone (1989, 1990), Kooperberg & Stone (1991) and Koo (1996) developed

logspline density estimation, in which the logarithm of a probability density function is modeled

using polynomial splines. Barron & Sheu (1991) studied density estimation procedures based on

trigonometric series, polynomials, and splines. Koo & Kim (1996) considered an exponential

family based on wavelets. Exponential families have been used by Koo & Park (1996) and Koo

& Chung (1998) for density estimation in linear inverse problems. For an excellent discussion

on density estimation see Silverman (1986).
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A number of papers have dealt with density estimation based upon possibly censored data. In

particular, Marron & Padgett (1987) studied bandwidth selection for kernel density estimators

based upon right-censored data; Gijbels & Wang (1993) considered kernel density and hazard

estimation based on a representation for the product-limit estimator of the survivor function;

and Kooperberg & Stone (1992) and Kooperberg (1997) developed logspline density estimation

for univariate data that may be right-censored, left-censored or interval-censored and for

bivariate data that may be right-censored, respectively. Kaplan & Meier (1958) considered

product-limit estimators for incomplete data. Lai & Ying (1991) addressed the problem of

estimating a distribution function under truncation and censoring.

Consider logspline density estimation without truncation or censoring, so that X 1, . . ., X n are

actually observed. Let B1, . . ., BJ be a set of basis functions that span a space of polynomial

splines. The exponential family based on these basis functions has the form

f (x; è) � expfè1 B1(x) � � � � � èJ BJ (x)ÿ ø(è)g,

where ø(è) is the normalizing constant. The parameters of the logspline density estimate

satisfy the equation�
Bk(x) f (x; ~è) dx �

�
Bk d ~F, for k � 1, . . ., J , (1:1)

where ~F is the usual empirical distribution function.

When censoring and truncation may be present, we con®ne our attention to the estimation of

the conditional density f ac of X given that a < X < c, for some constants a and c. We use the

product-limit estimator to ®nd an appropriate estimator B̂k, whose expectation is asymptotically

the same as
�

Bk f ac. The proposed density estimator has the form f (:; è̂), where è̂ satis®es (1.1)

with
�

Bkd ~F replaced by
�

Bk d F̂, and F̂ is the product-limit estimator. This density estimate has

many of the advantages of the usual logspline density estimates. In particular, the estimates are

positive and integrate to one. The kernel density estimators by Marron & Padgett (1987) and

Gijbels & Wang (1993) may not have this property when higher order kernels are used. While

the approach of Kooperberg & Stone (1992) has the advantage that it models the complete

density of X , rather than the conditional density given that a < X < c, it has the clear

disadvantage that the resulting log-likelihood is not necessarily concave when censoring is

present. As such, it is much harder to establish theoretical results, and in a numerical

implementation one cannot guarantee that the global maximum of the likelihood function is

found.

In this paper it is shown that the logspline density estimates based upon the product-limit

estimator possess the rate of convergence nÿ2á=(2á�1), where á is the smoothness of the

logarithm of the density function in a Besov space. The main idea in establishing this result is

the observation that the product-limit estimator converges at a faster rate than the density

estimator. Thus the rate of convergence for logspline density estimation based on the product-

limit estimator is the same as the rate of convergence for logspline density estimation based

upon uncensored data.

For our theoretical results, we assume that the knots are distributed regularly over the range of

the data, and that the number of knots increases with the sample size. In practice, we select the

knots adaptively using stepwise knot addition and stepwise knot deletion.

This paper is organized as follows. In section 2, logspline densities are de®ned and bounds for

these densities are established. Asymptotic results are stated in section 3 and proved in section

6. Practical aspects of logspline density estimation are discussed in section 4. Numerical

examples are given in section 5.
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2. Logspline densities

In sections 2, 3 and 6, it will be assumed that a � 0 and c � 1. In this section we de®ne

logspline densities on the unit interval I � [0, 1]. To simplify notation the dependence on

the sample size n of various quantities will be suppressed. In the remainder of this paper

M1, M2, . . . are positive constants, independent of n, and M is a positive constant, also

independent of n, that is only used locally, and may be different in different locations.

2.1. Logspline densities based on B-splines

Let Nq be the B-spline of order q having knots at 0, 1, . . ., q. Thus N q(x) �
q[0, 1, . . ., q](:ÿ x)

qÿ1
� , using the divided difference notation (de Boor, 1978). Let j be a

positive integer, which will depend on n, and de®ne

Bj,k � N q(2 jxÿ k), k 2Z:

To approximate a function on I , we only need those B-splines Bj,k which do not vanish

identically on I . Let Ë( j) denote the set of k for which this is the case and let S j denote

the linear span of the B-splines Bj,k , k 2 Ë( j). We refer to S j as the space of dyadic

splines. The dimension of S j is J � 2 j � qÿ 1. Let J > 2 for all n.

Let È denote the collection of all J-dimensional vectors. Given è � (è1, . . ., èJ )9 2 È, set

s(:; è) �
XJ

k � 1

èk Bj, k ,

ø(è) � log

�
I

expfs(x; è)g dx

� �
,

and

f (:; è) � expfs(:; è)ÿ ø(è)g: (2:1)

Then
�

I f (x; è) dx � 1 for è 2 È. For notational convenience, let s(è) and f (è) denote the

function s(:; è) and the density function f (:; è), respectively. The exponential family f (è),

è 2 È, is not identi®able (Stone, 1990). Let È0 denote the (J ÿ 1)-dimensional subspace

of È, consisting of those vectors è 2 È whose entries add up to zero. We refer to the

densities f (è), è 2 È0, as logspline densities.

The relative entropy (Kullback±Leibler distance: KL distance) between two densities f 1 and

f2 is de®ned as

D( f1 i f2) �
�

I
f1(x) log

f1(x)

f2(x)

� �
dx:

For logspline densities f (è1) and f (è2) write D(è1 iè2) � D( f (è1)i f (è2)). For a function h,

let
�

Bh denote the J-dimensional vector of elements
�

I Bj,k(x)h(x) dx, where B � (Bj,1,

. . ., Bj,J )9. Given â 2 È, let è(â) 2 È0 denote a solution to the equation�
B f (è) � â (2:2)

2.2. Bounds for logspline densities

In this section we will describe bounds on D(è0 iè) in terms of the Euclidean distance

jè0 ÿ èj for any è0, è in È0, and give bounds on jè( â0)ÿ è( â)j in terms of jâ0 ÿ âj,
where jèj � (

PJ
k � 1è

2
k)1=2 for è 2 È.
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Let i:i2 and i:i1 denote the usual L2 and L1 norm on I , respectively. By lem. 4.2 of DeVore

& Popov (1988),

1

M1 J
jèj2 < is(è)i2

2 <
1

M2 J
jèj2 for any è 2 È: (2:3)

It follows from (2.3) and the properties of B-splines that

is(è)i1 < max
1 < k < J

jèk j < jèj <
����������
M1 J
p

is(è)i2, for any è 2 È: (2:4)

We relate distances between logspline densities to distances between their parameters. A

proof of the following lemma is similar to that of lem. 3 in Barron & Sheu (1991); it uses (2.3),

(2.4) andX
k

Bj,k(x) � 1, for x 2R, (2:5)

which is a property of B-splines (de Boor, 1978).

Lemma 1

For è0, è 2 È0,

i logf f (è0)= f (è)gi1 < 2jè0 ÿ èj,
D(è0 iè) <

b

2M2 J
exp(jè0 ÿ èj)jè0 ÿ èj2,

and

D(è0 iè) >
1

2M1bJ
exp(ÿ2jè0 ÿ èj)jè0 ÿ èj2,

where b � expfi log f (è0)i1g.

We relate distances between the parameters è to distances between the corresponding

parameters â. The argument used to prove lem. 4 of Barron & Sheu (1991) can be used to

prove lemma 2.

Lemma 2

Let è0 2 È0, â0 �
�

B f (è0), and â 2 È. Set b � expfi log f (è0)i1g. If

jâ0 ÿ âj < 1

4M1beJ
,

then the solution è( â) to
�

B f (è) � â exists in È0 and satis®es

jè( â0)ÿ è( â)j < 2M1beîJ jâ0 ÿ âj,
i log[ f fè( â0)g= f fè( â)g]i1 < 4M1beîJ jâ0 ÿ âj < î,

and

D è( â0)iè( â)
ÿ �

< 2M1beîJ jâÿ â0j2,

for î satisfying 4M1beîJ jâÿ â0j < î < 1.

2.3. Information projection and approximation error

The function ø(è) is ®nite for all è 2 È0, since Bj,k(x) < 1 for x 2R. Let F ( â) �
f f :

�
B f � âg be the hyperplane of all density functions f for which

�
B f equals â, with

â 2 È.
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The linear independence of the B-splines together with (2.5) implies that if s(è)ÿ s(è9) is

constant for è, è9 2 È0, then è � è9. Using this and the argument used to show lemma 3 of

Barron & Sheu (1991), we can establish the following result.

Lemma 3

Suppose that f 2 F ( â) and â 2 f� B f (è): è 2 È0g. Then the solution è0 � è( â) to (2.2)

is unique. Moreover, for all è 2 È0, the Pythagorean-like identity

D( f i f (è)) � D( f i f (è0))� D(è0 iè)

holds. Consequently, f (è0) is characterized as the minimizer of D( f i f (è)) over è 2 È0.

Also, L(è) �Pkèkâk ÿ ø(è) has a unique maximum at è( â).

Let

è� � argmin
è2È0

D( f01 i f (è)),

and set f � � f (è�). We will refer to f � as the information projection of f 01 onto S j. It

follows from lem. 1 of Stone (1990) that f � satisfy the equation�
Bj,k f01 �

�
Bj,k f � for k � 1, . . ., J : (2:6)

Let B� � (B
�
j,1, . . ., B

�
j,J )9 where B

�
j,k �

�
Bj,k f01. It follows from lemma 3 and (2.6) that

the information projection f � exists uniquely and that è� � è(B�).
Set g01 � log f01. Let

Ä � inf
s2S j

i g01 ÿ si2

and

ã � inf
s2S j

i g01 ÿ si1

be the L2 and L1 error in the approximations of g01 by some s 2 S j. Theorem 1

establishes an upper bound on the approximation error D( f01 i f �) in terms of Ä under the

condition

(A1) Mÿ1
3 < f01 < M3.

Theorem 1

If (A1) holds, ã is bounded, and
����
J
p

Ä � o(1), then the information projection f � uniquely

exists and satis®es

D( f01 i f �) <
M3

2
exp (ã)Ä2:

3. Asymptotic results

Let f X denote the density function of X1, and let

S(t) � P(X1 > t), G(t) � P(T1 < t < C1), R(t) � P(T1 < t < Y1),

F(tj0) � P(X 1 < tjX1 > 0), S(tj0) � P(X 1 > tjX 1 > 0):

De®ne ô � infft: G(t) . 0g and ô� � infft . ô: G(t)S(t) � 0g.
For 0 . ô, the product-limit estimator of F(tj0) is
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F̂(tj0) � 1ÿ
Y

0 < Y o
(i)

< t

1ÿ 1

n(i)

� �äo
(i)

,

where (Y o
(i), ä

o
(i)), 1 < i < n, denote the ordered Y o

i s along with their corresponding äo
i s,

and n(i) is the number of js such that T o
j < Y o

(i) < Y o
j . Similarly, the product-limit estimator

of S(tj0) is

Ŝ(tj0) �
Y

0 < Y o
(i)

, t

1ÿ 1

n(i)

� �äo
(i)

:

We con®ne our attention to the estimation of the conditional density f 01 of X given 0 <

X < 1, where ô, 0 , 1 , ô�. Note that f01 � f X=P(0 < X < 1). Let #(t) denote the size of

the risk-set at t, which is de®ned by the number of js for which T o
j < t < Y o

j . For censored and

truncated data, we de®ne the incomplete likelihood function corresponding to the logspline

family by

l(è) � 1

F̂(1j0)

�
I

log f (:; è) d F̂(:j0)

� 1

F̂(1j0)

Xn

i � 1

I(0 < Y o
i < 1) dis(Y o

i ; è)ÿ ø(è)

�
Xn

i � 1

ŵo
i s(Y o

i ; è)ÿ ø(è), (3:1)

where the jump size di � d ni at Y o
i of F̂(:j0) is given by di � äo

i Ŝ(Y o
i j0)=#(Y o

i ) and ŵo
i �

ŵo
ni � F̂(1j0)ÿ1 I(0 < Y o

i < 1)äo
i Ŝ(Y o

i j0)=#(Y o
i ). Note that the incomplete likelihood func-

tion de®ned by (3.1) is not necessarily interpretable as a log-likelihood. We introduce l(è)

as an objective function in the de®nition of logspline density estimators for incomplete data

under censoring and truncation. (When there is no censoring or truncation nl(è) is the

usual log-likelihood for logspline density estimation.) Let

è̂ � arg max
è2È0

l(è) (3:2)

be the maximum incomplete likelihood estimator (MILE) of è 2 È0. Since the Hessian

matrix of ø(:) is strictly positive de®nite and l(:) is a strictly concave function on È0; thus

the MILE è̂ is unique if it exists. We set f̂ � f (è̂) and refer to f̂ as the MILE of f01.

Let B̂ � (B̂1,J , . . ., B̂k,J )9 where B̂ j,k �
P

i ŵ
o
i B j,k(Y o

i ). From the likelihood equation, f̂ is

the logspline density (2.1) that satis®es�
B f̂ (è̂) � B̂,

which implies that f̂ � f (è(B̂)).

To develop upper bounds on the estimation error D( f � i f̂ ), we assume that

(A2) inf t2ô R(t) > M ; and

(A3) ð � P(Y1 > T1) . 0.

Theorem 2 establishes the rates of convergence of f̂ to f01 in KL distance.
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Theorem 2

If (A1)±(A3) hold, the sequence ã is bounded, and J=
���
n
p ! 0, then f̂ exists, except on an

event whose probability tends to zero with n, and D( f � i f̂ ) � OP(J=n).

As a smoothness class for f01, we use the Besov space. If h 2 L p(I ), 1 < p

<1, let ùq(h, t) p, t . 0, denote the modulus of smoothness for h: ùq(h, t) p �
supjuj< t iä

q
u h(:)i p(I (qu)), where äq

u is the qth order difference with step u; the norm in the

above de®nition is the L p norm on the set I (qu) � fx: x, x� qu 2 I g. We say that h is

in the Besov space B á pp9 whenever

i hiBá pp9
�

�1
0

ftÿáùq(h, t) pg p9 dt

t

� �1= p9

is ®nite, where q is any integer larger than á.

The dyadic B-splines fBj,k : k 2 Ë( j), j � 0, 1, 2, . . .g give an atomic decomposition for

functions in the Besov space. From DeVore & Popov (1988) we know that a function h in B á pp9

can be written as

h �
X1
j � 0

X
k2Ë( j)

ç j,k Bj,k

and

Mÿ1 ihiBá pp9
<

X1
j � 0

f2 j(áÿ1= p)jç jj pg p9

" #1= p9

< M i hiBá pp9
, (3:3)

with the usual modi®cation if either p or p9 equals 1. Here jç jj p denotes

(
P

k2Ë( j)jç j,k j p)1= p: See DeVore & Popov (1988) and Donoho et al. (1996) for properties

of Besov spaces.

Given positive numbers an and bn for n > 1, let an � bn mean that an=bn is bounded away

from zero and in®nity. For theorem 3 we also assume that

(A4) g01 � log f01 2 B á pp9 such that i g01 iBá pp9
< M ; and

(A5) 1
2

,á, qÿ 1� 1
p

and 2 < p <1.

Theorem 3

If (A2)±(A5) hold, then D( f01 i f̂ ) � OP(nÿ2á=(2á�1)) is J � n1=(2á�1).

Remark 1. Note that that the Besov space includes the Hilbert±Sobolev space and

HoÈlder space; spaces that are traditionally used in theoretical statistics. See DeVore &

Popov (1988) and Donoho et al. (1996) and references therein for further properties of the

Besov space.

Remark 2. When there is no censoring or truncation, the logspline density estimators

achieve the optimal rate of convergence (Koo & Kim, 1996). It is anticipated that the rate

of convergence in theorem 3 remains optimal when censoring and truncation are present.

Remark 3. When there is only censoring but no truncation, let F̂(1) be the traditional

product-limit (Kaplan±Meier) estimate of F(1j0) � P(X1 < 1) and de®ne ~f � F̂(1) f̂ . Ob-

serve that D( f X i~f ) � F(1j0)D( f01 i f̂ )� F(1j0)log f f (1j0)=F̂(1)g. Since under certain con-
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ditions F̂(1) is a
���
n
p

-consistent estimate of F(1j0), we can actually give an estimator of

f X with its rate of convergence given in theorem 3.

4. Practical implementation

Logspline density estimation under censoring and truncation, based upon the incomplete

log-likelihood (3.1), can be implemented using a slightly modi®ed algorithm for logspline

density estimation for complete data by allowing for case weights. For our examples we

used the algorithm described in Stone et al. (1997). In this section we give a brief

description of this algorithm and discuss the modi®cations that make it applicable when

some data may be censored or truncated. More details about the algorithm can be found in

Kooperberg & Stone (1992) and Stone et al. (1997).

The algorithm of Stone et al. employs cubic splines. In particular, given the integer K > 3,

the numbers L and U, with ÿ1 < L and U <1, and the sequence t1, . . ., tK , with L ,

t1 , � � � , tK , U , let G be the space of twice differentiable functions s on (L, U ), such

that the restrictions of s to (L, t1] and [t k , U ) are linear and the restrictions of s to

[t1, t2], . . ., [tKÿ1, tK ] are cubic polynomials. The space G is K-dimensional. Set J � K ÿ 1.

Let 1, B1, . . ., BJ be a basis of G. A column vector è � (è1, . . ., èJ )9 is said to be feasible if

ø(è) ,1. Given a feasible è the function f (:; è) is a positive density on I � [L, U ]. We refer

to the ti, i � 1, . . ., K, as knots.

Let (Y o
i , äo

i , T o
i ), 1 < i < n, with Y o

i > T o
i be the actual observed data based upon a random

sample from an unknown distribution with density function f that was subject to right-censoring

and left-truncation. Let Z j, 1 < j < n� < n, be the set of unique values of the Y o
i for which

äo
i � 1. Let v j � F̂(Z jja)� Ŝ(Z jja)ÿ 1, 1 < j < n�, with a � min T o

i , be the jump of the

product-limit estimate of the survivor function Ŝ(:ja) at Z j. For a given set of knots, the

logspline density estimate under right-censoring and left-truncation is f (x; è̂), a < x < U ,

where

è̂ � arg max
è

l(è) � arg max
è

Xn�
j � 1

v j f (Z j; è),

is the MILE of è (compare with (3.2)). The Hessian matrix corresponding to this likelihood

is easily established to be concave. As such, the MILE is unique when it exists, and it can

be found using a suitably modi®ed Newton±Raphson algorithm.

Initially the algorithm starts with a limited number of knots (see Kooperberg & Stone (1992)

and Stone et al. (1997) for details). In the modi®ed version for censored and truncated data all

knots are equal to an uncensored observations in the data set. Then stepwise knot addition is

employed. At each stage all uncensored observations, that are a minimum distance away from

existing knots, are candidates for addition. Among these candidates, the algorithm performs a

heuristic search to maximize the statistic

Rao(t)

v9t
, (4:1)

where Rao(t) is the Rao statistic for adding a knot at the location x � t of an uncensored

observation to the current set of knots (see eq. (3.3) of Stone et al. (1997) for the exact

de®nition of Rao(t)), and v9t � v t=nt, where nt is the number of uncensored observations

at x � t. Stepwise addition of knots is employed until a prescribed maximum number of

knots is reached.
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Upon stopping the stepwise addition process, we carry out stepwise deletion. At each step the

knot for which the statistic

Wald(t)

v9t
, (4:2)

where Wald(t) is the Wald statistic for removal of the knot at x � t from the current set of

knots (see eq. (3.5) of Stone et al., 1997 for the exact de®nition), is the smallest in

magnitude is removed. Stepwise deletion of knots continues as long as the statistic (4.2) is

smaller than a prespeci®ed level ë. The last ®tted model is the one that we select as the

logspline density estimate under right-censoring and left-truncation.

Relative to logspline density estimation, as discussed in Stone et al. (1997) and earlier papers,

we added a division by v9t to the equations for the Rao statistic (4.1) and Wald statistic (4.2).

The reason for adding these weights is that in some examples the v9t can vary considerably (we

have observed ratios of about 100 between the largest and smallest v9t). To see that this makes

weighting necessary, consider the following example. Suppose that for all uncensored observa-

tions with x , A the weight v9t equals 100, and for all uncensored observations with x > A the

weight v9t equals 1. Without weighting the logspline procedure would want to add knots t for

which t , A, since additional detail in the log-density function in that region will have a hundred

times larger in¯uence on the incomplete log-likelihood. However, the difference in the

incomplete log-likelihood does not tell us whether a knot smaller than A is any more signi®cant

than a knot larger than A. Actually, it is easily seen, that a test of signi®cance for a knot t � A,

which has virtually no in¯uence on f̂ (x) for x . A, the Wald or Rao statistic should be divided

by 100 relative to the test-statistic for the signi®cance for a knot t� A.

In Kooperberg & Stone (1992) and Stone et al. (1997) the ®nal model is selected from a

sequence of models using a modi®ed version of AIC. However, since the Rao and Wald statistics

in the current algorithm are scaled, the differences in the incomplete log-likelihood between

successively ®tted models are not comparable. Thus, we decided to select the last model before

the Wald statistic would exceed a prespeci®ed critical value. In our examples we took

ë � log n9, where n9 is the number of uncensored observations. Using ë � log n9 is comparable

to choosing the penalty parameter in AIC equal to log n9, as has been advocated in earlier

logspline papers. In the current situation, we carried out parts of the simulation study reported in

the next section with various other values of ë; we found that log n9 gave the smallest integrated

squared error in those simulations.

5. Examples

All the data sets that we analyse in this section involve right-censoring or left-truncation.

Without censored or truncated data the algorithm described in the previous section is

identical to the one of Stone et al. (1997); we thus refer to that paper for examples where

all data are complete.

Figures 1 and 2 are based upon the Stanford heart transplant data. There exist several versions

of this data; we used the data as listed in Kalb¯eisch & Prentice (1980). The sample size for this

data set is 103, of which 28 observations are censored. The largest uncensored observation is at

1358 days.

In Fig. 1 we compare logspline density estimates for this data based upon the current

algorithm and based upon the algorithm of Kooperberg & Stone (1992). The Kooperberg±Stone

algorithm, which can deal with censored data but not with truncated data, uses a full likelihood.

Censoring is dealt with by integrating the density over the subset of R in which it is known that

an observation is located. Their algorithm also employs cubic splines and stepwise deletion of
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knots, however, it does not allow for stepwise addition. In Fig. 2 we show the estimates of the

survivor function corresponding to the two density estimates in Fig. 1 together with the Kaplan±

Meier estimate.

As can be seen from these plots, both density estimates are similar, and the corresponding

survivor curves follow the Kaplan±Meier curve closely. It is interesting to note that the knots

for both estimates are at very different locations: the current estimate has three knots, located at

3, 12, and 675 days, the Kooperberg & Stone (1992) estimate has four knots, located at 1, 56,

Fig. 1. Density estimates for the Stanford Heart Transplant Data (n � 103, 28 censored). SolidÐlogspline

method of current paper; dashedÐKooperberg & Stone (1992).

Fig. 2. Survivor function estimates for the Stanford Heart Transplant Data (n � 103, 28 censored). SolidÐ

logspline method of current paper; dashedÐKooperberg & Stone (1992); dottedÐKaplan±Meier estimate.
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86, and 1799 days (in that algorithm knots at the extreme observation were required). Logspline

density estimation seems to be very robust when applied to this data: no matter where the knots

are positioned, or what options are chosen, the estimate that is obtained is very similar.

The data set for our second example is the Fyn diabetes data, which is extensively discussed

in Andersen et al. (1993). This data set consists of 1499 diabetes in the County of Fyn in

Denmark. The data were collected by Green et al. (1981). For each person the data set contains

the age at diagnosis (Di) (in years) of diabetes, the age at which the person enrolled in the study

(Ti), and the age at which the person left the study (Yi), either because the participant moved

(censoring), the study ended (censoring) or the participant died (uncensored). The participants

who stayed in the study until the end were followed for 7.5 years. For each participants we know

the gender, and whether the participant was censored or died (äi). There are 783 men, of whom

254 died, and 716 women, of whom 237 died. The survival data is left-truncated by the age at

which the participant entered the study.

It is of interest to assess how different the survival distributions for the Fyn diabetics are from

the general Danish population. In Fig. 3 we show the logspline density estimate of the survival

distribution of Fyn diabetics, separately for men and women, based upon the left-truncated

sample (Y o
i , äo

i , T o
i ). As a comparison we have drawn the general survival distribution based

upon the Danish vital statistics for 1975. The youngest deaths in the Fyn data are 19 (women)

and 23 (men) years old. Formally we can thus only consider the survival distribution, conditional

on surviving until age 19 or 23. However, since few people die before that age, we ignore this

distinction.

In Figs 4 and 5 we draw the corresponding hazard functions (on a logarithmic scale) and

survivor functions. It is interesting to note that the ratio between the ®tted hazard function and

the hazard function based on the Danish vital statistics is very similar for men and women: for

both genders it is approximately ten for an age of about 30 years and drops to about three for

ages between 40 and 60 years. We also notice that the survivor functions corresponding to the

logspline estimates closely follow the Kaplan±Meier estimates.

Fig. 3. Logspline density estimates for the age of participants in the Fyn diabetes study (solid), and the

Danish vital statistics for 1975 (dashed).
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As the survival densities estimated by the logspline method in Fig. 3 look quite different from

those of the general population, we carried out a small simulation study to rule out any

possibility that such a difference could arise as an artefact of the logspline density estimation

procedure, as well as to establish consistency of the logspline estimates. To carry out this

simulation, we generated data roughly according to the same sampling procedure that was used

Fig. 4. Left: hazard functions corresponding to the logspline estimates for the Fyn diabetes study (no

marks), and the Danish vital statistics for 1975 (marks). Right: ratio between the logspline estimate of the

hazard function and the hazard function based upon the vital statistics. SolidÐmen; dashedÐwomen.

Fig. 5. Logspline estimates for the survivor function of the age of participants in the Fyn diabetes study

(solid), the Kaplan±Meier estimate (dotted), and the Danish vital statistics for 1975 (dashed).
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for the Fyn data, but we used the Danish vital statistics to generate the survival times. Since the

simulation procedure is fairly complicated, we describe it in detail below. All steps are carried

out separately for both genders. All ages and data were truncated to the largest integer smaller

than or equal to the actual age.

1. The sample of ages of entering in the study (T i) is left-truncated by the age at diagnosis (Di).

We estimated f T using the logspline density estimation procedure applied to the data

(T o
i , 1, Do

i ). The logspline estimates f̂ T are shown in Fig. 6.

2. The density f D of the age at diagnosis can be estimated by applying the logspline procedure

on Do
i . The data is not censored or truncated. The estimates for men and women are shown

in Fig. 7.

3. Because of the rounding of the ages in integers, participants had a 0.5 probability of staying

7 years in the study, and a 0.5 probability of staying 8 years in the study.

4. For each simulation we proceeded as follows:

(a) We generated an i.i.d. sample Do
i of size n for the age of diagnosis from f̂ D.

(b) We generated n independent samples T o
i > Do

i for the age of entering in the study from

f̂ T .

(c) We generated n independent samples X o
i > T o

i for the survival times from the Danish

vital statistics.

(d) We generated Co
i � T o

i � 7� Bi, i � 1, . . ., n, for the censoring times, where Bi are

independent Bernoulli random variables with P(Bi � 1) � 0:5.

(e) We set Y o
i � min(X o

i , Co
i ) and äo

i � I(X o
i < Co

i ).

(f) We applied the logspline density estimation algorithm to (Y o
i , äo

i , T o
i ) to obtain an

estimate f̂ o of the density of the Danish vital statistics.

(g) We numerically computed the integrated squared difference (ISD) from age 1 year to age

90 years between f̂ o and the Danish vital statistics.

In Table 1 we provide the mean over 250 simulations of the ISD (the standard error of each of

Fig. 6. Logspline density estimates for the age of entering the study for the Fyn diabetes study. SolidÐ

men; dashedÐwomen.
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these means is approximately 0.0001), as well as how often out of these 250 simulations the ISD

was smaller than the ISD of 0.01942 for the men and 0.01395 for the women between the

logspline estimate of the survival density of the Fyn data and the Danish vital statistics. From

this table it is clear that it is extremely unlikely that a sample from the Danish vital statistics

would have given rise to ISDs as large as 0.01942 or 0.01395. The fact that the ISD goes down

when the sample size increases suggests consistency of the estimates. Because of the discretiza-

tion of the Danish vital statistics, we would not expect the ISD to go down to zero completely,

thus the current results are indeed very promising. In Fig. 8 we show for both men and women

four randomly selected density estimates from our simulation using same sample sizes of 783

for men and 716 for women from the Fyn data, as well as the underlying Danish vital statistics.

From this plot it would appear as if the logspline estimates in the current situation sometimes

overestimate the height of the peak. However, when we increased the sample size, we did not

observe any such over estimating.

Fig. 7. Logspline density estimates for the age at diagnosis of diabetes for the Fyn diabetes study. SolidÐ

men; dashedÐwomen.

Table 1. Integrated squared difference between the Danish vital statistics and the logspline estimates from

that distribution, using a sampling scheme similar to that of the Fyn diabetes study

Men Women

n MSD
P

I(MSD , 0:01942) MSD
P

I(MSD , 0:01395)

200 0.00328 250 0.00408 248

716 0.00180 250

783 0.00130 250

1000 0.00118 250 0.00145 250

5000 0.00047 250 0.00045 250
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6. Proof of asymptotic results

Proof of theorem 1. Let s(ç) be the approximation of g01, which is assumed to satisfy the

L2 and L1 bounds on the error g01 ÿ s(ç). De®ne ~ç � (ç1 ÿ ç, . . ., çJ ÿ ç), where

ç � (1=J )
P

kçk . Set â0 �
�

B f (~ç) and â � � B f01, so that
�

Bf f01 ÿ f (~ç)g. It follows

from (2.3), the properties of B-splines, and the Cauchy±Schwarz inequality that for any

function h����� Bh

����2 <
M2

4

J

�
h2,

which implies that

jâÿ â0j < M4����
J
p i f01 ÿ f (~ç) i2: (6:1)

Lem. 2 of Barron & Sheu (1991) and (6.1) yield

jâÿ â0j < M3 M4����
J
p exp (2ã)Ä:

Now apply lemma 2 with è0 � ~ç and â � � B f01 to obtain the desired result. (Compare the

proof of th. 3 of Barron & Sheu, 1991.) This completes the proof of theorem 1.

Let

l(è) �
Xn

i�1

wo
i s(Y o

i ; è)ÿ ø(è),

where wo
i � fnF(1j0)gÿ1 I(0 < Y o

i < 1)äo
i S(Y o

i j0)=fR(Y o
i )=ðg. Note that f � f (:; è) is the

density in the logspline family (2.1) that satis®es

Fig. 8. Logspline density estimates for four samples of the Danish vital statistics for 1975, using a sampling

mechanism similar to the Fyn diabetes study. SolidÐsimulations; dashedÐDanish vital statistics.
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�
B f � B,

where B � (Bj,1, . . ., Bj,J )9 and Bj,k �
P

iw
o
i Bj,k(Y o

i ).

Lemma 4

If (A2)±(A3) hold, then

jB̂ÿ Bj � OP

1���
n
p
� �

:

Proof. Observe that

jB̂ÿ Bj2 �
X

k

X
i

(ŵo
i ÿ wo

i )Bj,k(Y o
i )

( )2

< sup
t2ô

���� 1

F̂(1j0)

nŜ(tj0)

#(t)
ÿ 1

F(1j0)

S(tj0)

R(t)=ð

����2X
k

X
i

äo
i I(0 < Y o

i < 1)

n
Bj,k(Y o

i )

( )2

: (6:2)

Using (A2), (A3), and the results in Lai & Ying (1991), we get that

sup
t2ô

���� 1

F̂(1j0)

nŜ(tj0)

#(t)
ÿ 1

F(1j0)

S(tj0)

R(t)=ð

����2 � OP

1���
n
p
� �

: (6:3)

It follows from properties of B-splines, and the Cauchy±Schwartz inequality that

E
X

k

X
i

äo
i I(0 < Y o

i < 1)

n
Bj,k(Y o

i )

( )2

<
1

n2

X
k

Xn

i1

Xn

i2

EBj,k(Y o
i1

)I(0 < Y o
i1

< 1)Bj,k(Y o
i2

)I(0 < Y o
i2

< 1)

<
X

k

EB2
j,k(Y o

1)I(0 < Y o
1 < 1) < 1: (6:4)

Lemma 4 now follows from (6.2)±(6.4).

Lemma 5

If (A2)±(A3) hold, then

Efwo
i Bj,k(Y o

i )g � 1

n

�1

0

Bj,k(t) f01(t) dt:

Proof. Observe that

Efwo
i Bj,k(Y o

i )g � E
I(T1 < X1 < C1)I(0 < X 1 < 1)

nF(1j0)

S(X 1j0)

R(X 1)
Bj,k(X 1)

� �
:

By using a conditioning argument and the de®nition of G(:), we get that

Efwo
i Bj,k(Y o

i )g � 1

nF(1j0)
E I(0 < X1 < 1)

S(X1j0)

R(X 1)
G(X 1)Bj,k(X 1)

� �
: (6:5)

Since

S(tj0)

R(t)
G(t) � 1

P(X 1 > 0)
(6:6)
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and

F(1j0)P(X1 > 0) � P(0 < X1 < 1): (6:7)

the desired result follows from (6.5)±(6.7).

Lemma 6

If (A2)±(A3) hold, then

jBÿ B�j � OP

1���
n
p
� �

:

Proof. It follows from lemma 5 that

EjBÿ B�j2 � n
X

k

var fw1 Bj,k(Y o
1)g < n

X
k

Efw1 Bj,k(Y o
1)g2:

It follows from the (A1)±(A3) and properties of B-splines that

EjBÿ B�j2 <
1

n

X
k

1

F(1j0)2
E äo

1 I(0 < Y o
1 < 1)

S(Y o
i j0)

R(Y o
i )=ð

Bj,k(Y o
1)

( )2

<
M

n
:

Hence the result of lemma 6 is valid.

Proof of theorem 2. By the triangular inequality and lemmas 4 and 6, we know that

jB̂ÿ B�j � OP(nÿ1=2). Now apply lemma 2 with â0 �
�

B f � � B� and â � B̂. If

J=
���
n
p ! 0 as n!1, one can show that the MILE è̂ � è(B̂) exists, and that

D( f � i f̂ ) < MK
J

n

except on a set of probability less than 1=K . (See the proof of th. 3 of Barron & Sheu,

1991.) This completes the proof of theorem 2.

Lemma 7

If (A4)±(A5) hold, then (i) Mÿ1
3 < f01(x) < M3 for x 2 I ; and (ii) Ä � O(Jÿá) and

ã � O(Jÿá�1= p).

Proof. Write

g01 �
X1
j � 0

X
k2Ë( j)

ç j,k Bj,k :

Using (3.3) and (A4), we get that

jç jj p < M2ÿ j(áÿ1= p): (6:8)

Using (2.4) and (6.8), we obtain���� X
k2Ë( j)

ç j,kâ j,k(x)

���� < jç jj1 < jç jj p < M2ÿ j(áÿ1=P): (6:9)

If follows from (6.9) and (A5) that

jg01(x)j <
X

j

����X
k

ç j,k Bj,k(x)

���� < M
X

j

2ÿ j(áÿ1= p) � O(1),
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which implies (i). Let A j(g01) �P j
m�0

P
k2Ë(m)çm,k Bm,k . Note that

jç jju < jË( j)j(1=uÿ1=v)jç jjv, for 1 < u < v <1, (6:10)

where jË( j)j is number of elements in Ë( j). Using (2.3), (6.9) and (6.10) we get that

Ä <
X
m . j

��������X
k

çm,k Bm,k

��������
2

< M
X
m . j

2ÿm=2jçmj2 < M
X
m . j

2ÿám � O(Jÿá),

and

ã <
X
m . j

��������X
k

çm,k Bm,k

��������
1

< M
X
m . j

2ÿm(áÿ1= p) � O(Jÿá�1= p)):

This completes the proof of lemma 7.

Proof of theorem 3. Assume that (A2)±(A5) hold. Choose J � n1=(2á�1). From lemma

7 it follows that Ä
����
J
p � O(Jÿ(áÿ1=2)) � o(1) and ã � O(Jÿ(áÿ1=2)) � o(1). Theorem 1 now

implies that D( f01 i f �) � O(Jÿ2á) � O(nÿ2á=(2á�1)). On the other hand, J=
���
n
p �

n(1ÿ2á)=(4á�2) � o(1). Theorem 2 implies that D( f � i f̂ ) � OP(J=n) � O p(nÿ2á=(2á�1)). Since

D ( f01 i f̂ ) � D ( f01 i f �)� D ( f � i f̂ ) (lemma 3), the proof of theorem 3 is now complete.
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