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SUMMARY

Bivariate survival data arise, for example, in twin studies and studies of both eyes or ears of the same
individual. Often it is of interest to regress the survival times on a set of predictors. In this paper we extend
Wei and Tanner's multiple imputation approach for linear regression with univariate censored data to
bivariate censored data. We formulate a class of censored bivariate linear regression methods by iterating
between the following two steps: 1, the data is augmented by imputing survival times for censored
observations; 2, a linear model is "t to the imputed complete data. We consider three di!erent methods to
implement these two steps. In particular, the marginal (independence) approach ignores the possible
correlation between two survival times when estimating the regression coe$cient. To improve the e$ciency,
we propose two methods that account for the correlation between the survival times. First, we improve the
e$ciency by using generalized least squares regression in step 2. Second, instead of generating data from an
estimate of the marginal distribution we generate data from a bivariate log-spline density estimate in step 1.
Through simulation studies we "nd that the performance of the two methods that take the dependence into
account is close and that they are both more e$cient than the marginal approach. The methods are applied
to a data set from an otitis media clinical trial. Copyright ( 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

Bivariate failure time data arise when study units are paired, such as the eyes, ears, lungs and
kidneys from the same person. A well-known example involving bivariate failure times is the
Diabetic Retinopathy Study,1 which was conducted to investigate the e!ectiveness of laser
photocoagulation in delaying the onset of blindness for diabetic retinopathy patients. One eye of
each patient was randomly chosen to receive photocoagulation, whereas another eye served as
control. The subjects were followed for several years and the conditions of their eyes were
recorded. It seems reasonable to assume that the results for the two eyes of the same patient are
correlated. This dependence, along with the presence of censoring, greatly complicates the
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analysis of the data. Other frequently cited examples involving bivariate failure time data are the
Australian Twins Study,2 the Danish Twin Register,3 and a ventilation tube study for otitis media
patients.4 We will use the otitis media data as an example in Section 5.

The Cox proportional hazards model and the accelerated failure time model (AFT) are the
most popular regression methodologies for survival data. The Cox model assumes that the
conditional hazard function for any set of covariates is proportional to an unknown baseline
hazard function. In the AFT model there is a linear relation between the logarithm of the survival
time and the covariates. (In generalizations of the AFT model, the logarithmic transformation of
the survival times can be replaced by other monotone transformations from (0, R) to the real
line.) The regression analysis based on the AFT model is often called linear regression.5,6

For univariate failure time data, approaches for "tting AFT models include the Buckley}James
method7 and a method using linear rank statistics.8,9 Ritov10 has established their asymptotic
equivalence. Recently Wei and Tanner11 proposed a multiple imputation approach using two
data augmentation schemes. Lee et al.12 proposed a marginal approach to extend the Buck-
ley}James and the linear rank statistics based methods to multivariate survival time data. The
marginal approach only requires a correctly speci"ed marginal model, and estimates the regres-
sion coe$cients by ignoring the correlation of the failure times. It has the advantage of being
simple to implement while being asymptotically valid. However, since it ignores the dependence
structure in the data, the estimates are likely not e$cient. In this paper we propose two new
methods which account for the within-cluster correlation to di!erent extents. These two methods,
as well as a related marginal approach, are implemented via multiple imputation. We also show
that our marginal approach implemented by multiple imputation is a Monte Carlo approxima-
tion to the marginal Buckley}James method.12

The paper is organized as follows. Section 2 describes a bivariate AFT model and explains the
basic ideas of the two new methods as well as the marginal approach. In Section 3 we discuss the
poor man's data augmentation technique in the context of linear regression for bivariate censored
data. A simulation study that was conducted to assess the performance of the methods is
described in Section 4. Section 5 contains an example of the methods to a ventilating tube
duration data set from an otitis media clinical trial. We end the paper with a short discussion.

2. MODEL AND METHODS

2.1. A Bivariate Model

Let ¹
ij

be the logarithm of the failure time of the jth individual in cluster i, where j"1, 2 and
i"1,2, n. Because of censoring, ¹

ij
is not always observed. There is a censoring random

variable C
ij

independent of ¹
ij
. We observe >

ij
"min(¹

ij
, C

ij
) and d

ij
"I(¹

ij
)C

ij
), for each

i and j, where I(.) is the usual indicator function. The linear (AFT) model is

¹
ij
"X

ij
b#e

ij
(1)

where X
ij

are covariates and b is the unknown regression coe$cient (vector) that is of primary
interest. The mean-zero random vectors e

i
"(e

i1
, e

i2
)@, i"12, n, are independent of each other,

but the components e
i1

and e
i2

generally are not. Throughout we denote any vector with
components v

i
by v, with the exception that X will denote the design matrix with elements X

ij
. In

this paper we assume that the marginal distributions of e
i1

and e
i2

are equal, and we denote the
marginal distribution as F

0
and the joint distribution as G. Let <

0
be the 2]2 covariance matrix
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of e
i
, and let <"diag(<

0
,2, <

0
) be the 2n]2n covariance matrix of (e@

1
,2, e@

n
)@. Note that we do

not make a parametric assumption about F
0

or G. It is straightforward to extend the proposed
methodologies to the situation with two unequal marginal distributions.

Now we brie#y describe three methods of estimating b for model (1). More details will be given
in the Section 3. All three methods consist of two steps: 1, the data is augmented by imputing
survival times ¹

ij
for censored observations; 2, a linear model is "t to the imputed complete

data ¹.

2.2. The Marginal Approach

The marginal (independence) approach 12 estimates b by ignoring the possible correlation
between the two components of e

i
. Speci"cally, it has a working assumption that <

0
"diag(1, 1).

For complete data ¹, that is, d
ij
"1, for all i and j, b in model (1) can be estimated by ordinary

least squares (OLS) regression. When some observations are censored, for any given estimate
b) the marginal distribution F

0
can be estimated by the Kaplan}Meier estimator FK (bK ) from the

residuals Me
ij
">

ij
!X

ij
bK , d

ij
N. Using FK (bK ) we can impute values for those ¹

ij
that are censored.

In particular, in the Buckley}James method a censored observation ¹
ij

is replaced by its
conditional expectation E(e

ij
D e

ij
*e

ij
)#X

ij
b) , where the expectation is taken under the distribu-

tion FK (b) ). In this paper we use multiple imputation: we draw a random sample from FK (b) ),
conditional on the observed Me

ij
, d

ij
N. Since the two steps of "tting a linear model and imputing

censored observations are dependent on each other we use an iterative procedure.
Note that under the independence assumption the possibly correlated residuals Me

i1
, d

i1
N

and Me
i2
, d

i2
N can be pooled together to obtain the Kaplan}Meier estimate FK (b) ). Ying and Wei13

have proved a consistency result of the Kaplan}Meier estimator when applied to such dependent
data.

2.3. The Semi-Marginal Approach

In the semi-marginal approach we also estimate the marginal distribution F
0

by applying the
Kaplan}Meier estimator to pooled residuals under the working assumption that they are
independent and identically distributed, and we use this Kaplan}Meier estimate to impute
censored data. However, when we "t the linear model (1) with imputed complete data we take
account of the within-cluster correlation.

Given the model (1) it is well known that, with a known covariance matrix <, generalized least
squares (GLS) yields more e$cient estimates than OLS. In particular, the GLS estimate is
b)"(X@<~1X)~1 X@<~1¹. Since <"diag(<

0
,2, <

0
) is not known, we estimate the covariance

matrix <
0

of e
i
from the residuals. Otherwise, the semi-marginal approach employs an iterative

algorithm similar to the marginal approach. Note that the estimate of <
0

based on the imputed
data may be a biased estimate of <

0
, since the dependence of e

i1
and e

i2
is ignored in the

imputation procedure; however, we expected that the bias is small when the censoring is not
heavy.

2.4. The Bivariate Log-spline Density Estimation Approach

There are several reasons why we may improve over the marginal and semi-marginal approaches.
First, although ignoring the within-cluster correlation in estimating the marginal distribution
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using the Kaplan}Meier estimator is asymptotically valid, its "nite sample performance is
unclear. Second, we may lose some information when imputing, for example,¹

i1
and ignoring the

information about ¹
i2
. The intuition is that if we can obtain an estimate GK of the joint

distribution G, then we can impute the two components in the same cluster as (X
i1
b) ,

X
i2
b) )@#(;

i1
, ;

i2
)@, where (;

i1
, ;

i2
)@ is a sample from GK (. , .D(e

i1
, d

i1
), (e

i2
, d

i2
)). Intuitively, the

within-cluster correlation is now better handled.
There is an extensive literature on the estimation of bivariate distribution functions from

censored data. The reader is referred to van der Laan14 and references therein. In our current
context, most of the non-parametric bivariate distribution function estimators are unsuitable. For
clusters of which only one of the two observations is censored, we want to generate a pair (;

i1
,

;
i2
), where one of the two elements, say ;

i1
, is identical to the observed residual e

i1
. However,

because of the discreteness of many estimators of the bivariate distribution function, there are few
points with a positive probability mass for "xed e

i1
. Hence it is di$cult to have good imputation

for singly censored observations. Smooth bivariate estimators, such as the bivariate log-spline
density estimate of Kooperberg,15 may work better. In bivariate log-spline density estimation,
"rst the data is transformed to the unit square. Then the bivariate log-density for the transformed
data is estimated using linear splines and their tensor products, after which the estimate is
transformed back to the original scale. It is adaptive in the sense that it chooses the number and
location of spline knots automatically. The bivariate log-spline density estimation can deal with
censored data, and seems to give reasonable estimates of the dependence structure even when
some data is censored. For more details see Kooperberg.15

3. DATA AUGMENTATION FOR CENSORED DATA

The data augmentation algorithm which we use was originally proposed by Tanner and Wong16
to compute the posterior density of a parameter based on incomplete data. Our implementation
is based on the poor man's algorithm.

In the poor man's algorithm the augmented (complete) data D
#
is generated from p (D

#
DD

0
, h

i
),

where p ( ) represents a probability model of the complete data based on the observed data D
0
and

the current parameter estimate h
i
.

In our current context, the observed data are the censored failure times > and the censoring
indicators d. The augmented data are the underlying uncensored failure times ¹ and the
parameter is the regression coe$cient b. Our algorithm now becomes:

1. Start with an initial estimate of the regression coe$cient, b) (0); set i"0.
2. Calculate the Kaplan}Meier estimate FK (i) or bivariate log-spline estimate GK (i) from Me(i), dN,

where e(i)">!Xb) (i).
3. Do for k"1,2, m.

(a) Sample a set of n pairs of residuals eJ (i`1)
(k)

from the distribution FK (i) or GK (i) conditional on
the observed Me(i), dN; form the complete data ¹I (i`1)

(k)
"Xb) (i)#eJ (i`1)

(k)
.

(b) Fit a linear model via OLS or GLS to M¹I (i`1)
(k)

, XN to obtain an estimate b) (i`1)
(k)

and its
estimated covariance matrix &) (i`1)

(k)
.

4. Set

b) (i`1)"
1

m

m
+
k/1

bK (i`1)
(k)
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and

&) (i`1)"
1

m

m
+
k/1

&) (i`1)
(k)

#A1#
1

mB
m
+
k/1

(b) (i`1)
(k)

!b) (i`1))2

m!1
. (2)

5. Set i"i#1. Go to step 2 until convergence.

The regression coe$cient and its covariance matrix are estimated by b) (i) at convergence and &) (i)
at convergence, respectively. The two terms in (2) correspond to the within-imputation and the
between-imputation variances. The within-imputation variance is an average of the estimated
covariance matrices for b) (i`1)

(k)
obtained from the imputed complete data. The between-imputation

variance involves the sample covariance matrix calculated from observations b) (i`1)
(1)

,2, b) (i`1)
(m)

. An
in#ation factor of (1#1/m) is used to account for the fact that we only carry out a "nite number
of imputations m.17~20

Note that:

(i) In step 2, the Kaplan}Meier estimate and the bivariate log-spline estimate are obtained
under the assumption that the two marginal distributions are equal. If the distributions are
not equal, we can obtain two separate Kaplan}Meier estimates, or a bivariate log-spline
estimate with unequal marginals in step 2, and modify the data generation in step 3
accordingly. Currently there are no implementations of log-spline density estimation for
multivariate data with more than two components.

(ii) It is possible to extend the marginal and semi-marginal methods to multivariate data. For
instance, if we still assume that the marginals are equal, we do not need to modify the
algorithm but we can directly implement the GLS.

(iii) The poor man's data augmentation implementation of the marginal approach is a Monte
Carlo approximation to the marginal Buckley}James method.12 To see this, note that
from step 4 we have

b) (i`1)"
1

m

m
+
k/1

b) (i`1)
(k)

"

1

m

m
+
k/1

(X@X)~1X@¹I (i`1)
(k)

"(X@X)~1X@
1

m

m
+
k/1

¹I (i`1)
(k)

and +m
k/1

¹I i`1)
(k)

/m is a Monte Carlo realization of E(¹De(i), d, X, b(i)) under the independence
working assumption. This observation has been veri"ed in our simulations (results not
shown).

(iv) Since GLS estimates the covariance matrix < of the survival times (see Section 2.3) it
appears that we implicitly obtain an estimate of the correlation coe$cient between two
marginal survival times. Some limited computations (not reported) suggest that this is
sometimes a downwards biased estimate of the variance. There is a large literature on
estimating correlations for censored data, see Oakes,21 Hsu and Prentice22 and Shih and
Louis.23

(v) For OLS and GLS the (ordinary) covariance estimates &) (i`1)
(k)

are easy to calculate.
Speci"cally, for OLS &) (i`1)

(k)
"p( 2 (X@X)~1, where p( 2 is the estimated variance of the

survival time ¹3 (i`1)
(k)

. For GLS, suppose that<K is the estimate of the covariance< of ¹I (i`1)
(k)

,
then &) (i`1)

(k)
"(X@<K ~1X)~1. These are our default estimates of the covariance matrix.

Furthermore, a sandwich estimator based on the GLS estimating equations can be
obtained as:24

&) (i`1)
(k)

"(X@<K ~1X)~1[X@<K ~1(¹I (i`1)
(k)

!XbK (i`1)
(k)

) (¹I (i`1)
(k)

!XbK (i`1)
(k)

)@<K ~1X](X@<K ~1X)~1 (3)

which in combination with (2) can be used to obtain a &sandwich' covariance estimate of bK (i`1).
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4. SIMULATIONS

We compare the performance of the marginal, semi-marginal and bivariate approach through
a simulation study. The data were generated from the linear model

¹
ij
"X

ij
#b

i
#e

ij

where j"1, 2; i"1,2, n, so that the true value of b is 1. The random e!ect b
i
, which is the same

within a cluster, introduces the within-cluster correlation. We used n"50 and n"250 pairs. For
all simulations the covariates X

ij
are generated i.i.d. from a uniform distribution between 0 and 1.

We used a variety of distributions for the random e!ects b
i
and the random errors e

ij
, to verify

that our semi-parametric approaches are not much in#uenced by these distributions. In particu-
lar, the random errors were generated from:

N, a normal N (0, p2) with mean 0 and variance p2"1 or 4;
CN, a contaminated normal distribution that is the mixture of two normal distributions:

0)9]N (0, 1)#0)1]N (0, 9); and
D2, a distribution concentrated on two points: p(!1)"p(1)"0)5.

There were two levels of censoring; low (around 20 per cent of the marginal ¹
ij

in each
component are censored) and high (around 60 per cent of the ¹

ij
are censored). The censoring

variables C
ij

were generated i.i.d. from a normal distribution with mean and variance empirically
determined to achieve approximately the right censoring percentage. By changing the variances
of b

i
and e

ij
we can adjust the within-cluster correlations. Table I lists the seven di!erent set ups

for the simulations study.
We stop the iterations if the di!erence between consecutive estimates of b is less than 0)01,

provided that we carried out at least four iterations. The maximum number of iterations was 10.
The results of the simulation study are summarized in Tables II (n"50) and III (n"250). It

appears that all three approaches yield unbiased estimates of b for all set-ups and both sample
sizes, even for non-normal random e!ects or random errors. This is not surprising, since all three
approaches are semi-parametric and do not depend on any speci"c parametric assumption.
When there is no within-cluster correlation, as in set-up 1, or when the correlation is small, as in
set-ups 2 and 4, the semi-marginal approach and the bivariate approach yield results that have
almost the same e$ciency as the marginal approach, which has the correct independence working
assumption for set-up 1. However, when the within-cluster is 0)5, the semi-marginal and bivariate
approach yield more e$cient estimates than the marginal approach. The relative e$ciency for the
semi-marginal approach and the bivariate approach is slightly better for n"250 than for n"50.
When the sample size increases, the performance of all three methods improves, suggesting
desirable large-sample properties such as consistency.

Wei and Tanner11 suggested that the standard error estimate from the poor man's data
augmentation scheme may underestimate the true standard deviation. Indeed, the estimate of
SE(b3 ) tend to be somewhat smaller than the standard deviations of b3 in Tables II and III for most
con"gurations for both sample sizes.

To investigate this downward bias in the standard errors further, we generated 200 uncensored
data sets using the same con"gurations as in our simulation study. For each data set we
computed b) and SE(b) ) using OLS and using GLS with an estimated correlation matrix. In
Table IV we report the mean value of SE(b) ). The OLS standard errors should be compared with
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Table I. Simulation con"gurations

1 2 3 4 5 6 7

Within-cluster correlation 0 0)25 0)5 0)25 0)5 0)5 0)5
Censoring level low low low high high low low
Distribution of random e!ect b N N N N N N D2
Distribution of error term e N N N N N CN N

Table II. Monte Carlo means of the estimates of the regression coe$cient, their standard error estimates
(SE) and the mean squared error (MSE) of the regression coe$cient estimate (Monte Carlo standard
deviations in parentheses), based on 200 independent replications with n"50 pairs. The true regression
coe$cient is b

0
"1. The relative e$ciency (RE) of the semi-marginal or bivariate approach is the ratio the

MSE of that approach over the MSE from the marginal approach

Set-up Marginal Semi-marginal Bivariate
b3 SE(b3 ) MSE b) SE(b) ) MSE RE b) SE(b) ) MSE RE

1 0)96 0)34 0)112 0)96 0)34 0)116 1)03 0)95 0)33 0)116 1)03
(0)33) (0)03) (0)010) (0)34) (0)03) (0)011) (0)34) (0)03) (0)011)

2 1)00 0)39 0)223 0)99 0)38 0)213 0)96 0)98 0)37 0)211 0)95
(0)47) (0)04) (0)021) (0)46) (0)04) (0)020) (0)46) (0)04) (0)020)

3 1)02 0)46 0)238 0)99 0)41 0)209 0)88 0)99 0)40 0)208 0)87
(0)49) (0)04) (0)029) (0)46) (0)04) (0)025) (0)46) (0)04) (0)026)

4 1)02 0)41 0)247 1)02 0)40 0)250 1)01 1)00 0)38 0)262 1)06
(0)50) (0)06) (0)023) (0)50) (0)06) (0)026) (0)51) (0)06) (0)023)

5 0)98 0)48 0)385 0)99 0)46 0)333 0)87 0)98 0)42 0)352 0)91
(0)62) (0)07) (0)040) (0)58) (0)07) (0)035) (0)59) (0)07) (0)068)

6 1)00 0)58 0)489 1)03 0)52 0)370 0)76 1)02 0)50 0)372 0)76
(0)70) (0)07) (0)053) (0)61) (0)07) (0)043) (0)61) (0)07) (0)042)

7 1)01 0)48 0)250 1)01 0)42 0)194 0)78 1)02 0)41 0)205 0)82
(0)50) (0)05) (0)025) (0)44) (0)05) (0)019) (0)45) (0)05) (0)020)

the standard errors of the marginal approach and the GLS standard errors should be compared
with those for the semi-marginal and bivariate approaches. As can be seen, the estimated
standard errors based on the poor man's data augmentation are very similar to those based on
the uncensored data. Only for simulation set-up 6, where the error distribution is not normal, for
both sample sizes are the standard error estimates based on the data augmentation scheme
somewhat smaller than those for the uncensored data. For most set-ups and n"50 the standard
error estimates are very slightly smaller than those for the uncensored data. However, since in
particular for the set-ups with higher censoring the information in the censored data is clearly
smaller than in the uncensored data, this suggests that for larger amounts of censoring the
standard error estimates may indeed be somewhat downward biased, as they may not adequately
acknowledge the loss of information due to the censoring and the uncertainty in the Kaplan}
Meier and the bivariate logspline estimate.
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Table III. Monte Carlo means of the estimates of the regression coe$cient, their standard error estimates
(SE) and the mean squared error (MSE) of the regression coe$cient estimate (Monte Carlo standard
deviations in parentheses), based on 200 independent replications with n"250 pairs. The true regression
coe$cient is b

0
"1. The relative e$ciency (RE) of the semi-marginal or bivariate approach is the ratio the

MSE of that approach over the MSE from the marginal approach

Set-up Marginal Semi-marginal Bivariate
b3 SE(b3 ) MSE b) SE(b) ) MSE RE b) SE(b) ) MSE RE

1 1)00 0)16 0)028 1)00 0)16 0)028 1)02 0)99 0)15 0)028 1)01
(0)17) (0)01) (0)003) (0)17) (0)01) (0)003) (0)17) (0)01) (0)003)

2 1)00 0)18 0)034 1)01 0)17 0)033 0)99 1)00 0)17 0)033 0)98
(0)18) (0)01) (0)003) (0)18) (0)01) (0)003) (0)18) (0)01) (0)003)

3 1)00 0)21 0)045 0)99 0)19 0)037 0)81 0)99 0)19 0)037 0)81
(0)21) (0)01) (0)004) (0)19) (0)01) (0)004) (0)19) (0)01) (0)004)

4 1)02 0)20 0)059 1)03 0)20 0)060 1)01 1)03 0)19 0)059 1)00
(0)24) (0)02) (0)007) (0)24) (0)02) (0)007) (0)24) (0)02) (0)023)

5 1)00 0)23 0)075 1)00 0)22 0)066 0)88 1)01 0)20 0)068 0)91
(0)27) (0)03) (0)007) (0)26) (0)02) (0)006) (0)26) (0)02) (0)007)

6 1)00 0)27 0)095 0)98 0)24 0)072 0)76 0)98 0)23 0)073 0)77
(0)31) (0)02) (0)009) (0)27) (0)01) (0)007) (0)27) (0)01) (0)007)

7 1)00 0)22 0)058 0)99 0)19 0)044 0)77 1)00 0)19 0)044 0)77
(0)24) (0)01) (0)005) (0)21) (0)01) (0)004) (0)21) (0)01) (0)004)

Table IV. Monte Carlo means of the estimate of the
standard error using OLS and GLS, with an estimated

covariance matrix, based on uncensored data

Set-up n"50 n"250
OLS GLS OLS GLS

1 0)35 0)35 0)15 0)15
2 0)41 0)39 0)18 0)17
3 0)49 0)43 0)22 0)19
4 0)41 0)41 0)18 0)17
5 0)49 0)49 0)22 0)19
6 0)66 0)67 0)29 0)26
7 0)50 0)43 0)22 0)19

We explored a variety of alternative methods to obtain standard errors of the regression
coe$cients, such as a sandwich estimator (see (3)), the asymptotic normal data augmentation,11
the approximate Bayesian bootstrap data augmentation,17 and the (regular) bootstrap.25 Most of
these methods could be equally well applied to the marginal, the semi-marginal and the bivariate
log-spline approach. Since the downward bias seemed to be most severe for n"50, while
otherwise the three approaches had similar problems, we decided to focus on the semi-marginal
approach with n"50. The standard errors provided by the sandwich estimator were very similar
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Table V. Monte Carlo mean of bootstrap standard error estimates of the
estimated regression coe$cients for the semi-marginal approach (with
Monte Carlo standard deviations in parentheses), for the sample size n"50

based on 50 bootstrap replications

1 2 3 4 5 6 7

SE(b) ) 0)37 0)41 0)45 0)50 0)58 0)59 0)47
(0)06) (0)07) (0)08) (0)11) (0)12) (0)13) (0)10)

to those in Tables II; the asymptotic normal data augmentation scheme and the approximate
Bayesian bootstrap yielded somewhat improved standard error estimates, but only the bootstrap
appeared to yield unbiased estimates. We believe that the reason of this may be that the
correlation structure is already satisfactorily taken care of by the GLS procedure, but that the
bootstrap standard errors acknowledge most the uncertainty in the Kaplan}Meier and the
bivariate log-spline estimate, which we believe to be the main reason of the bias.

In our implementation of the bootstrap, for each bootstrap replication we resampled n clusters
from the original data and we computed the estimate of the regression coe$cient. The bootstrap
estimate of the standard error for the regression coe$cient is now the standard deviation of the
bootstrap estimates of the regression coe$cient. Table V presents the results of the bootstrap
standard error estimates for the semi-marginal approach and n"50 based on 50 bootstrap
replications. These standard error estimates are very similar to the standard deviations of b3 for
the semi-marginal approach in Table II, suggesting that any bias in these estimates is negligible.

It is somewhat surprising that the bivariate approach is not better than the semi-marginal
approach. Thus, almost all of the e$ciency gain comes from using GLS. There are several reasons
why estimating the bivariate density may not improve the e$ciency. First, it is hard to estimate
a bivariate density based on a fairly small sample. Indeed, we do notice that for set-ups 3 and 7 the
bivariate approach improves markedly with an increased sample size. Second, the bivariate
approach would only improve the clusters with censored observations, which for most set-ups is
only a smaller percentage, while for the set-ups with a high percentage of censoring (set-ups 5 and
6) only a smaller number of uncensored cases is available to estimate the bivariate density.

Note that the relative e$ciency for the set-ups with heavy censoring (set-ups 4 and 5) is smaller
than those for the same set-ups with less censoring (set-ups 2 and 3). In particular, when the
censoring is heavy and the correlation is low (set-up 4), the e$ciency gain is apparently
completely o!set by the extra variability that is introduced in the estimation procedures of the
two more complicated approaches. This is consistent with Oakes' result in the context of the Cox
regression.26 It appears that we lose information about the within-cluster correlation from the
heavy censoring.

5. EXAMPLE

As an illustration we apply the methods to the ventilation tubes duration data set given by Le and
Lindgren.4 One of the most common childhood diseases is the in#ammation of the middle ear or
otitis media (OM). One common surgical intervention is to install ventilating tubes inside two
ears of a patient. This treatment reduces the incidence of OM episodes and improves hearing as
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long as the tubes are still functioning. From February 1987 to January 1990, a clinical trial was
conducted with children who would have therapeutic myringotomy for tympanostomy tube
placement. Subjects were randomly chosen to receive two week trials of prednisone and sul-
phamethoprim treatment soon after surgery. The control group did not receive any additional
treatment after surgery. The goal was to investigate whether the treatment prolongs the life of the
tubes. Thus, the survival time is the lifetime of a functioning tube. There were a total of 78 subjects
of which 40 were in the treatment group. Since each patient had one tube in each of his/her two
ears, we expect that the survival times of the two tubes in the same subject are correlated. Only 12
out of 156 survival times were censored. We take the logarithm of the survival time as our
response, and code the covariate X

i1
"X

i2
"1 if the ith subject is in the treatment group, and

0 otherwise. The estimated regression coe$cient from the marginal, semi-marginal and bivariate
approaches are, respectively, 0)309, 0)304 and 0)306. Thus, the treatment seems to prolong the
lifetime of the tubes. The standard errors of the regression coe$cient estimate from the three
approaches are 0)141, 0)161 and 0)162. For the semi-marginal approach we used the bootstrap
(with 1000 bootstrap replications) to obtian a standard error estimate 0)158. The 95 per cent
bootstrap percentile con"dence interval is (0)019, 0)629). Hence the regression coe$cient, the
e!ect of prolonging the lifetime of tubes by the treatment, is di!erent from 0 with statistical
signi"cance. (A similar conclusion was reached by Le and Lindgren4).

In addition to the regression coe$cient, the bivariate log-spling procedure also provides us
with an estimate G of the joint baseline distribution. Such a distribution may be useful in that
it gives a graphical interpretation of the correlation structure, which may shine more light on
the dependence. See Kooperberg15 for some bivariate log-spline density estimates and their
applications.

6. DISCUSSION

To investigate whether we can improve the performance of the marginal approach in the bivariate
linear regression, we proposed a semi-marginal approach, which takes account of the possible
within-cluster correlation in "tting a linear regression model with imputed complete data, and
a bivariate approach, which accounts for the within-cluster correlation both when "tting the
linear model and when imputing the censored observations. We used the bivariate log-spline
density method to estimate the bivariate joint distribution. Both new approaches, which perform
similarly, improve over the marginal approach. Except when the censoring is too heavy or the
within-cluster correlation is small, we recommend using the semi-marginal or bivariate approach.

We use Wei and Tanner's poor man's data augmentation algorithm to impute censored
observations. It is conceptually simple, and easy to implement. After imputing, we can take
advantage of existing techniques, such as GLS, to handle complete multivariate data. Though
multiple imputation also has the potential to automatically take account of between-imputation
variability, our simulation results suggest that the standard error estimates from the poor man's
data augmentation may be slightly downward biased. If this bias is a problem, the bootstrap
methods appear to be a promising approach for obtaining unbiased standard error estimates.
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