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ABSTRACT We describe the development of a
scoring function based on the decomposition
P(structure 0sequence) ~ P(sequence 0structure)
*P(structure), which outperforms previous scoring
functions in correctly identifying native-like pro-
tein structures in large ensembles of compact de-
coys. The first term captures sequence-dependent
features of protein structures, such as the burial of
hydrophobic residues in the core, the second term,
universal sequence-independent features, such as
the assembly of b-strands into b-sheets. The effica-
cies of a wide variety of sequence-dependent and
sequence-independent features of protein struc-
tures for recognizing native-like structures were
systematically evaluated using ensembles ofD30,000
compact conformations with fixed secondary struc-
ture for each of 17 small protein domains. The best
results were obtained using a core scoring function
with P(sequence 0structure) parameterized simi-
larly to our previous work (Simons et al., J Mol Biol
1997;268:209–225] and P(structure) focused on sec-
ondary structure packing preferences; while sev-
eral additional features had some discriminatory
power on their own, they did not provide any addi-
tional discriminatory power when combined with
the core scoring function. Our results, on both the
training set and the independent decoy set of Park
and Levitt (J Mol Biol 1996;258:367–392), suggest
that this scoring function should contribute to the
prediction of tertiary structure from knowledge of
sequence and secondary structure. Proteins
1999;34:82–95. r 1999 Wiley-Liss, Inc.
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INTRODUCTION

A scoring function capable of distinguishing native-like
conformations (similar but not identical to the native
structure) from non-native conformations for a given se-
quence is critical for protein structure prediction because
it is unlikely that any method of generating structures will
exactly reproduce the native structure. This paper is
focused on the problem of distinguishing native-like struc-
tures from non-native structures, where native-like refers

to conformations less than 4 Å rmsd (root mean squared
deviation of Ca coordinates) from the native structure.

A wide variety of scoring/energy functions have been
developed over the past decade.1–10 To provide a testing
ground for evaluating the ability of different scoring
functions to recognize native-like structures, Park and
Levitt11 generated very large numbers of compact, self
avoiding conformations with native secondary structure
for eight small protein domains. Using this decoy set, a
variety of scoring functions were tested.7,11 For several of
the functions, the best scoring native-like structures were
in the top 100 of the ,200,000 decoy structures for each
sequence (typically 100 structures were native-like for
each sequence), but the scores were not consistent enough
to permit unambiguous identification of the correct fold.

We recently described a new scoring function derived
from the structure database using Bayes’ theorem.12 In ab
initio folding simulations some success was obtained with
a-helical proteins, but the scoring function was clearly
insufficient for proteins with b-sheets. In this report, we
further develop the scoring function by evaluating the
effectiveness of descriptions of different sequence-depen-
dent and sequence-independent features of proteins in
recognizing native-like structures in large decoy sets of
compact conformations generated in our laboratory. The
most important new additions are terms that describe the
packing of b-strands in b-sheets. We rigorously evaluate
the performance of the final scoring function on the
independent decoy sets of Park and Levitt,11 herein re-
ferred to as the PL test set. It is important to note that
these decoy sets were not used before the final testing.

METHODS
Development of Scoring Function

The scoring method in this report is a substantial
refinement of the one used by Simons et al.12 As in that
report, the scoring function is based on a model for the
probability of the structure being the native structure,
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given the sequence of amino acids. The various compo-
nents of our model for this probability are all based on
statistics from native structures except for the hard sphere
repulsion term, VdW.

Using Bayes’ theorem, we obtain

P(structure 0sequence)

5
P(sequence 0structure)P(structure)

P(sequence)
(1)

The following discussion develops separate models for
P(sequence 0structure) and for P(structure). For the com-
parison of different structures with the same sequence,
P(sequence) is a constant, and we can thus ignore this
term. We first describe the terms that contribute to the
core scoring function, as well as some closely related
terms. The remaining terms are discussed in a later
section.

P(Sequence 0Structure)

We first discuss the P(sequence 0structure) term in equa-
tion (1), which may equivalently be represented as

P(sequence 0structure ) 5 P(aa1, . . . , aan 0X ) (2)

where the sequence of length n is explicitly written as a
string of amino acids and the structure is described by a

vector X 5 5x1, . . . , xn6 of three-dimensional coordinates.
Now consider the expansion

P(aa1, . . . , aan 0X) 5 p
i

P(aai 0X) p
i, j

P(aai, aaj 0X )

P(aai 0X )P(aaj 0X )

3 p
i,j,k

P(aai, aaj, aak 0X )P(aai 0X )P(aaj 0X )P(aak 0X )

P(aai, aaj 0X )P(aai, aak 0X )P(aaj, aak 0X )
· · · (3)

It seems reasonable to assume that the probability of observ-
ing a particular amino acid at position i does not depend on
the complete three-dimensional structure of the protein,
but only on the local structural environment Ej, defined in
terms of the solvent accessibility and/or secondary struc-
ture. Some initial data analysis convinced us that the
second term in equation (3) is significantly different from
one (Fig. 1), and its inclusion in our scoring function consider-
ably improves the performance of our method (see Table III),
while estimation of third or higher terms in equation (3) is
too unwieldy to be useful. Thus, we decided to use the
following approximation for P(sequence 0structure):

P(sequence 0structure) < PenvPpair (4)

Penv 5 p
i

P(aai 0Ei) (5)

Fig. 1. Ppair (eq(6)) for amino acid pairs with centroids separated by
,7 Å. Left, both residues buried (more than 16 residue centroids within 10
Å). Right, residues not both buried. A similar definition of environment
classes was used by Kocher et al.10 The darker the square for a particular
pair of residues, the greater the frequency of contact relative to that
expected given the environment term. The amino acids are ordered from
hydrophilic to hydrophobic, from top to bottom and left to right. Same
charged amino acids ‘‘attract’’ in buried environments but ‘‘repel’’ in
nonburied environments, perhaps reflecting the presence of similarly
charged amino acids in metal binding or catalytic sites. Centroid positions—
the average position of all sidechain heavy atoms relative to the backbone

N, Ca, and C—were computed from the pdb select 25 set of proteins
(coordinates are available upon request). Use of centroid rather than Cb
distances did not significantly improve the Penv term but did help the Ppair

term discriminate native-like structures from non-native structures. The
amino acid on the horizontal axis is the first in sequence; sequence order
is preserved to show that there is sufficient data to construct statistically
significant scoring tables (upper right and lower left triangles are con-
structed from independent data). Because of the symmetry apparent in
the panels, sequence order was removed by averaging for the Ppair term
used in the scoring function.
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Ppair 5 p
i,j

P(aai, aaj 0Ei, Ej, rij)

P(aai 0Ei, rij)P(aaj 0Ej, rij)
(6)

where rij is the distance between the centroids of residues i
and j. The environment classes Ei in equations (5) and (6)
were defined solely in terms of residue burial. Because of
the larger number of counts available for estimating the
Penv term, a large number of environment classes could be
used (Table I), while for the Ppair term, only two environ-
ment classes were used (Fig. 1 legend). Figure 1 shows Ppair

for contacting residue pairs; the strongest interactions are
between pairs of cysteine residues and between oppositely
charged residues. The fact that hydrophobic residue pairs
do not have ratios very different from 1 suggests that for
most, the hydrophobic effect is well modeled by the Penv

term. As expected, at long-distance separations Ppair ap-
proaches unity.

P(Structure)
Secondary structure packing

We used a simple vector representation to describe the
packing of secondary structural elements. We initially
explored representing each secondary structural element
by a single vector, but this did not accurately represent the
twist of b-strands. Instead, every two residue segment in
helices and strands was represented by a vector. For
strands, the vector is from the backbone nitrogen of the
first residue to the backbone carbonyl carbon of the second
residue. Helix vectors were derived using the two residues
flanking each dimer: the vector is from the average of the
coordinates of the first 11 backbone atoms to the average of
the last 11 backbone atoms of the four residue segment
centered on the dimer. This method of computing the
helical vectors is a simple and accurate method for con-
structing a vector that runs through the helical center
(data not shown).

The values of five variables must be specified to uniquely
determine the relative position of two vectors v1 and v2; we
chose to describe the relative orientation of the secondary
structure vectors using the coordinate system shown in
Figure 2. r is the vector between the dimer centers, s is the
angle between v1 and r, and f and u describe the relative

orientation of v1 and v2 in a spherical coordinate system
with z-axis defined by v1 and x-axis by (v1 3 r). Sep is the
number of residues between the ends of the secondary
structure elements containing the dimers; the distribu-
tions were somewhat sharper using this measure than
using the number of residues between the dimers. For
helix–helix and helix–strand pairs, we neglect the remain-
ing degree of freedom, which corresponds to a rotation
around the z-axis, because of the cylindrical symmetry of
helices. For the strand–strand pairs, this symmetry breaks
down because of the strict orientation of hydrogen bonding
groups between paired strands. To capture this conse-
quence of hydrogen bonding, we use the dot product
between r and the C 5 0 bond vector. This dot product is
averaged over the two C 5 0 bond vectors in each of the
dimers, and the two averages are then summed. The more
in-plane the two vectors, the closer the sum of the dot
products is to 2. In the following discussion, this sum is
referred to as hb.

Initially, we used the statistical graphics package xgobi13

to examine the full multidimensional distributions of f, u,
s, r, and hb of HH (helix–helix dimer), HS (helix–strand
dimer), and SS (strand–strand dimer) pairs in native
protein structures. This exploratory data analysis sug-
gested that for a given distance interval and loop length,
the fu distribution, the hb distribution, and the s distribu-
tion were fairly independent of one another for each of the
secondary structure pairs. Density functions for secondary
structure pairs were therefore constructed using

Pxx(r, f, u, s, hb 0Sep) < Pxx2fu(f, u 0r, Sep)Pxx2hb(hb 0r, Sep)

Pxx2s(s 0r, Sep)Pxx2dist(r 0Sep) (7)

TABLE I. Bins Used in Density Estimation†

Density function Variable Bins

Penv No. of
neighbors

0–3, 4, . . . , 49, 501

Ppair rij 0–7 Å, 7–10 Å, 10–12 Å,
12 Å1

Pxx(f, u, r, hb, s 0Sep) Sep 1, 2–10, 111
Pxx(f, u 0r, Sep) u 0–36°, 36–72°, 72–108°, 108–

144°, 144–180°
Pxx(f, u 0r, Sep) f 2135–45°, 245–45°, 45–

135°, 2180–135°, 135–
180°

Pxx(hb 0r, Sep) hb 0–0.1, 0.1–0.2, . . . , 1.9–2.0
†Density estimates for the four latter density functions were obtained
by counting the number of instances of dimer pairs in each of the bins
and dividing by the product of the total number of dimers and the
integral of the relevant correction factor (see text) over the bin.

Fig. 2. Geometric description of the packing orientation between two
elements of secondary structure. The two unit vectors, v1 and v2,
represent the secondary structure dimers. The skew angle, s, is the angle
between the distance vector (r) and the first vector of the pair (v1). u is the
angle between v1 and v2 (arccos(v1 · v2)). The final angle, f, is

arc tan
v2 ·(v1 3 r)

v2 · [v1 3 (v1 3 r)]
.

The sequence separation Sep is the length of the loop between the ends
of the secondary structure elements containing the dimers.
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where r is the distance between the dimer centers, the hb
term applies only to strand-strand pairs, and XX indicates
the secondary structure of the dimers (HH, HS, or SS).

The P(f, u 0r, Sep) distributions in native known protein
structures are shown in Figures 3 and 4. For secondary
structure elements adjacent in the sequence (Figs. 3a,c,
4a), the dimers are primarily antiparallel (u . 90°), while
for nonlocal pairs (Figs. 3b, d, 4b), both antiparallel and
parallel arrangements are observed. A number of features
of helix-helix packing contribute to these distributions.
The peaks at f 5 290°, u 5 135°, and f 5 90°, u 5 30° in
the helix-helix distribution (Fig. 3a,b) correspond to the
preferences for interhelical dihedral angle values of 130°
and 250° noted in previous studies.14,15 More specifically,
the a-a corner motif described by Efimov16 shows up in the
distribution for sequentially adjacent helices (Fig. 3a) as
the mass of points centered around f 5 290° and u 5 135°.
The relative absence of points at f 5 90° and u 5 135°
reflects the handedness of the turns between a-helices in
a-a corners. The few occurrences near f 5 0° and u 5 90°
represent helices that pack closer than expected due to
glycines or cysteines at the interhelical interface. The
packing of helix and strand pairs (Fig. 3c,d) is also very
different from a random distribution (Fig. 3e) and may
partially reflect the right-handed crossover preferences of
known protein structures.17 For b-strands, hydrogen bond-
ing introduces strong preferences in particular regions of
uf space (Fig. 4a,b, f 5 290° and u 5 135° for antiparallel
strand pairs and f 5 90° and u 5 45° for parallel strand
pairs). The characteristic twist of sheets17 is also captured
by the fu distribution: completely planar sheets would
have u 5 180° for antiparallel strand pairs and u 5 0° for
parallel strand pairs. The coplanarity of the interdimer
vector and the C 5 0 bond vectors is evident in the peak
near 2 in the hb distribution in native protein structures
(Fig. 5, solid line).

To locate the native structure in structure prediction
calculations, it is important that a scoring function at-
tribute good scores not only to native structures, but to
native-like structures as well. To characterize the distribu-
tions of the different variables in native-like structures, we
generated a training set consisting of large ensembles of
compact structures for 21 different proteins (see below). In
the construction of the probability densities, we paid close
attention not only to the properties of the distributions in
native protein structures, but to those of the native-like
and non-native structures in these ensembles as well. Of
particular interest were distributions that were markedly
different for the native-like and non-native structures in
the ensembles, as these are the most promising candidates
for native-like structure recognition. Distributions that
instead differ considerably between native and native-like
structures may be useful for recognizing native structures
in large sets of native-like structures, but not necessarily
for the more critical native-like recognition problem. Com-
parisons of plots of s vs r in native, native-like and
non-native structures suggested that P(s 0r, Sep), which is
derived from these data, would have limited value for
native-like structure recognition because the distribution
in native-like structures resembles that of non-native

structures (Fig. 6). By contrast, the strand–strand fu

distributions (Fig. 4) and P(hb 0r, Sep) (Fig. 5) in the
native-like structures differed considerably from those of
the non-native structures. The use of the spherical coordi-
nate system, rather than a generalization of the more
traditional interhelical dihedral angle to describe the
relative orientation of secondary structure pairs, was
motivated in part by the observation of considerably
broader f distributions in the non-native structures (Fig.
4e,f).

The probabilities in equation (7) were estimated using a
binning procedure. The considerations discussed in the
previous paragraph are also important in choosing the
coarseness of the binning. For example, the fu distribution
for b-strand pairs is considerably more diffuse in native-
like structures than in native structures, but is still clearly
different from that of non-native structures (Fig. 4). Be-
cause of these differences, we considered estimating the
distributions directly from the native-like structures in
our ensembles, rather than from native structures, but we
decided against this because of the much smaller number
of independent structures in these sets (17) compared with
the native protein set (325) (it was impractical to generate
large ensembles for a representative subset of known
structures). Instead, we chose to use a coarse binning
procedure, which effectively smears out the native density
over the regions of high density in the native-like conforma-
tions, but not in the non-native conformations. This proce-
dure imparts a funnel shape to the ‘‘golf course’’-type
landscape that would result from overly fine binning of the
fu (or any other) distribution.

Care must be taken in estimating probabilities using a
binning procedure and a spherical coordinate system:
constant intervals bins may have very different sizes.
Correction factors were used to account for the differences
in the sizes of the bins. The correction factors are readily
obtained analytically for the first three terms in equation
(7): sin u, sin s, and hb, for hb , 1, and 2 - hb for hb . 1,
respectively. The geometric correction term for P(r) would
be r2 in the absence of the chain connectivity and compact-
ness constraints. Because of the difficulty of accounting for
the effects of these constraints analytically, we estimated
the size of the different r bins using the frequency of
occurrence of different values of r in native proteins
averaged over all secondary structure types. Guided by the
comparison between the native, non-native, and near-
native distributions, and keeping in mind that bins should
not be too fine to avoid noise because of low counts, we
decided to bin strand–strand pairs with r , 6.5 Å and
helix–strand and helix–helix pairs with r , 12 Å, as
described in Table I. For r . 6.5 Å for strand–strand pairs
and r . 12 Å for helix–helix and helix–strand pairs, one
bin was used; thus, the probabilities in equation (7) are
constants that do not depend on r, f, u, s, and hb.

Assembly of strands into sheets

We found that the distribution of strands in b-sheets
cannot be adequately described by the pair-density func-
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Fig. 3. fu distributions in native protein structures for helix–helix and
helix–strand pairs. Antiparallel helix pairs have u . 90°, and parallel pairs
have u , 90°. a: Helical pairs separated by 2–10 residues. b: Helical pairs
separated by .10 residues. c: Helix-strand pairs separated by 2–10
residues. d: Helix–strand pairs separated by .10 residues. e: Random
distribution. Two vectors each the length of a helix of 12 residues were

positioned by choosing their relative orientation at random and the
center-to-center distance from the distribution of interhelical distances
seen in known protein structures. Pseudo-atoms were placed along the
vectors every 1 Å with a sphere radius of 7 Å. If the sphere of any atom
intersected any atom from the other helix vector, the helical pair was
rejected. A total of 3,000 accepted helical pairs were generated.
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tions. To describe strand assembly into sheets more accu-
rately we collected data on how often certain configura-
tions of strands in sheets occurred for proteins with fewer

than 150 residues. These data are summarized in Table II.
For example, among the 146 proteins that had any strands,
20 had five strands. Of these 20, seven had one sheet that

Fig. 4. fu distributions for strand pairs in native, native-like, and non-native structures. Native
structures were from the pdb_select 25 list, native-like and non-native structures, from the in-house
decoy set. Native-like structures, ,4 Å rmsd from the native structure; non-native structures, .8 Å rmsd.
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was formed by three strands and one sheet by two strands.
On the basis of these data, we decided to use the model

Psheet(sheet configuration 0number of strands)

5 exp(cn 1 a1n1 1 a2n2) (8)

where n is the number of strands, cn is a normalizing
constant that depends on the number of strands in the
protein, n1 is the number of sheets (with at least two
strands) in the protein, and n2 is the number of isolated
strands. We used the method of maximum likelihood to fit
this model and found a1 5 20.9 and a2 5 22.7. Thus, the
probability that a protein with five strands has one sheet of
three strands and a sheet formed by two strands is
exp(c4 2 1.8) 5 exp(21.19) 5 0.30. Table II summarizes
the fitted values according to this model. There is reason-
able agreement between the simple model and the data.

VdW

We found that many of the decoys with good scores for
the sequence dependent terms were overly compact and
had many atom–atom overlaps. Atom type dependent
distance cutoffs were used for assessing overlaps between
atom pairs. To allow for a low frequency of errors or
anomalies in pdb structures, the cutoff radius ri j

0 was
chosen to be the 25th smallest distance between atom
types i and j in the pdb_select_25 database. The VdW term
is the sum of penalties for each pair of atoms separated by
less than the cutoff distance; for computational simplicity,
the penalty was taken to be (ri j

0 )2 2 (ri j)2.

Additional Features Not Part of the Core
Scoring Function
Ppacking-struct

Sidechain packing is known to be an important attribute
of folded protein structures; molten globules and unfolded

proteins lack specific sidechain interactions. A remarkable
preference in the relative orientation of packing residues
was found in an analysis of native protein structures.18

Some of the anisotropy of residue packing is thought to be
caused by the directional preferences of electrostatic and
hydrogen bonding.19 Sidechain coordination was described
by the angular distribution of sidechain centroids sepa-
rated by less than 10 Å, using a spherical coordinate
system defined by the Ca-centroid and Ca-N vectors of
one of the residues. The sequence-independent term
Ppacking-struct is P(f, u)/sin (u) and the sequence-dependent
term Ppacking-seq, P(aa 0f, u).

Radius of gyration and Pdensity

These are alternative measures of the compactness of a
conformation. The radius of gyration is the square root of
the average of the squares of the distances between all
pairs of Ca atoms. The contribution to Pdensity for each
residue is P(ni)/Prc( ni) where ni is the number of Cb atoms
of other residues within 10 Å, P(ni) is the frequency with
which ni neighbors are observed in protein structures, and
Prc(ni), the frequency in randomly generated conforma-
tions (the correction factor for the difference in the size of
the bins is very difficult to estimate analytically).

ISITES

A method for predicting local structure has recently been
developed that improves on conventional secondary struc-
ture prediction in turn regions. The match between local
sequence and local structure of the decoys was assessed
using ISITES local structure predictions. The ISITES
term in Table III is the product of P(local structure 0 local
sequence)/P(structure) over all fragment predictions that
matched the decoy, where the numerator is the confidence
of the prediction.20

Plocal-struct

The ISITES score formulated in the previous section
assesses the match of a sequence to a particular type of
local structure, but does not assess the probability of
observing the structure independent of sequence. The
Plocal-struct term is

p
i 5 1

n

P(fi, Ci) p
i 5 1

n 2 1 P(fi, Ci, fi11, Ci11)

P(fi, Ci)P(fi11, Ci11)
(9)

Component Weighting of the Scoring Function

It is not immediately clear how these terms should be
combined to form a prior distribution on all structures,
P(structure). If all terms were independent density func-
tions, it would be appropriate to simply multiply them
together, as in

P(structure) 5 PAPBPC (10)

However, the density functions provide partly the same
information: structures in which strands are closely aligned
are more likely to have sheets formed and structures in

Fig. 5. Comparison of the P(hb 0 r) distributions in native (solid line),
native-like (dotted line) and non-native structures (dashed line).
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which secondary structure elements are closely aligned
are more likely to be compact. There is also significant
overcounting within each of the terms: the many dimers
within each secondary structure element are clearly not
independent of each other. Finally, the VdW term is not a
probability density, a distinction that we ignore. Because

of the overcounting, we pooled the density functions loga-
rithmically21:

P(structure) 5 PA
wAPB

wBPC
wC, wx . 0 (11)

We optimize weights so that our scoring function is able to
distinguish between native-like and non-native struc-
tures, rather than estimate the weights based on a collec-
tion of native structures using the method of maximum
likelihood. The score, 2log P(structure 0sequence) ~ 2

log(P(sequence 0structure) P(structure)), is linear in the
weights, which we determine by fitting a linear regression
model of the form

g(rmsd) 5 wprotein1 wHS log PHS 1 wSS log PSS 1 wVdWVdW

1 wsheet log Psheet 1 wseq (log Penv 1 log Ppair) (12)

where rmsd is the rmsd of the decoy and g(rmsd) 5 4 if
rmsd ,4 Å, g(rmsd) 5 8 if rmsd .8 Å and g(rmsd) 5 rmsd
otherwise. The cutoffs at 4 and 8 Å are made because we
consider any decoy with an rmsd of ,4 Å as good, while .8
Å is poor. The wprotein is a different intercept for each
sequence. This intercept is irrelevant for selecting the best
scoring structures for a particular sequence, but the
separate intercepts, to some extent, correct for the differ-
ent sizes and compositions of secondary structures of the
various proteins. We experimented with other weighting
schemes, including logistic regression, and found that all
schemes performed equivalently on our training data;
linear regression was chosen, as it was the simplest
approach among the procedures we investigated. In fits
including all the secondary structure packing terms, the
hb and HH terms had very small contributions and were
dropped for simplicity. The observation that inter-helix
distance is correlated with the volume of the residues at
the interface between helix pairs22 suggests that a se-
quence dependent helix packing term could still be useful.
The small contribution of the hb term may reflect the use
of rmsd as the measure of structural similarity.

Fig. 6. Comparison of r-s distributions in native, native-like, and non-native structures.

TABLE II. Comparison of Observed and Fitted† Sheet
Configurations for Proteins With Fewer Than 150

Residues and Eight or Fewer Strands

No. of
strandsa

Sheet
configurationb Observedc Expectedd cn

1 1 0 0.0 0.07
2 2 10 10.9 0.41

1–1 1 0.1
3 3 6 5.6 0.43

Others 0 0.4
4 4 7 6.1 0.60

2–2 2 2.5
Others 0 0.4

5 5 13 13.3 0.61
3–2 7 5.4
Others 0 1.3

6 6 7 5.8 0.85
4–2 or 3–3 3 4.7
Others 2 1.5

7 7 8 7.6 0.86
5–2 or 4–3 7 6.2
Others 1 2.2

8 8 8 6.2 1.12
6–2, 5–3 or 4–4 8 7.5
Others 1 3.3

†See equation (8).
aThe total number of strands found in the protein.
bDistribution of strands among separate sheets (e.g., 3–2 indicates
that two separate sheets were identified, one with three strands, the
other with two). Strands were grouped into sheets using single linkage
clustering with a distance cutoff of 5.5 Å.
cThe number of instances of a particular strand configuration in
proteins with fewer than 150 residues and, at most, 8 strands.
dThe number of instances predicted by equation (8) with a1 5 20.9 and
a2 5 22.7.

89SEQUENCE-DEPENDENT AND -INDEPENDENT FEATURES OF PROTEINS



Generation of Decoy Structures

A training set of ,30,000 compact self-avoiding decoy
structures with fixed secondary structure for each of 21
small proteins was made by replacing native backbone
torsional angles with angles from known protein struc-
tures. Starting with the native dihedral angles, a randomly
chosen residue in each turn was replaced with dihedral
angles randomly chosen from the protein database. If the
radius of gyration of the conformation was .2 1 3*length1/3,
the structure was rejected11 and the procedure was re-
peated from the start. Otherwise, if atomic overlaps be-
tween Cb atoms (3.0 Å) could be removed and the radius of
gyration could be reduced below 3*length1/3 in 10,000
moves consisting of single residue dihedral substitutions,
the structure was kept. Decoy sets were created for 1ctf,
2cro, 1r69, and 4icb, but these were not used in the
estimation of weights (see below) because of overlaps with
the PL test set. While there is not detectable sequence
similarity between the remaining proteins in the training
set and the proteins in the test set, there is considerable
structural similarity between 1lmb, 2cro, and 1r69 and
between 1ptx and 1sn3. Removal of 1lmb and 1ptx from
the training set has relatively little effect on the perfor-
mance of the scoring function on the test set. The best
native-like ranks for 2cro and 1r69 are unchanged, and the
best native-like rank for 1sn3 increases from 1 to 4.

Generation of Backbone Coordinates From Ca Traces

Since our method of scoring structures requires the
location of all heavy atom backbone atoms otherwise

absent in the PL test set, we developed an algorithm
similar to MaxSprout23 for the generation of backbone
coordinates: First, a database of six residue peptides
(hexamers) was extracted from the high resolution (,2 Å
resolution) pdb-select 25 list and then pruned to eliminate
pairs with rmsd ,0.1 Å to yield a set of 41,330 structurally
nonredundant hexamers. Beginning with the first six
residues of the Ca model and marching across the chain in
four residue increments, the backbone was built from the
lowest rmsd hexamer in the set. The first and last residues
of each hexamer (unless it covered the first or last residue
of the Ca model) were discarded because the coordinates of
the first nitrogen and last carbon cannot be determined
unequivocally.

Protein coordinates were taken from the Brookhaven
National Archive.24 All the statistics of this work were
taken from a nonredundant subset (pdb_select2525) of the
Brookhaven database. Protein sequences in the test set
(1ctf, 1r69, 1sn3, 1ubq, 2cro, 3icb, 4pti, 4rxn) and homo-
logues (sequences with .30% sequence identity) were
removed from the database before any statistics were
computed. In addition, only compact structures (radius of
gyration ,3*length1/3)11 were used yielding a final data-
base size of 325 proteins, 83,151 positions.

RESULTS

Our approach to scoring function development may be
roughly divided into three steps:

TABLE III. Overview of the Scoring Function

Probability density Functional form Putative physical origin z-score

I. Sequence dependent P(sequence 0structure)
A. Residue-environment Penv; eq. (5)b Hydrophobic effect 21.5
B. Residue-residue Ppair; eq. (6)b Electrostatics, disulfides 21.7
C. Local sequence-structure ISITES Sequence-local structure 20.4
D. Packing orientation Ppacking-seq Packing geometry 21.3

II. Sequence independent P(structure)
A. Secondary structure packing PHH-fu; eq. (7) Helix-helix packing 20.3

PHH-dist; eq. (7) 20.3
PHS-fu; eq. (7)b Helix-strand packing 20.8
PHS-dist; eq. (7)b 20.8
PSS-fu; eq. (7)b Strand-strand packing 21.1
PSS-dist; eq. (7)b 21.4

B. Strand hydrogen bonding PSShb; eq. (7) Hydrogen bonding 20.3
C. Strand assembly in sheets Psheet ; eq. (8)b Hydrogen bonding 21.4
D. Hard sphere repulsion VdWb Steric repulsion 20.5
E. Structure compactness Pdensity

Radius of gyration
Hydrophobic effect,
Van der Waals interactions

20.4
21.0

F. Local structure Plocal-struct; eq. (9) Local structure preferences 20.6
G. Packing orientation Ppacking-struct Packing geometry 20.3

aThe z-score is calculated as

z-score 5
7score8good 2 7score8all

sall
(13)

where 7score8good is the average score of the structures with ,4 Å rmsd, 7score8all is the average score of all structures, and sall

is the standard deviation of the score of all structures.
bCore model.
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1. Identify features that may contribute to distinguishing
properly folded protein conformations from non-native
conformations.

2. Choose an appropriate set of variables to describe each
feature and estimate probability density functions for
these variables from the protein structure database.
While the parameters describing the densities are
estimated statistically, the physical chemistry respon-
sible for the form of the densities is readily apparent in
most cases.

3. Evaluate the effectiveness of the density functions
alone and in combination in native-like structure recog-
nition using a training set consisting of large ensembles
of compact conformations for a number of small protein
domains. The most effective combination of the density
functions is chosen as the final scoring function.

The final test, which is carried out only once, and after
steps 1–3 have been completed, is to evaluate the perfor-
mance of the scoring function on a completely independent
set of decoy structures.

The features explored in this paper are summarized in
Table III. The first two sequence dependent terms, Penv and
Ppair, are the first terms in a systematic expansion of the
spatial distributions of residues in native proteins (see
Methods).12 The Penv term primarily describes the partition-
ing of hydrophobic residues to the interior and polar
residues to the surface. The Ppair term describes specific
pair interactions not accounted for by the Penv term,
primarily electrostatic interactions and disulfide bonds.
The ISITES term assesses the fit between local sequence
and local structure using a library of sequence-structure
motifs.20 The sequence packing term describes the differ-
ences in the packing orientations of different residue
pairs.18,19 Useful sequence-independent contributions to
the scoring function must capture features of protein
structures that distinguish them from random compact
conformations. The sequence-independent terms we consid-
ered include (1) secondary structure packing preferences,
(2) hard sphere repulsion, (3) compactness, and (4) the
regular packing geometry of protein interiors (Table III).
The choice of an appropriate set of variables to describe
each feature and the estimation of the probability density
functions from the protein structure database is described
in detail under Methods, with a focus on the features that
contribute to the core scoring function.

Evaluation of Individual Density Functions

To investigate the properties of the probability density
functions without compromising the value of the PL test
set, a training set of ,30,000 compact decoy structures
with fixed native secondary structure for each of 17
different small proteins was generated as described under
Methods. These decoy structures were scored using den-
sity functions corresponding to each of the features indi-
vidually and the z-scores, the number of standard devia-
tions separating the scores of the native-like structures
(within 4 Å of the native structure) from the ensemble
average, are listed in Table III. The three nonlocal se-

quence-dependent terms all had appreciable discrimina-
tory power (average z-scores between 21.3 and 21.7). Of
the sequence-independent terms, those involving strand
pairing and association of strands into sheets had the most
discriminatory power (Table III). The terms describing
helix–helix pairing had relatively little discriminatory
power.

Combination of Features: The Core
Scoring Function

In combining the terms in Table III to create a scoring
function that would capture both sequence dependent and
sequence independent features of protein structures, we
sought to use the most unrelated terms. Therefore, we
began by combining the environment and pair terms, the
secondary structure packing terms, and the hard sphere
overlap term, which by construction are largely indepen-
dent of each other (see under Methods). Linear regression
was used to find a combination of these terms with optimal
native-like recognition capabilities. The combined scoring
function partially discriminated the native-like from the
non-native conformations for all seventeen proteins (Table
IV). The native-like z-scores for the different proteins
ranged from 21.1 to 23.6, and a native-like structure
almost always ranked in the top 10. The overall perfor-
mance was considerably better for b-sheet containing
proteins than for proteins containing only a-helices.

Interestingly, while a number of additional terms pro-
vided some degree of discrimination on their own, they
failed to improve recognition when combined with the core
scoring function. For example, the Ppacking-seq term provided
modest recognition (average z-score 21.3) alone, but the
z-score of the core scoring function was 22.6 with and
without incorporation of this term. The most plausible
explanation for such results is that these additional fea-
tures are consequences of the features already included in
the scoring function, together with the chain connectivity
and compactness constraints.

Results With Independent Test Set

The PL test set was held in reserve until the details of
the scoring function were finalized so that we could
accurately assess the predictive value of the new scoring
function. Proteins of detectable sequence similarity to the
proteins in the PL test set (.30% sequence identity) were
removed before construction of the scoring functions. As
with the training set, the scoring function at least partially
distinguished the native and native-like structures from
the non-native conformations (Table V). The ranks of the
native-like structures for the best of the functions tested
by Park et al.,7 the shell(top)m function, are also shown for
comparison. The new scoring function gave the best scor-
ing native-like structure a better rank than the shell-
(top)m function for six of the eight proteins, and the
average z-score for the native-like structures was im-
proved from 21.7 to 22.5. Native recognition was also
somewhat better for the new function than for shell(top)m
(Table V) (several of the functions tested by Park et al.7
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outperformed both the shell(top)m and our function in
native recognition but were considerably worse for the
native-like recognition problem, which is more relevant for
ab initio structure prediction).

Plots of score vs rmsd for all the conformations in the PL
test set are shown in Figure 7. In contrast to several
previously tested scoring functions,11 there is a consistent
decrease in score with decreasing rmsd for all eight
proteins. For the b-sheet containing proteins 1ubq and
1ctf, the scoring functions clearly distinguish the native-
like structures from the vast majority of the non-native
structures.

DISCUSSION

The new scoring function does substantially better at
recognizing the native-like structures in the ensembles of

compact decoys in the PL test set than any of the many
functions previously tested.11 To appreciate the signifi-
cance of the increase in average z-score from 21.7 for the
shell(top)m function of Park et al.7 to 22.5 for the new
scoring function, it is useful to note that were the distribu-
tions of the scores normal, this increase would indicate
that the average score of the native-like structures in the
top 0.6% rather than the top 4.1% of the score distribu-
tions. The performance is much better on b-sheet-
containing proteins because fixing secondary structure
provides stronger topological constraints for b-strands
than for a-helices. While other criteria could potentially
also capture the residual strand pairing in the native-like
structures, standard hydrogen bonding criteria are consid-
erably too strict (even 3-Å rmsd structures are not recog-
nized to have paired b-strands by DSSP).

TABLE IV. Performance of the Scoring Function on the Training Set†

Protein
2°

structure
P(sequence 0structure)

z-score
P(structure)

z-score
P(structure 0sequence)

z-score Best native-like rank Native rank

1aca a 22.6 20.6 22.6 3 4
1hdd a 21.1 20.5 21.1 1 2,691
1lmb a 21.6 20.3 21.6 25 2
1afp b 22.7 22.0 23.3 1 1
1csk b 21.4 22.2 22.4 4 1
1aba a/b 22.5 22.0 23.1 13 1
1cis a/b 21.5 22.2 22.1 2 8
1fxr a/b 22.3 21.6 22.6 1 1
1lea a/b 21.2 20.6 21.3 7 2
1orc a/b 22.2 21.3 22.3 2 2
1ptx a/b 23.6 23.3 24.7 1 1
1sap a/b 22.2 22.9 23.4 3 1
1spb a/b 21.7 21.7 22.4 3 1
1stu a/b 21.4 23.2 23.3 1 1
1tig a/b 22.4 23.1 23.5 2 1
2gb1 a/b 21.5 22.2 22.7 14 1
2pt1 a/b 21.7 21.9 22.4 3 1

22.0 21.9 22.6
†Native-like structures are within 4 Å rmsd of the native structure. The best native-like rank is the rank of the native-like structure with the best
score, not including the native structure. The P(sequence 0structure) and P(structure) terms are those indicated in Table III. The two contributions
are nearly independent: the average z-score expected, were they completely independent, is only slightly more negative than that observed (22.75
(Î2.02 1 1.92) vs 22.6).

TABLE V. Performance of the Scoring Function on the PL Test Set†

Protein
2°

structure
P(sequence 0structure)

z-score
P(structure)

z-score

P(structure 0sequence) Shell(top)m

z-score
Best native-

like rank
Native
rank

Best native-
like rank

Native
rank

1r69 a 21.9 21.1 22.0 7 1 11 30
2cro a 21.1 20.9 21.2 6 371 9 85
3icb a 22.7 21.0 22.8 2 1 1 1
4rxn b 22.5 21.6 22.8 3 21 30 31
1ctf a/b 22.6 22.6 23.5 1 1 1 1
1sn3 a/b 21.5 21.8 22.2 1 1 11 370
1ubq a/b 22.6 22.3 23.1 2 1 76 1
4pti a/b 21.6 21.8 22.3 23 21 106 161

22.1 21.6 22.5
†The function that was found to best distinguish native-like from non-native structures in Park et al.7 was shell(top)m. This function had an
average z-score of 21.7 compared with 22.5 for our core scoring function (z-scores for individual proteins were not reported in Park et al.7).
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Fig. 7. Plots of 2log P(structure 0sequence) vs rmsd for the eight decoy sets of Park and Levitt.11

Native-like structures (,4 Å rmsd) are distinguished from the ensemble of non-native structures for
most of the proteins.
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The separation of the scoring function into components
provides insights into the relationships between different
features of protein structures. For example, the
ineffectiveness of the helix–helix packing terms compared
with the strand-strand and strand-helix terms suggests
that the patterns evident in the helix–helix distributions
(Fig. 3a,b) are fully accounted for by the chain connectivity
and compactness constraints, together with terms already
included in the scoring function, notably hydrophobic
burial (a similar conclusion was reached by Bowie26). The
pronounced orientational packing preferences of residue
pairs in protein structures also appear to be a secondary
consequence of more basic features since, despite having a
significant z-score alone (21.3), the Ppacking-seq term did not
improve the performance of the core scoring function. The
local interactions based ISITES and Plocal-struct terms pro-
vided relatively little discrimination; this may reflect the
method by which the decoy set was generated or simply the
insensitivity of the overall rmsd to details of local struc-
ture; ISITES predictions may be more useful as a move set
in ab initio folding simulations than in structure evalua-
tion. Finally, measures of chain compactness such as the
overall Cb density and the radius of gyration had little
discriminatory power in the compact decoy sets studied
here, suggesting that the cutoff on the radius of gyration
proposed by Park and Levitt11 together with VdW and
hydrophobic burial terms capture the high packing density
of protein structures to the extent that it can be captured
in a simplified model. This result is useful for ab initio
folding simulations because the appropriate functional
form for a compacting force is not at all apparent; the
radius of gyration-based functions may bias simulations
toward spherical structures.

There is still considerable room for improvement of the
scoring function, particularly for the all helical proteins
such as the cro repressor (2cro) for which many non-native
conformations scored as well as, or better than, native-like
conformations. Recent results using atom pair distribu-
tions27 suggest that improved discrimination can be ob-
tained by scoring full atom models following the addition of
explicit side chains. The systematic decomposition strat-
egy used in this report should be applicable to scoring
functions based on full atom models and may further
improve performance on the helical proteins.

The improved performance on b-sheet containing pro-
teins contrasts sharply with our earlier results in ab initio
folding simulations using a scoring function lacking the
secondary structure packing terms: a-helical proteins
folded much more readily than b-sheet containing pro-
teins. The current success with b-sheet containing pro-
teins (Fig. 7) suggests that ab initio folding simulations
using the method of Simons et al.12 and the new scoring
function should yield better results with a broad range of
small proteins provided that the secondary structure is
known. We look forward to testing the approach in the
CASP3 structure prediction challenge.
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