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Kooperberg, Bose, and Stone introduced POLYCLASS, a methodology that uses
adaptively selected linear splines and their tensor products to model conditional class
probabilities. The authors attempted to develop a methodology that would work well
on small and moderate size problems and would scale up to large problems. However,
the version of POLYCLASS that was developed for large problems was computation-
ally impractical beyond a certain point. In this article we gain further insight into the
fitting of large POLYCLASS models by simultaneously considering the fitting of large
feed-forward neural network models with a single hidden layer (NEURALNET). In this
combined setting, the stochastic gradient method, as used in the online version of the
backpropagation method for fitting neural network models, and a stochastic version of
the conjugate gradient method for fitting such models emerge as being computationally
attractive. In particular, these stochastic methods are successfully applied to the fitting of
POLYCLASS and NEURALNET models in the context of a phoneme recognition problem
involving 45 phonemes, 81 features, 150,000 cases in the training sample, up to 1,000
basis functions and 44,000 parameters for POLYCLASS, and up to 800 hidden nodes and
about 100,000 parameters for NEURALNET.

Key Words: Backpropagation; Conjugate gradient method; Linear splines; MARS; Mul-
tiple classification; Speech recognition; Stochastic approximation.

1. INTRODUCTION

Polychotomous regression and multiple classification are well studied subjects in
statistics. In particular, Kooperberg, Bose, and Stone (1997) developed the POLYCLASS

methodology, which uses adaptively selected linear splines and their tensor products to
model conditional class probabilities. The methodology performed quite well on small and
moderate size problems. A version of POLYCLASS was applied to a fairly large problem
with some success, but it required approximately two months of CPU time (which was
reduced to one day on a network of 64 workstations). The bulk of this time was spent in
obtaining the maximum likelihood estimates of the coefficients of the POLYCLASS model
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corresponding to a given set of basis functions. The quasi-Newton algorithm, which was
used for this purpose, is really impractical for such a large problem.

Feed-forward neural networks (see, e.g., Cheng and Titterington 1994; Ripley 1994,
1996) are frequently used for large classification problems. They have several advan-
tages, including generally good performance and ease of implementation. A POLYCLASS

model can be viewed as a special type of single layer (no hidden layer) feed-forward
neural network, in which the inputs are not the raw features, but adaptively selected
basis functions. Inspired by the success of stochastic (online) gradient versions of the
backpropagation algorithm for fitting such neural networks (Rumelhart and McClelland
1986), we investigate in this article the use of the stochastic gradient method instead of
the quasi-Newton algorithm in fitting POLYCLASS models corresponding to given sets of
basis functions. We also develop and study a stochastic version of the conjugate gradient
method of optimization for the fitting of such models.

In Section 2 of this article, we discuss POLYCLASS. There we also discuss feed-
forward neural networks. In this investigation we concentrate on networks of this form
having a single hidden layer, which we dub NEURALNET. The stochastic gradient method
for fitting POLYCLASS and NEURALNET models is discussed in Section 3. In Section 4 we
discuss the conjugate gradient method for fitting such models and a stochastic version of
this method. In Section 5 we compare the performance of various optimization methods
in fitting POLYCLASS and NEURALNET models in the context of a phoneme recognition
problem involving 45 phonemes and also in the context of a three-vowel subproblem.
Our concluding remarks are given in Section 6.

2. POLYCHOTOMOUS REGRESSION

Consider a qualitative random variable Y that takes on a finite number K of values,
which we refer to as classes. We can think of Y as ranging over K = f1; : : : ;Kg.
Suppose the distribution of Y depends on features x ; : : : ; x , where x = (x ; : : : ; x )1 M 1 M

Mranges over a subset X of IR . Let x now be distributed as a random vector; that is,
consider the random pair (X; Y ), where X is an X -valued random vector and Y is a
K-valued random variable. In the multiple classification problem we want to predict Y
based on X. The well known optimal rule is to predict Y to be arg max P (Y = kjX).k

While many classification methods try to find arg max P (Y = kjX) directly, there arek

problems in which conditional class probabilities are required and direct classification
does not suffice.

Suppose that P (Y = kjX = x) > 0 for x 2 X and k 2 K. Let  (x) be any function
on X and set

�(kjx) = logP (Y = kjX = x)�  (x); x 2 X and k 2 K:

Then

exp �(kjx)PP (Y = kjX = x) = ; x 2 X and k 2 K: (2:1)
exp �(kjx)

k

Thinking of �(1jx); : : : ; �(Kjx) as unknown functions, we refer to (2.1) as the poly-
chotomous regression model; when K = 2 it is referred to as the logistic regression
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model. Observe that the model in (2.1) is nonidentifiable in that it does not involve the
function  . To obtain an identifiable model, we add the restriction that

�(Kjx) = 0; x 2 X : (2:2)

With this restriction, (2.1) is now an identifiable model; indeed,

P (Y = kjX = x)
�(kjx) = log ; x 2 X and k 2 K:

P (Y = KjX = x)

2.1 POLYCLASS

There are a number of attractive approaches to the fitting of a polychotomous regres-
sion model to observed data. One such approach is to model the functions �(1jx); : : : ; �
(Kjx) in a suitable common finite-dimensional linear space G of functions on X . Let
p denote the dimension of G and let B ; : : : ; B be a basis of this space. Consider the1 p

model

pX
�(kjx;� ) = � B (x); x 2 X and k 2 K; (2:3)jk jk

j=1

Tfor the unknown functions �(1jx); : : : ; � jx); here � = (� ; : : : ; � ) , 1 � k � K,K 1k pkk

are the unknown vectors of parameters. Correspondingly, we get the finite-dimensional
polychotomous regression model

exp �(kjx;� )kPP (Y = kjX = x;� ; : : : ;� ) = ; x 2 X and k 2 K:1 K exp �(kjx;� )kk

(2:4)
To obtain an identifiable model, we impose the restriction (2.2) or, equivalently that
�(Kjx;� ) = 0 or that � = 0. [Except for floating point roundoff errors, theK K

POLYMARS and POLYCLASS methodologies, defined in the following, are invariant un-
der permutations of the values of Y . Without some such identifiability restriction, the
POLYCLASS log-likelihood function would fail to be concave, its Hessian would fail to
be negative definite and invertible, and the corresponding maximum likelihood estimate
would fail to be uniquely defined. This would complicate some of the numerical tech-
niques for obtaining the maximum likelihood estimates. Also, the Rao and Wald statistics
that are used in stepwise addition and stepwise deletion, respectively, are conveniently
calculated by using the inverse of the Hessian; see Kooperberg et al. (1997).] Let � de-
note the p(K�1)-dimensional column vector consisting of the entries of � ; : : : ;� .1 K�1

p(K�1)Then � ranges over IR . Correspondingly, we rewrite �(kjx;� ) as �(kjx;�), andk

we rewrite (2.4) as

exp �(kjx;�)PP (Y = kjX = x;�) = ; x 2 X and k 2 K: (2:5)
exp �(kjx;�)

k

An important advantage of a finite-dimensional linear model for �(kjx) over such a model
for P (kjX = x) directly is that in the former case the resulting model for P (kjX = x)
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given by (2.5) automatically yields estimated probabilities that are strictly between 0
and 1 and hence yields well-defined estimates of logP (kjX = x), which are needed in
some applications such as the approach to speech recognition described by Bourlard and
Morgan (1994).

For theoretical purposes, we think of the data (X ; Y ); : : : ; (X ; Y ) as the observed1 1 n n

values of a random sample of size n from the distribution of (X; Y ). In principle, the
space G or, equivalently, a basis of this space could be determined either in an adaptive
manner (i.e., based on all of the observed data) or in a nonadaptive manner (i.e., not
based on the observed data or, more generally, based only on X ; : : : ;X ). Theoretical1 n

motivation for using nonadaptively selected polynomial splines and their low-order ten-
sor products in polychotomous regression and other extended linear modeling contexts
(e.g., regression, generalized regression, density estimation, hazard regression, spectral
density estimation, and event history analysis) is given in Stone, Hansen, Kooperberg,
and Truong (1997) and the references cited therein. In short, this approach can be used
for dimensionality reduction (i.e., to ameliorate the “curse of dimensionality”) and to
obtain more easily interpretable models. In these theoretical results, when G is chosen


optimally its dimension increases at a rate proportional to n for some 
 2 (0; 1=2) that
depends explicitly on specified parameters in the theoretical formulation.

2.1.1 Adaptive Model Selection

In the adaptive POLYCLASS methodology developed in Kooperberg et al. (1997),
linear splines and their tensor products are used to model the unknown functions �(�jx).
Specifically, the basis functions that are used are of the following types:

� linear functions in one of the features;
� piecewise linear functions in a feature x of the form (x� t) = (x� t) if x > t+

and 0 otherwise, where the knot t is a number within the range of the feature x;
� tensor products of two basis functions that depend on different features.

A new function can be added to an existing set of basis functions only if the resulting
space is allowable as described in Kooperberg et al. (1997). For small and medium size
problems, basis functions are selected using the following algorithm:

1. fit the initial model �(kjx) = � for k = 1; : : : ; K � 1;1k

2. determine which basis functions can be added to the model so that the resulting
space is allowable; among these basis functions find the one having the largest
Rao (score) statistic;

3. add that basis function to the space and fit the resulting model using maximum
likelihood;

4. return to Step 2 until the linear space has reached a prespecified maximum di-
mension;

5. for those basis functions that can be removed from the allowable space so that
the resulting subspace is also allowable, find the one having the smallest Wald
statistic;
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6. remove that basis function and refit the resulting model using maximum likeli-
hood;

7. return to Step 5 until only the constant basis function remains;
8. out of the double sequence of models, select the model with the lowest BIC value,

the highest test set log-likelihood, or the lowest test set classification error.
Since Rao and Wald statistics are quadratic approximations to differences in log-likeli-
hood, they are reasonable measures to use in the selection of basis functions when a
maximum likelihood fitting procedure is employed. See Kooperberg et al. (1997, secs.
3.1 and 3.2, app. A) for more details.

Kooperberg et al. (1997) pointed out that for large datasets this model-selection
2 3procedure requires approximately O(K p n) floating point operations (flops), wheremax

p is the maximum number of basis functions in any model, K is the number ofmax

classes, and n is the sample size. For the phoneme recognition example discussed in
Section 5, n � 150;000, K = 45, and p may be as large as 1,000. Thus, more thanmax

1710 flops would be required, which would be equivalent to decades of CPU time on the
workstations that were available.

As a much faster alternative, Kooperberg et al. (1997) proposed using a least-squares
approximation to the stepwise addition process when dealing with large models andP Pbdatasets. The estimate � of � is obtained by minimizing V (�) = [ind(Y =ii kPp2k) � �(kjX ;�)] , where �(kjX ;�) = � B (X ). The selection of the newi i jk j ij=1

bbasis function is carried out by minimizing V (�), while the same allowable spaces as in
POLYCLASS are used. The stepwise addition part of the model selection procedure now

2takes approximately O(Mp n) flops, where M is the number of features. Thus, for themax

same phoneme recognition dataset, it would take approximately one day of CPU time to
select 400 basis functions and approximately one week to select 1,000 basis functions.
We refer to the selection of basis functions using Rao statistics as POLYCLASS selection of
basis functions and selection using least squares approximation as POLYMARS selection.

After selecting the basis functions, we need to obtain a reasonably accurate approx-
bimation to the maximum likelihood estimate � of the coefficient vector � in (2.5). For

a given collection of basis functions the corresponding log-likelihood function is con-
cave, so this numerical approximation problem is conceptually straightforward. There is
a large literature about optimization of concave functions. A reference that we found par-
ticularly useful is Kennedy and Gentle (1980). When basis functions are selected with

bPOLYCLASS, the approximation to � is obtained using a Newton–Raphson algorithm,
which takes an order of magnitude less CPU time than POLYCLASS selection of the basis
functions since more full Hessians have to be computed for the Rao statistics than for

bthe Newton–Raphson iterations to compute �.
On the other hand, when Kp is large and the basis functions are selected usingmax

POLYMARS, there are many optimization methods that are orders of magnitude faster than
Newton–Raphson, one being a quasi-Newton algorithm, in which a “pseudo-Hessian” is
updated (we have used a BFGS updating formula) at each iteration by combining infor-
mation about the gradient at the previous iteration and the current iteration. Kooperberg

2et al. (1997) pointed out that this would require O(200Kp n) flops, or several monthsmax

of CPU time, for the phoneme recognition problem. The main reason that a quasi-Newton
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algorithm takes so long is that a large number of gradients have to be computed before a
workable pseudo-Hessian is obtained; thus, the initial speed of convergence is very slow.
An additional disadvantage of quasi-Newton methods is that we have to store the pseudo-
Hessian. For the phoneme recognition problem this can be as large as a 45;000� 45;000
matrix, which is infeasible on typical current computers.

2.2 FEED-FORWARD NEURAL NETWORKS

Feed-forward neural networks (also known as multilayer perceptrons) can also be
used to construct polychotomous regression models. Consider such a neural network
having L layers including the output layer L and hidden layers 1; : : : ; L� 1. We refer to
the inputs x , m � 1, as forming layer 0. Let � denote the value of the kth unit in layerm lk

l for l; k � 1, where the number of units is allowed to vary from layer to layer. Also, set
� = 1 for 0 � l < L, � = x for m � 1, � = (exp � )=(1+exp � ) for 1 � l < Ll0 0m m lk lk lkP
and k � 1, and � = (exp � )= exp � for 1 � k � K (which is sometimesLk Lk Lkk P
referred to as softmax in the neural network literature). Then � = � �lk lmk l�1;mm

for l; k � 1, where the coefficients � for 1 � l � L, k � 1, and m � 0 are tolmk

be determined. Given the data (x; y) for a single case in the training set, set � = 1yP
and � = 0 for k 6= y. The corresponding log-likelihood is given by ` = � � �k k LkkP
log( exp � ). (Again, we impose the restriction (2.2); that is, we set � = 0 andLk LKk

� = 0 for m � 0. In the context of neural networks this restriction is harmless, butLmK

it doesn’t help either since the log-likelihood function is highly multimodal even after
the imposition of the restriction; see the discussion following (2.4).

Think of the log-likelihood as a function of the coefficients. To determine the gradient
of this function, we observe that

@` @`
= � ; 1 � l � L; (2:6)l�1;m

@� @�lmk lk

X@` @` @�l+1;j
= ; 1 � l < L; (2:7)

@� @� @�lk l+1;j lk
j

and

@�l+1;j
= � (1 � � )� ; 1 � l < L: (2:8)lk lk l+1;k;j

@�lk

We conclude from (2.7) and (2.8) that
X@` @`

= � (1 � � ) � ; 1 � l < L: (2:9)lk lk l+1;k;j
@� @�lk l+1;j

j

Moreover,

@`
= � � � : (2:10)k Lk

@�Lk

We use (2.9) and (2.10) to compute @`=@� successively for l = L; : : : ; 1 and uselk

(2.6) to compute @`=@� . This method of computing the gradient of the log-likelihoodlmk

function is known as backpropagation.
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3. STOCHASTIC GRADIENT METHOD

3.1 POLYCLASS

We can think of polychotomous regression as corresponding to a single-layer network
(no hidden layers) having inputs B (x), m � 1, and outputs � , k � 1. Set � =m k kP
(exp � )=(1 + exp � ) for k � 1. Then � = � B (x) for k � 1, where thek k k mk mm

coefficients � , k � 1 and m � 0, are to be determined. Given the data (x; y) for amk

single case in the training set, set � = 1 and � = 0 for k 6= y. The correspondingy kP P
(contribution to the) log-likelihood is given by ` = � � � log(1+ exp � ). Thinkk k kk k

of the log-likelihood as a function of the coefficients. Since

@`
= � � � ;k k

@�k

the gradient of the log-likelihood function is given by

@`
= (� � � )B (x):k k m

@�mk

In the stochastic gradient method, we successively update the coefficients on a case-
by-case basis according to the formula

@`(i+1) (i)
� = � + r ; (3:1)imk mk @�mk

(i)(i)where ` is the log-likelihood at � = (� ) based on a single case. We go through themk

cases in the training set in random order and make a number of passes through the data,
choosing a fresh random order on each pass. Note that each pass requires O(Kpn) flops.
Note also that, in contrast to the quasi-Newton method, the stochastic gradient method
requires a separate fit for each model (collection of basis functions) under consideration.

To apply the stochastic gradient method we need to address several issues:

� How should we adjust the learning rate r ?i
� Do the parameter estimates based on the stochastic gradient method “converge”

band, if so, do they get close to the maximum likelihood estimates �?
� How do we assess the convergence?
� How many passes through the data do we need?

These issues are simpler for POLYCLASS than for neural networks, since for POLYCLASS

the log-likelihood function is strictly concave and hence there is a unique maximum of
the log-likelihood function.

For selected sets of basis functions we fit a POLYCLASS model to the corresponding
linear spaces using the stochastic gradient method. Initially, we set � = 0 for all mmk

and k. (Since the log-likelihood for POLYCLASS is concave, the initial values used in the
stochastic gradient method are largely irrelevant.)

We tried a number of schemes for adjusting the learning rate. If this rate is reduced
too slowly, the algorithm converges too slowly; although it appears that the misclassifi-
cation error and log-likelihood have stabilized, the parameter estimates remain unstable
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and they do not get close to the corresponding maximum likelihood estimates. If the
learning rate is reduced too rapidly, the change in the parameters may become too small,
so that the log-likelihood does not get close to its maximum.

Eventually, we settled on starting with an initial rate r and dividing this rate by0

two after every ten full passes through the data. We found a reasonable, simple rule for
determining the initial rate in our examples (see Sec. 5), but we also noticed that the
accuracy of the approximations after a few passes through the data is very indicative of
the accuracy after a much larger number of passes.

3.2 FEED-FORWARD NEURAL NETWORKS

In the context of feed-forward neural networks, the stochastic gradient method is as
described in Section 3.1 with (3.1) replaced by

@`(i+1) (i)
� = � + r :ilmk lmk @�lmk

It is easily seen that a feed-forward neural network with M input variables, K
features, and p hidden units in the lth hidden layer requires O(RN ) flops per passl PL�2through the data, where R = Mp + p p + p K. In particular, such a1 l l+1 L�1l=1

network with one hidden layer having p hidden units requires O((M +K)pn) flops per
pass.

In the experiments that are described in Section 5, we use feed-forward neural
networks with a single hidden layer, which we refer to for convenience as NEURALNET.
In fitting these models, we use roughly the same scheme for adjusting the learning rate
as in POLYCLASS, except that in addition to dividing the rate by two after every ten full
passes through the data, we divide it by ten after the first five full passes. [By comparison,
Bourlard and Morgan (1994, p. 270) ultimately started with an initial learning rate such
as .01 and successively divided the learning rate by 2 after each complete pass through
the data.]

3.3 STOCHASTIC APPROXIMATION

There is a rich and voluminous literature on stochastic approximation, starting with
Robbins and Monro (1951), which included the one-pass version of the stochastic gra-
dient method as a special case. In particular, in the context of fitting POLYCLASS models
with a fixed collection of basis functions or NEURALNET models with a fixed number
of hidden units, White (1989) applied results of Ljung (1977) to obtain conditions un-
der which convergence should occur as n ! 1. In these conditions the random pairs
(X ; Y ); (X ; Y ); : : : should be independent and have a common distribution with com-1 1 2 2

pact support and the learning rate r should be (say) of the form A=(B + n). Withn
(n) bprobability one, the successive iterates � for � then either converge to a local max-

(n)imum of the log-likelihood function or diverge (j� j ! 1). In particular, when the
log-likelihood function is strictly concave, as in the fitting of a POLYCLASS model, thebsuccessive iterates either converge to � or diverge. We are unaware of similar theoret-
ical results that deal with repeated passes through the data or with models whose size
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(e.g., the number of basis functions of POLYCLASS or the number of hidden units of the
NEURALNET model) depends on n.

4. STOCHASTIC CONJUGATE GRADIENT METHOD

4.1 CONJUGATE GRADIENT METHOD

The conjugate gradient method for numerically approximating the maximum like-blihood estimate � = argmax `(�) is an iterative method. At the beginning of the
(� + 1)th iteration, where � is a nonnegative integer, we know the approximation
(�) (�+1)� determined during the �th iteration, the value g of the gradient of the log-

(�) (�)likelihood function at � , and the search direction 
 used during the �th itera-
(0)tion (
 = 0). The search direction used during the (� + 1)th iteration is given by

(�+1) (�+1) (�)
 = g + b
 for some number b, and the corresponding approximation to
(�+1) (�) (�+1)b� is given by � = � + a
 , where a is determined by a line search. (In a

(�+1) (�+1) (�)minimization problem, 
 = �g + b
 .)
Dixon (1975, eq. 6–9) listed four choices of b. We experimented with all of these

choices, but found that, for our current problem, the choice of b has little influence on
the results. We eventually settled on

T(�+1) (�+1) (�)g (g � g )
b = ;

T(�) (�)g g

which Dixon (1975) attributed to Polak and Ribiere (1969). Some authors advocate
resetting the search direction to the steepest ascent direction (i.e., setting b = 0) after
every so many iterations. In our experiments, however, such a modification did not yield
a significant improvement in performance.

In many references about optimization it is suggested that good line searches are
particularly important for conjugate gradient methods. In our setting this does not appear
to be the case. Although more accurate line searches do reduce the number of required
passes through the data somewhat, the CPU time spent on each individual pass increases
sufficiently to completely offset any gains. A reason for that may be that in none of
our problems do we get very close to the exact parameter vector that maximizes the
log-likelihood function.

We ended up by using the following algorithm to approximate the value ã of a
that maximizes `(� + a
), where 
 is the search direction found, for example, by the
conjugate gradient method described previously:

1. Rescale 
 to have the same norm as a
 at the end of the previous step (so that
a = 1 may be a reasonable choice for a).

i2. Find three numbers a ; a ; a in the set f0g [ f�2 : i is a nonnegative integerg0 1 2 � �
such that a < a < a and `(� + a 
) > max `(� + a 
); `(� + a 
) .0 1 2 1 0 2

3. Find ã using quadratic interpolation.
For both POLYCLASS and NEURALNET, computing `(� + a
) requires computing

P (Y = kjX = x;� + a
). For POLYCLASS this can be done very rapidly for many
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values of a. To see this, note that 0 12 3a
p pX X@ A4 5exp �(kjx;� + a
) = exp � B (x) exp 
 B (x) :jk j jk j

j=1 j=1

Thus, if we store exp �(kjx ;�) and exp �(kjx ;
) for all i and k, we can compute `(�+i i

a
) for every integer a in O(nK) flops without additional exponentiations. Although,
unfortunately, there is no similar approach for NEURALNET, substantial saving in CPU
time can still be achieved by computing `(� + a
) for several values of a at the same
time.

Kennedy and Gentle (1980) noted that for exact maximization of a quadratic function,
a conjugate gradient method would need as many computations of the gradient as there are

2 2variables, which in our situation would require O(K p n) flops. In practice, far fewermax

iterations are needed to obtain a reasonable solution, but, as in the quasi-Newton method,
the initial convergence may be very slow. An important advantage of the conjugate
gradient method over the quasi-Newton method when Kp is large is that the formermax

method does not require the storage of a Hessian matrix.

4.2 STOCHASTIC VERSION

Let us refer to any subset of the training set as a block. Given such a block, we can
write the corresponding normalized log-likelihood as

X1¯̀ (�) = ` (�):block iblocksize
i2block

¯We can think of ` as an estimate of �(�) = E[`(�)], where `(�) is the log-block blikelihood based on a single random case. The maximum likelihood estimate � =
�¯argmax ` (�) can thereby be viewed as a Monte Carlo estimate of � = argmax�trainingset b ¯(�). If n is large, it may be computationally attractive to use � = argmax ` (�)blockblock

�as an estimate of � .
Consider now the conjugate gradient method for finding the MLE. It may be worth-

while to use a different block at each iteration. This leads to a modification of the
(�+1)conjugate gradient method in which, at the (� + 1)th iteration, the gradient g and

¯the line search are based on ` .(�+1)block

Suppose we want to make a single pass through the data. A natural approach would
be to partition the data randomly into S blocks of prespecified size and then iterate,

(0)starting with a prespecified � . In practice, however, we need to make repeated passes
through the data. With this in mind, it is reasonable to let each block size in a given
pass be approximately n=S and to let S increase from pass to pass, as more accuracy
is needed at later passes. On each pass, we should use a fresh random partition of the
training set.

(0)The problem remains of choosing the initial value S of S and of coming up with
(i) L0a rule for increasing S. Based on some experimenting, we propose using S = 2 for

(i) min(0;L +2�i)0i = 0; 1; 2 and S = 2 for i > 2. If L is too small, the initial block size is0
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very large and the method is not much faster than a (nonstochastic) conjugate gradient
method. If L is too large, the initial passes could have an adverse effect on accuracy; in0

(1) (0)particular, � could be further away from � than is � . Fortunately, we have found
that even a single pass through the data is almost always indicative of the best choice

(i)of L . When i increases S eventually equals 1, after which the method essentially0

coincides with a nonstochastic conjugate gradient method.
We refer to this method as the stochastic conjugate gradient method , as does Møller

(1993), where a similar method is proposed in the context of fitting neural networks (see
also Ripley 1997, p. 154). The motivation for using such a method is that it can perform
numerous iterations and get close to convergence with only a moderate number of passes
through the data. The larger the sample size n, the more redundancy there is in the data
and hence the more attractive is this approach.

5. EXPERIMENTS

5.1 DATA

In our experiments we used the Numbers93 database, whose source is the Center
for Spoken Language Understanding in Portland, OR (Cole, Roginski, and Fanty 1992;
Cole et al. 1994). This database involves 2,165 utterances from telephone calls, which
are numbers that typically are parts of addresses, zip codes, and street numbers. Each
utterance was processed by one or more listeners, who produced a time-aligned phonetic
description of the utterance. For example, for one particular utterance, “3o3” (three-oh-
three), it was determined that from 1 millisecond (ms) to 167 ms, the speaker produced
phoneme T, followed by phoneme r from 167 ms to 193 ms, and so on. It should be
noted that the person who classified the phoneme being spoken was not aware of the text
of the utterance. The phoneme transcription, which we obtained from the International
Computer Science Institute (ICSI) in Berkeley, CA, is based on the LIMSI phonetic
alphabet (Gauvain, Lamel, Adda, and Adda-Decker 1994).

The utterances were also processed to produce perceptual linear predictive (PLP)
features (Hermansky 1990; Rabiner and Juang 1993; Bourlard and Morgan 1994). Ev-
ery 12.5 ms the audible spectrum was determined from a concentric 25 ms interval
of sound. Because we are using telephone data, which is sampled at the frequency of
8 kHz, there are 200 observations of the sound in such a 25 ms interval. A Hamming
window was applied to these 200 observations, after which the spectrum was estimated
using the discrete Fourier transform. The estimated spectrum was next transformed to
yield a critical-band integrated power spectrum with an equal-loudness preemphasis and
a cube root nonlinearity to simulate the auditory intensity-loudness relation. Then the
eighth-order autoregressive all-pole model of the transformed spectrum was obtained.
The coefficients of the Fourier transform representation of the log-magnitude of this
model are known as its cepstral coefficients. The nine PLP features that we used for the
25 ms interval of sound under consideration are the log-gain of the model (similar to the
variance) and the next eight cepstral coefficients (similar to autoregressive coefficients).

The main task in our experiments was to estimate the conditional probability distri-
bution of the phoneme being spoken at a certain time, given the nine PLP features for
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the interval of length 25 ms centered at the time in question as well as the nine features
for each of the four intervals centered at 100 ms, 75 ms, 50 ms, and 25 ms before the
time in question and each of the four intervals centered at 25 ms, 50 ms, 75 ms, and
100 ms after that time. Thus, we have 81 features in all.

Such a conditional probability distribution (or, more precisely, a likelihood that is
obtained by weighting the estimated probabilities by the empirically determined frequen-
cies of the phonemes) can be used as input to train (estimate) a hidden Markov model,
which in turn can be used for automatic speech recognition (Bourlard and Morgan 1994).
In the hybrid approach described by Bourlard and Morgan, a feed-forward neural network
is used to estimate these probabilities.

For each utterance in the database, we used the phonemes being spoken at times
12.5 ms apart to define the cases. We eliminated the phonemes being spoken at the
beginning and end of the utterance in order to avoid missing values for any of the features.
We also eliminated one phoneme represented only by three cases. In this manner, we
obtained 45 phonemes and about 250,000 cases. We randomly divided the data into a
training set of 153,426 cases and a test set of 102,239 cases. We used both the complete
set of data and the subset of the data consisting of all occurrences of three phonemes:
the vowels in beet, bet, and bought. These phonemes were selected so as to get data for
which much better classification would be possible than for the complete phoneme data
and selection of the basis functions using POLYCLASS would be computationally feasible.
There are 14,736 cases in the corresponding training subsample and 10,167 cases in the
test subsample. In the remainder of this article we refer to the complete data set as the
all-phoneme data, and to the subset of the data consisting of all occurrences of three
phonemes as the three-vowel data.

5.2 COMPARISON OF THE OPTIMIZATION METHODS

For both datasets we selected basis functions by applying the POLYMARS algorithm
to the complete training set. We selected 100 basis functions for the three-vowel data
and 1,000 bases functions for the all-phoneme data. For the three-vowel data we also
selected 100 basis functions using the POLYCLASS algorithm. However, although the
classification results using basis functions selected with POLYCLASS were better, this
approach requires more than ten times as much CPU time as that required by the combined
use of POLYMARS to select the basis functions and one of the faster optimization methods
among those discussed in Sections 3 and 4 to obtain the maximum likelihood estimates
of the corresponding coefficients.

We applied a variety of numerical optimization methods to determine the maximum
likelihood estimate of the coefficient vector � corresponding to the basis functions se-
lected by POLYMARS. In particular, we used a conjugate gradient method, a stochastic
gradient method, and a stochastic conjugate gradient method. For the three-vowel data
we also used a quasi-Newton method. On the all-phoneme data we could only apply
the quasi-Newton method on problems with 100 or fewer basis functions since, for sig-
nificantly more basis functions, the size of the Hessian matrix became too large to be
handled by our Sun ULTRA II workstations with 64M of memory.
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As mentioned in Section 4.1, the actual updating formulas used in the conjugate
gradient and stochastic conjugate gradient methods appeared to have only a minor effect
on performance. In addition, we found that a fairly rough line search typically sufficed.
The one remaining parameter in the stochastic gradient method (initial learning rate r )0

(0) L0and the stochastic conjugate gradient method (initial number S = 2 of batches) was
optimized separately for each number of basis functions for POLYCLASS and for each

(0) L0number of hidden nodes for NEURALNET. The effect of the choice of S = 2 for the
stochastic conjugate gradient algorithm is discussed in more detail in the next subsection.

In Figure 1 we show the (test set) performance of the various optimization methods
on the three-vowel data with 25 and 100 basis functions as a function of CPU time.
Because the various methods require considerably different amounts of computation, we
felt that CPU time rather than the number of passes through the data was the appropriate
quantity to compare. Note that we do not include swap time in any of our plots. (In
particular, for the quasi-Newton algorithm the swap time can be substantial, since the
pseudo-Hessians require a lot of storage space.) The horizontal axis in Figure 1 (CPU
time) does not start at 0 since we included the time spent in selecting the POLYMARS

basis functions—about .7 minutes for 25 basis functions and 5.5 minutes for 100 basis
functions. The vertical axis in this plot shows the mean !X1

exp ` (�)i
ntest

i2testset

of the exponential of the fitted log-likelihood over the test set. This quantity is the same
as the geometric mean of the estimated probabilities of the correct class.

For the computations reported in this section we compared the amount of CPU
time needed per pass through the data with the predicted number of flops in the previous
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Figure 1. Performance of the various optimization methods for POLYCLASS on the three-vowel data.
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Figure 2. Performance of the various optimization methods for POLYCLASS on the all-phoneme data.

sections. We found a surprisingly good agreement between these predictions and the
actual amount of cpu time needed.

We can see from this figure that the two stochastic methods outperform the two
nonstochastic methods on the three-vowel data. In addition, the conjugate gradient method
seems to be considerably faster than the quasi-Newton method. This conclusion also holds
in the context of Figure 2, which summarizes the results of the various optimization
methods on the all-phoneme data with 100 and 600 basis functions. From this figure it
appears that although the stochastic gradient method initially performs slightly better than
the stochastic conjugate gradient method, after a few iterations the stochastic conjugate
gradient method takes over the lead.

The performance of the various optimization methods for NEURALNET is summa-
rized in Figure 3 for the three-vowel data and in Figure 4 for the all-phoneme data for
smaller and larger numbers of hidden nodes. In these two figures we see more extreme
differences than in Figures 1 and 2 for POLYCLASS. We attribute the superiority of the
stochastic conjugate gradient method over the stochastic gradient method in the fitting of
NEURALNET models to the lack of concavity of the corresponding log-likelihood func-
tions. This causes stochastic gradient steps to be more frequently in a poor direction
than they were for POLYCLASS, and the corresponding estimate of � that is eventually
obtained may be in a neighborhood of an inferior local maximum of the log-likelihood
function. Moreover, since this function is not concave, computing the gradients exactly,
as in the conjugate gradient method, is less helpful for NEURALNET than for POLYCLASS.
We also noticed that both sized networks clearly overfit the three-vowel data; after about
30 iterations (one minute of CPU time for 5 hidden nodes, six minutes for 50 hidden
nodes) the test-set log-likelihood starts to decrease, while the training-set log-likelihood
still increases (data not shown).
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Figure 3. Performance of the various optimization methods for NEURALNET on the three-vowel data.

5.3 CHOICE OF THE INITIAL NUMBER OF BATCHES

From Figures 1 through 4, it appears that the most efficient optimization method
for fitting POLYCLASS and NEURALNET models to the phoneme datasets is the stochastic
conjugate gradient method. In our implementation this method has only one free param-

(0)eter: the initial number S of batches. In Figure 5 (for POLYCLASS) and Figure 6 (for
NEURALNET) we show the performance of these optimization methods for a range of

(0)choices of S and for a variety of model sizes. In these figures we show the perfor-
mance after five passes through the data, but the relative performance as a function of
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Figure 4. Performance of the various optimization methods for NEURALNET on the all-phoneme data.
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Figure 5. Performance of the stochastic conjugate gradient method for POLYCLASS as a function of the number

of initial batches.

(0)S remains mostly unchanged for different numbers of passes. (The CPU time per pass
(0)does not depend significantly on S .)

(0)As can be seen from Figure 5, for POLYCLASS the optimal value of S does not
(0)depend significantly on the model size. Rather, for the three-vowel data S = 8 or

(0) (0)
S = 16 seems to be uniformly optimal, and for the all-phoneme data S = 64 seems

(0)optimal. Actually, these values of S would already have been picked after the first pass
through the data, suggesting that an automated algorithm could easily be implemented. It

(0)seems reasonable that S should be larger for the larger problem with its much larger
set of training data.
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Figure 7. Performance of POLYCLASS on the three-vowel data.

(0)Figure 6 suggests that for NEURALNET the best choice of S does depend signifi-
cantly on the number of hidden nodes. For example, for the all-phoneme data we notice

(0) (0)that for 50 hidden nodes S = 256 is optimal, for 200 hidden nodes S = 512 is
(0)optimal, and for 600 hidden nodes S = 1024 is optimal. For the three-vowel data we

notice a similar increase in the optimal number of initial batches, and hence a decrease
in the initial batch size, when the number of hidden nodes is increased. Fortunately, for

(0)NEURALNET as well as for POLYCLASS, approximately the same values of S would
have been picked after the first pass through the data,

5.4 PERFORMANCE OF POLYCLASS AND NEURALNET

While the main goal of this article is to discuss various optimization methods for
large problems, we looked briefly at the comparative performance of POLYCLASS and
NEURALNET on the three-vowel and all-phoneme data sets. In Figures 7 and 8 we show the
mean of the exponential of the log-likelihood and the misclassification rate for POLYCLASS

as applied to the two datasets. For these plots we used the results after the 20th pass
through the data of the stochastic conjugate gradient optimization. We note from these
plots that even at the largest number of basis functions, the test-set performance still
seems to be improving a bit, suggesting that still larger models may have a slightly
better performance.

Figures 9 and 10 show graphs for NEURALNET similar to those in Figures 7 and 8 for
POLYCLASS. Again, the results are shown for the stochastic conjugate gradient method at
the end of 20 passes through the data. For NEURALNET this corresponds approximately to
the best test set performance. For the three-vowel data, we notice that NEURALNET with
about 25 hidden nodes roughly reaches the same performance as POLYCLASS reaches with
40–60 basis functions. However, POLYCLASS still improves when the model size is further
increased, while NEURALNET seems only to overfit the data further, as the gap between
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Figure 8. Performance of POLYCLASS on the all-phoneme data.

test set and training set performance increases. The best performance for NEURALNET on
the all-phoneme data, reached with 400 hidden nodes, is not reached by POLYCLASS. If
the number of nodes is further increased, the test set performance decreases considerably.
(The training set performance for larger numbers of hidden nodes would still improve if
we would let the optimization routine make more passes through the data.)

6. DISCUSSION

In this article we have considered a variety of numerical methods for approximat-
ing the maximum likelihood estimates of the unknown parameters in large POLYCLASS
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Figure 10. Performance of NEURALNET on the all-phoneme data.

and NEURALNET (feed-forward neural network having a single hidden layer) models. It
turned out that stochastic gradient and stochastic conjugate gradient methods consider-
ably outperformed the traditional, nonstochastic, quasi-Newton and conjugate gradient
optimization methods. In particular, the stochastic methods found parameter estimates
that nearly maximized the log-likelihood in much less CPU time. Stochastic optimiza-
tion methods may not find the exact maximum likelihood estimate in a POLYCLASS or
NEURALNET model, but this is not a serious deficiency in practice. Indeed, we have seen
that the test set results may be better when the estimated parameters are close to the
maximum likelihood estimates than when they are exactly equal to them.

The stochastic optimization methods performed better than the nonstochastic methods
in all of our examples: for POLYCLASS and NEURALNET; for large and moderate numbers
of basis functions and hidden nodes; and for the large all-phoneme dataset and the smaller
three-vowel subset. We agree with Møller (1993) that the demonstrated superiority of the
stochastic methods is due to the large amount of “redundancy” in large datasets: unless
we are very close to the maximum likelihood estimate, we do not need to use the precise
value of the gradient, so an acceptable Monte Carlo approximation can be obtained from
a relatively small subset of the data.

In our implemention of the stochastic optimization methods, we were able to settle
on relatively simple algorithms with just a single parameter, which could be optimized
by letting the algorithm run for a short time for various choices of the parameter. There
are obviously other reasonable choices of algorithms and corresponding parameters that
could be considered. We are convinced that properly designed stochastic algorithms will
consistently outperform nonstochastic algorithms in fitting models to (sufficiently) large
datasets.

We realize that advocating stochastic optimization methods for numerically deter-
mining the maximum likelihood estimates of the unknown parameters in a POLYCLASS or
NEURALNET model based on a large dataset is still controversial since a common opinion
is in agreement with Ripley (1996), where the reader is advised to use a well tested,
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expert implementation of a general purpose (nonstochastic) optimization algorithm. We
suspect that such advice is based on experience with smaller datasets than those used in
the present article.

The stochastic conjugate gradient method that we implemented performed much
better than the stochastic gradient method in fitting NEURALNET models, but it performed
only a little better in fitting POLYCLASS models. This varying relative performance may
be related to the highly multimodal nature of the NEURALNET log-likelihood function
in contrast to the strict concavity and hence unique maximum of the POLYCLASS log-
likelihood function.

Møller (1993) gave a similar, but more complicated implementation and treatment
of the stochastic conjugate gradient method in the context of fitting NEURALNET models.
His article is reasonably well known by those in the neural network community, but is
rarely cited in the literature. The authors hope that the simplifications introduced in this
article, the extension of the method to the fitting of POLYCLASS models, and its success in
the experiments we have described will increase the popularity of the stochastic gradient
method.

Although it is computationally more challenging to fit large NEURALNET models than
to fit large POLYCLASS models, suitably fit NEURALNET models performed as well as or
a little better than POLYCLASS models in the context of the phoneme data that we used in
our experiments. This surprised us somewhat, since the basis functions of POLYCLASS are
chosen adaptively by POLYMARS. Nevertheless, we feel that there is definitely a place for
POLYCLASS because such models are more insightful and may well perform better than
NEURALNET models on other types of data, and their numerical and statistical properties
are mathematically more tractable. In any case, the main goal of the present article
has been to show that stochastic gradient and stochastic conjugate gradient methods are
computationally feasible in the fitting of POLYCLASS models to much larger datasets than
are deterministic optimization methods such as those treated in Kooperberg et al. (1997).
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