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Abstract

In this paper we consider logspline density estimation for binned data. Rates of convergence are established when
the log-density function is assumed to be in a Besov space. An algorithm involving a procedure similar to maximum
likelihood, stepwise knot addition, and stepwise knot deletion is proposed for the estimation of the density function based
upon binned data. Numerical examples are used to show the �nite-sample performance of inference based on the logspline
density estimation. c© 2000 Elsevier Science B.V. All rights reserved
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1. Introduction

This paper proposes a method of density estimation for binned data. Let X1; : : : ; Xn be a random sample
from a distribution with density f. In some experiments, the data are reported in the form of a histogram.
The observed random variables are

Yq = #{Xi: Xi ∈ Iq};
where Iq are bins. We want to estimate the unknown density function f based on Yq’s.
Flexible exponential families have been used for the estimation of density functions. Stone and Koo (1986),

Stone (1989, 1990), Kooperberg and Stone (1991), Koo (1996), and Stone et al. (1997) developed logspline
density estimation, in which the logarithm of a probability density function is modeled using polynomial
splines. Koo et al. (1998, [KKP] hereafter) studied logspline density estimation under truncation and censoring.
Barron and Sheu (1991) studied density estimation procedures based on trigonometric series, polynomials, and
splines. Koo and Kim (1996) considered an exponential family based on wavelets. Exponential families have
been used by Koo and Park (1996) and Koo and Chung (1998) for density estimation in linear inverse
problems. For an excellent discussion on density estimation see Silverman (1986).
A number of papers have dealt with density estimation based on binned data. Kooperberg and Stone

(1992) developed logspline density estimation for univariate data that may be right-censored, left-censored or
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interval-censored. Antoniadis et al. (1998) considered a wavelet method for density and hazard rate estimation
based on binning the data. Minnotte (1998) discusses the histospline procedure for binned data, in which
the unknown density is estimated by a spline, such that the integral of the density estimate equals the mass
of the histogram for any bin. Interestingly, Minnotte (1998) obtains the same rate of convergence for the
mean-squared error as those obtained in this paper. Minnotte, however, assumes smoothness of the true
underlying density, whereas we assume smoothness for the log-density. There have been a number of papers
that consider kernel density estimation for binned data. See the introduction of Minnotte (1998) for details.
Hall and Wand (1996) �nd that in the context of kernel density estimation, linear binning yields more e�cient
kernel density estimates. In this paper we only consider constant binning, since we see our methodology as a
procedure for data that has already be binned (constantly). This contrasts with linear binning for kernel density
estimation, which is considered part of a more computationally e�cient kernel density estimation procedure
for unbinned data.
Consider logspline density estimation without binning, so that X1; : : : ; Xn are actually observed. Let B1; : : : ; BJ

be a set of basis functions that span a space of polynomial splines. The exponential family based on these
basis functions has the form

f(x; �) = exp{�1B1(x) + · · ·+ �JBJ (x)−  (�)};

where  (�) is the normalizing constant. The parameters of the logspline density estimate satisfy the equation

∫
Bk(x)f(x; �̃) dx =

1
n

n∑
i=1

∫
Bk(Xi) (1)

for k = 1; : : : ; J .
We use binned data to �nd an appropriate estimator B̂k , whose expectation is asymptotically the same as

EBk(X ). The proposed density estimator has the form f(·; �̂), where �̂ satis�es (1) with n−1
∑n

i=1

∫
Bk(Xi)

replaced by B̂k . This density estimate has many of the advantages of the usual logspline density estimates. In
particular, the estimates are positive and integrate to one. The histospline estimate of Minnotte (1998) may be
negative in small regions. The wavelet estimates of Antoniadis et al. (1998) may have negative values so that
they consider f̂+(t)=max(f̂n(t); 0) as a simple way of guaranteeing positivity, where f̂n is the wavelet density
estimator having the form of an orthogonal series estimator. The approach of Kooperberg and Stone (1992)
has the advantage that the estimate of the parameters can be justi�ed in the context of maximum likelihood,
but it has the disadvantage that the resulting log-likelihood is not necessarily concave when binning is present.
While with a moderate amount of binning the lack of concavity does not seem many problems in practice, it
is much harder to establish theoretical results.
In this paper it is shown that the logspline density estimates based upon binning possess the rate of

convergence n−2�=(2�+1), where � is the smoothness of the logarithm of the density function in a Besov space.
The main idea in establishing this result is the observation that the estimator B̂k may converge su�ciently fast
when the length of each bin decreases to zero fast enough. Thus the rate of convergence for logspline density
estimation based on the binning is the same as the rate of convergence for logspline density estimation based
upon unbinned data.
For our theoretical results, we assume that the knots are distributed regularly over the range of the data,

and that the number of knots increases with the sample size. In practice, we select the knots adaptively using
stepwise knot addition and stepwise knot deletion.
This paper is organized as follows. In Section 2, logspline densities are de�ned. Asymptotic results are

stated in Section 3 and proved in Section 6. Practical aspects of logspline density estimation are discussed in
Section 4. Numerical examples are given in Section 5.
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2. Logspline densities and information projection

In this section we de�ne logspline densities on the unit interval I=[0; 1]. To simplify notation the dependence
on the sample size n of various quantities will be suppressed. In the remainder of this paper M;M1; M2; : : :
are positive constants, independent of n, and C is a positive constant, also independent of n, that is only used
locally and may be di�erent in di�erent locations.
Let Br be the B-spline of order r having knots at 0; 1; : : : ; r so that

Br(x) = r[0; 1; : : : ; r](· − x)r−1+

using the divided di�erence notation (de Boor (1978)). Let j be a positive integer, which will depend on n,
and de�ne

Bj; k = Br(2jx − k); k ∈Z:
To approximate a function on I , we only need those B-splines Bj; k which do not vanish identically on I .
Let �(j) denote the set of k for which this is the case and let Sj denote the linear span of the B-splines
Bj; k ; k ∈�(j). We refer to Sj as the space of dyadic splines. (Our implementation, discussed in Section 4,
does not assume that the number of bins is a power of 2.) The dimension of Sj is J =2j + r − 1. Let J¿2
for all n.
Let � denote the collection of all J -dimensional vectors. Given � = (�1; : : : ; �J )′ ∈�, set

s(·; �) =
J∑

k=1

�kBj; k ;

 (�) = log
[∫

I
exp{s(x; �)} dx

]
and

f(· ; �) = exp{s(· ; �)−  (�)}: (2)

Then
∫
I f(x; �) dx = 1 for �∈�. For notational convenience, let f(�) denote the function f(· ; �). The

exponential family f(�); �∈�, is not identi�able (Stone (1990)). Let �0 denote the (J − 1)-dimensional
subspace of �, consisting of those vectors �∈� whose entries add up to zero. We refer to the densities
f(�); �∈�0, as logspline densities.
The relative entropy (Kullback–Leibler distance: KL distance) between two densities f and g is de�ned as

D(f‖g) =
∫
I
f log

f
g
:

For a function h, let
∫
B h denote the J -dimensional vector of elements

∫
I Bj; k(x)h(x) dx, where

B = (Bj;1; : : : ; Bj; J )′. Given �∈�, let �(�)∈�0 denote a solution to the equation∫
Bf(�) = �: (3)

Let

�∗ = arg min
�∈�0

D(f‖f(�));

and set f∗=f(�∗). We will refer to f∗ as the information projection of f onto Sj. It follows from Lemma 1
of Stone (1990) that f∗ satisfy the equation∫

Bj; kf =
∫

Bj; kf∗ for k = 1; : : : ; J: (4)
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Let B∗ = (B∗
j;1; : : : ; B

∗
j; J )

′ where B∗
j; k =

∫
Bj; kf. From [KKP], we know that the information projection f∗ is

unique if it exits and that �∗ = �(B∗).
Let


2 = inf
s∈Sj

‖logf − s‖2
and


∞ = inf
s∈Sj

‖logf − s‖∞
be the L2 and L∞ error in the approximations of g by some s∈Sj. Theorem 1 establishes an upper bound
on the approximation error D(f‖f∗) in terms of 
2 under the condition

(A1) M−1
1 6f6M1:

Theorem 1. If (A1) holds; 
∞ is bounded; and
√
J
2 = o(1); then the information projection f∗ uniquely

exists and satis�es

D(f‖f∗)6
M1

2
e
∞
22:

Proof. Refer to the proof of Theorem 1 in [KKP].

3. Asymptotic results

Let N be an integer that may depend on n and let Q = 2N . De�ne the dyadic intervals

Iq =
[
q− 1
Q

;
q
Q

)
for 16q¡Q − 1 and IQ =

[
Q − 1
Q

; 1
]
: (5)

Let xq be the center point of each subinterval de�ned by

xq =
q− 1=2

Q
; q= 1; : : : ; Q: (6)

As an estimator B̂j; k of EBj; k(X ), consider

B̂j; k =
Q∑

q=1

Bj; k(xq)Yq; (7)

where Yq = #{Xi: Xi ∈ Iq}. De�ne the incomplete likelihood function

l(�) =
J∑

k=1

�kB̂j; k(xq)−  (�): (8)

Note that the incomplete likelihood function de�ned by (8) is not necessarily interpretable as a log-likelihood.
We introduce l(�) as an objective function in the de�nition of logspline density estimators for binned data.
Let

�̂ = arg max
�∈�0

l(�) (9)

be the maximum incomplete likelihood estimator (MILE) of �∈�0. Since the Hessian matrix of  (·) is
strictly positive de�nite and l(·) is a strictly concave function on �0; thus the MILE �̂ is unique if it exists.
We set f̂ = f(�̂) and refer to f̂ as the MILE of f.
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Let B̂ = (B̂j; k) Jk=1. From the incomplete likelihood equation, �̂ is the parameter that satis�es∫
I
Bf(�̂) = B̂;

which implies that f̂ = f(�(B̂)).
Theorem 2 establishes the rates of convergence of f̂ to f in KL distance.

Theorem 2. If the sequence 
∞ is bounded; J=Q2 = O(n−1); and J=
√
n → 0; then f̂ exists; except on an

event whose probability tends to zero with n; and

D(f∗‖f̂) = OP
(

J 2

Q2
+

J
n

)
:

As a smoothness class for f, we use the Besov space. If h∈Lp(I); 16p6∞, let !r(h; t)p; t ¿ 0, denote
the modulus of smoothness for h : !r(h; t)p = sup|u|6t‖�r

uh(·)‖p(I(ru)), where �r
u is the rth order di�erence

with step u; the norm in the above de�nition is the Lp norm on the set I(ru)= {x: x; x+ ru∈ I}. We say that
h is in the Besov space B�pq whenever

‖h‖B�pq =
[∫ ∞

0
{t−�!r(h; t)p}q dtt

]1=q
is �nite, where r is any integer larger than �.
The dyadic B-splines {Bj; k : k ∈�(j); j = 0; 1; 2; : : :} give an atomic decomposition for functions in the

Besov space. From DeVore and Popov (1988) we know that a function h in B�pq can be written as

h=
∞∑
j=0

∑
k∈�( j)

�j; kBj; k

and

C−1‖h‖B�pq6


 ∞∑

j=0

{2j(�−1=p)|�j|p}q


1=q

6C‖h‖B�pq ; (10)

with the usual modi�cation if either p or q equals ∞. Here |�j|p denotes (
∑

k∈�( j) |�j; k |p)1=p. See DeVore
and Popov (1988) and Donoho et al. (1996) for properties of Besov spaces. The Besov space includes the
Hilbert–Sobolev space and H�older space; spaces that are traditionally used in theoretical statistics. In particular,
Stone (1990) studied logspline inference when the logarithm of the density function is in a H�older space.
Let F�pq(M) be the set of functions de�ned by

F�pq(M) = {f : logf∈B�pq and ‖logf‖B�pq ¡M}:
Consider an unknown distribution Pf depending on the density function f∈F�pq(M) and suppose {bn} is
some sequence of positive numbers. This sequence is called a lower bound for f if

lim
c→0

lim inf
n

inf
T̂

sup
f∈F�pq(M)

Pf(D(f‖T̂ )¿cbn) = 1; (11)

where the in�mum is over all possible estimators f based on Y1; : : : ; YQ. Alternatively, the sequence in question
is said to be an upper bound for f if there is a sequence of estimators {f̂ n} of f such that

lim
c→∞ lim sup

n
sup

f∈F�pq(M)
Pf(D(f‖f̂ n)¿cbn) = 0: (12)

The sequence of numbers {bn} is called the optimal rate of convergence for f if it is both a lower bound
and an upper bound with the associated estimators {f̂ n¿1}, being called asymptotically optimal.
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For the following theorems, we assume that

(A2) f∈F�pq(M).

Theorem 3 shows n−2�=(2�+1) is a lower bound for f in the metric D.

Theorem 3. Under (A2); if s¿ 1=2 and 16p; q6∞; then

lim
c→0

inf
T̂

sup
f∈F�pq(M)

Pf(D(f‖T̂ )¿cn−2�=(2�+1)) = 1;

where T̂ is any estimator of f based on Y1; : : : ; YQ.

Given positive numbers an and bn for n¿1, let an � bn mean that an=bn is bounded away from zero and
in�nity.
For Theorem 4 we also assume that

(A3) 1
2 ¡�¡r − 1 + 1

p and 26p6∞.
The condition 1

2 ¡� is a su�cient condition for deriving that logf is bounded away from zero and in�nity.
The condition �¡r − 1 + (1=p) was used in DeVore and Popov (1988). For �xed �, r can be chosen large
enough to derive bounds on 
2 and 
∞.

Theorem 4. If (A2) and (A3) hold; then

D(f‖f̂) = OP(n−2�=(2�+1))
if J � n1=(2�+1) and Q � n(�+1)=(2�+1).

According to Theorem 4, the logspline estimate achieves the lower bound n−2�=(2�+1), which means that
the logspline estimators are asymptotically optimal.

4. Practical implementation

Logspline density estimation for binned data, based upon the incomplete log-likelihood (9), can be im-
plemented using a logspline density estimation algorithm for complete data. For our examples we used the
algorithm described in Stone et al. (1997). In this section we give a brief description of this algorithm and
discuss the modi�cations that make it applicable when the data is binned. More details about the algorithm
can be found in Kooperberg and Stone (1992) and Stone et al. (1997).
The algorithm of Stone et al. employs cubic splines. In particular, given the integer K¿3, the numbers

L and U , with −∞6L and U6∞, and the sequence t1; : : : ; tK , with L¡ t1¡ · · ·¡tK ¡U , let S be the
space of twice di�erentiable functions s on (L; U ), such that the restrictions of s to (L; t1] and [tk ; U ) are
linear and the restrictions of s to [t1; t2]; : : : ; [tK−1; tK ] are cubic polynomials. The space G is K-dimensional.
Set J = K − 1. Let 1; B1; : : : ; BJ be a basis of G. A column vector � = (�1; : : : ; �J )T is said to be feasible
if  (�)¡∞. Given a feasible � the function f(·; �) is a positive density on I = [L; U ]. We refer to the
ti; i = 1; : : : ; K , as knots.
Let Z1; : : : ; Zn be the pseudo-sample consisting of Yq copies of xq, for q=1; : : : ; Q. Thus, n=

∑Q
q=1 Yq. For

a given set of knots, the logspline density estimate for binned data is f(x; �̂); L6x6U , where

�̂ = arg max
�

l(�) = arg max
�

n∑
j=1

f(Zj; �) = arg max
�

Q∑
q=1

Yqf(xq; �);



J.-Y. Koo, C. Kooperberg / Statistics & Probability Letters 46 (2000) 133–147 139

is the MILE of � (compare with (9)). The Hessian matrix corresponding to this likelihood is easily established
to be concave. As such, the MILE is unique when it exists, and it can be found using a suitably modi�ed
Newton–Raphson algorithm.
Initially the algorithm starts with a limited number of knots (see Kooperberg and Stone (1992), and Stone

et al. (1997) for details). Then stepwise knot addition is employed. At each stage every t that is a minimum
number of order statistics from existing knots, is a candidate for addition. Among these candidates, the
algorithm performs a heuristic search to maximize the Rao statistic for adding a knot x= t to the current set
of knots. Stepwise addition of knots is employed until a prespeci�ed maximum number of knots is reached,
the default of which is Kmax =min(8n0:2; n=4; N − 1), where N is the number of bins for which Yq ¿ 0. Stone
et al. (1997) used as the maximum number of knots Kmax = min(4n0:2; n=4; N; 30) where N is the number of
distinct data points. The change from N to N − 1 is the correction of a small error; the other changes are
based on more recent experiences with large data sets.
Upon stopping the stepwise addition process, we carry out stepwise deletion. At each step the knot for

which the Wald statistic for removal of the knot at x = t from the current set of knots is the smallest in
magnitude is removed.
During the combination of stepwise addition and stepwise deletion, we get a sequence of models indexed

by �, with the �th model having J� parameters. The (generalized) Akaike information criterion (AIC) can be
used to select one model from this sequence. Let l̂� denote the �tted log-likelihood for the �th model, and let
AICa;�=−2l̂�+aJ� be the Akaike information criterion with penalty parameter a for this model. We select the
model corresponding to the value �̂ of � that minimizes AICa;�. In light of practical experience, we generally
recommend choosing a= log n= log

∑
q Yq as in the Bayesian information criterion (BIC).

The possibly large number of repeated pseudo-observations when the data are binned can cause some
numerical di�culties when positioning the knots. Clearly, it no longer su�ces that knots are a minimum
distance apart in order statistics: if a particular Yq is large two potential knots t′ and t′′ could easily satisfy
the rule of being several order statistics apart, while t′ = t′′ = xq. Thus, we require that knots are located in
di�erent bins.
Hansen and Kooperberg (1999) consider a number of other approaches to knot selection for (unbinned)

logspline density estimation and Triogram regression (Hansen et al. 1998) including a simulated annealing
approach to minimize BIC, and a variety of Bayesian approaches using Markov chain Monte Carlo algorithms.
They conclude that for logspline density estimation the stepwise procedure performs quite good compared to
the other approaches that consider many more models during the model selection stage, but require much
more cpu time.
The algorithm described in this section can be applied whether or not the assumptions made in Sections

2 and 3 (e.g. (A1)–(A3)) hold or not. In our experience, the logspline density estimation procedure works
well, even if f is (very close to) zero: the density estimate will typically be very small, indistinguishable
from zero, and even if f is (locally) not smooth, since the stepwise algorithm will position more knots close
to the nonsmooth regions.

5. Numerical examples

Good and Gaskins (1980) give data on a mass-spectrum histogram that was gathered at the Lawrence
Radiation Laboratory in Berkeley. It contains n = 25; 752 events that are binned in 172 bins. In Fig. 1 we
show the logspline density estimate for this data, as well as the raw counts in the various cells. The logspline
density in Fig. 1 is based on 18 knots; the largest number of knots considered when �tting this data was 60.
Modes I, IV, V, VI, VII, VIII, X and XIII of Good and Gaskins (1980) are clearly visible in this estimate. Of
the �ve modes that Good and Gaskins (1980) identi�ed that are not distinguishable, three were identi�ed by
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Fig. 1. Logspline density estimate for the LRL data of Good and Gaskins (1980).

them as not substantiated, the remaining two they indicated in the “
at” area between 1150 and 2000 MeV.
We feel that this is a reasonable estimate of the density based upon the binned data. It took about 7 s of
CPU time on a Sun ULTRA 2 workstation to compute the logspline density estimate.
To assess the asymptotic performance of logspline density estimation with binned data, we carried out

a simulation study. We generated data from the bimodal densities that were considered in Kooperberg and
Stone (1991):

f(y; �) = 0:8g(y) + 0:2h(y; �);

where g(y) is the lognormal density of Y =exp(Z=2) and Z has a standard normal distribution, and h(y) is the
normal density with mean 2 and standard deviation �. We use �=0:03; 0:07; 0:17, and 0:27. All but �=0:03
were also used in Kooperberg and Stone (1992); we expect that the density corresponding to � = 0:03 has
details that will be lost during estimation because of binning of the data. For each of the four distributions we
generated 100 independent samples of size n= 100; 300; 1000, and n= 3000. For each sample we computed
density estimates with bin widths of of 0:3, 0:1, and 0:03. To prevent artifacts that may be caused by bins
starting or ending at �xed locations, we choose a uniform random origin. For each density estimate we
computed the integrated squared error between the logspline density estimate and the true density,

∫
(f− f̂)2.

For each sample we also computed the ISE for the logspline density estimate for unbinned data, as we cannot
expect the density estimate for binned data to do better than the one for unbinned data. The mean of the
integrated squared error, MISE, for each of the simulation set-ups is shown in Table 1.
From Table 1 we notice that, as predicted by the asymptotic theory, the ISE does go down when the bin

width decreases and when the sample size increases. It appears that for �= 0:03 and �= 0:07 and the larger
bin sizes the MISE does not get real small for large n, essentially because with such wide bins to much signal
is “lost” that it is impossible to recover the complete density no matter how large the sample size. For the
densities with the larger values of sigma, the density is su�ciently regular that some amount of binning does
not seem to hurt the estimation at all. The MISE for the estimates based on unbinned data is often as small
as the MISE for the estimates based on binned data with a small bin width.
Summary statistics, such as those in Table 1 only tell part of the story. As pointed out in Kooperberg

and Stone (1991), two estimates can have a similar integrated squared error, but they can qualitatively di�er
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Table 1
Mean-integrated squared error for simulations from three bimodal distributions

Bin width Bin width

n Not binned 0.3 0.1 0.03 Not binned 0.3 0.1 0.03

� = 0:03 � = 0:07
100 0.1602 0.3229 0.2212 0.1960 0.0633 0.1095 0.0663 0.0635
300 0.0378 0.2943 0.1364 0.0445 0.0218 0.0848 0.0251 0.0203
1000 0.0125 0.2915 0.1139 0.0205 0.0077 0.0796 0.0114 0.0069
3000 0.0060 0.1067 0.1166 0.0112 0.0033 0.0808 0.0083 0.0030

� = 0:17 � = 0:27
100 0.0434 0.0374 0.0333 0.0406 0.0392 0.0315 0.0340 0.0370
300 0.0161 0.0177 0.0134 0.0147 0.0152 0.0114 0.0120 0.0131
1000 0.0055 0.0127 0.0052 0.0051 0.0049 0.0092 0.0041 0.0040
3000 0.0022 0.0116 0.0022 0.0019 0.0019 0.0072 0.0016 0.0015

Fig. 2. Logspline density estimate for simulated data sets with various amounts of binning.

considerably. In Fig. 2 we show a typical estimate for � = 0:03 with n = 300 and one for � = 0:017 with
n = 1000. (To keep these plots interpretable, we omitted the estimates with bin width 0.1.) The histograms
width bin-width 0.03 and 0.3 for this data are shown in Fig. 3. The estimates in Fig. 2 have approximately
average integrated squared error. We note that for the plot on the left, the estimate with bin width 0.3 really
does not properly summarize the density near the peak; the estimate with the smaller bin width looks much
better, but still underestimates the peak considerably compared to the estimate based upon the data without
binning. On the other hand, all density estimates on the right seem reasonable, although they vary in integrated
squared error from 0.041 to 0.114.
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Fig. 3. Histograms on density scale for the logspline density estimates shown in Fig. 2.

6. Proofs of asymptotic results

For a subinterval I of I and a function h which is integrable on I, write

I[h] =
∫
I

h:

Note that Y1; : : : ; YQ have a multinomial distribution with

EYq = nIq[f]

and

Cov (Yq1 ; Yq2 ) =

{
nIq[f](1− Iq[f]); q1 = q2 = q;

−nIq1 [f]Iq2 [f]; q1 6= q2:

6.1. Proof of Theorem 2

For the proof of Theorem 2, we need the following lemma.

Lemma 1.

E|B̂ − B∗|2 = O
(

J
Q2
+
1
n

)
:

Proof. Let

Bj; k = EB̂j; k =
Q∑

q=1

Bj; k(xq)Iq[f]: (13)
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It follows from the properties of B-splines that

sup
x;y∈Iq

|Bj; k(x)− Bj; k(y)|62 sup
x;y∈Iq

2j|x − y|=O(2j−N ) (14)

and

#{m: Bj; k 6≡ 0 on Iq}6r2N−j + 2 = O(2N−j): (15)

By (14) and (15), we have that under (A1),

|Bj; k − B∗
j; k |6

∑
q

∫
Iq
|f(x)‖Bj; k(xq)− Bj; k(x)| dx

= O(M12N−j2j−N2−N )

= O(2−N ):

This implies that

J∑
k=1

|Bj; k − B∗
j; k |2 = O

(
J
Q2

)
: (16)

Now we derive a bound on the variance Var(B̂j; k) of Bj; k . Let

V =
1
n2
∑
q

B2j; k(xq)Var(Yq)

and

CV =
1
n2
∑
q1 6=q2

Bj; k(xq1 )Bj; k(xq2 )Cov(Yq1 ; Yq2 ):

Then

Var(B̂j; k) = V + CV:

Under (A1), we have

Var(Yq) = nIq[f](1− Iq[f]) = O
(

n
Q

)
; (17)

Cov(Yq1 ; Yq2 ) = nIq1 [f]Iq2 [f] = O
(

n
Q2

)
: (18)

From (15), (17) and (18), we have

V = O

(
1
n2

n
M

∑
q

B2j; k(xq)

)
=O

(
1
nJ

)
(19)

and

CV = O


 1

n2
n
Q2

∑
q1 6=q2

Bj; k(xq1 )Bj; k(xq2 )


=O( 1

nJ 2

)
: (20)
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Combining (19) and (20), we have

J∑
k=1

Var(B̂j; k) = O
(
1
n

)
: (21)

The desired result follows from (16) and (21).

Now we can prove Theorem 2. By Lemma 1,

|B̂ − B∗|2 = OP
(
1
n
+

J
Q2

)
:

Now apply Lemma 2 in [KKP] with �0 =
∫
Bf∗=B∗ and �= B̂. If J=

√
n → 0 as n → ∞ and J=Q2 =O(n−1),

then the MILE �̂ = �(B̂) exists and

D(f∗‖f̂)6MK

(
J
n
+

J 2

M 2

)

except on a set of probability less than 1=K. This completes the proof of Theorem 2.

6.2. Proof of Theorem 3

To show that n−2�=(2�+1) is a lower bound, we follow the approach:

• specify a subproblem;
• use Fano’s lemma to calculate the di�culty of the subproblem.
For any two probability measures P and Q, their Kullback–Leibler information

K(P;Q) = EP log(dP=dQ)

if P is absolutely continuous with respect to Q; otherwise, K(P;Q) = +∞. Observe that

K(Pf; Pg) =
n∑

q=1

nIq[f]log
Iq[f]
Iq[g]

;

where Pf and Pg denote the distributions of Y1; : : : ; YQ with densities f and g, respectively.

Lemma 2. For any two positive density functions f and g on I;

K(Pf; Pg)6nD(f‖g):

Proof. De�ne fq and gq by fq(x)=f(x)=Iq[f] and gq(x)=g(x)=Iq[g], respectively. Since f and g are positive
functions on Iq, fq and gq are density functions on Iq. By the information inequality (1.e.66) of Rao (1973),

Iq

[
f log

f
g

]
− Iq[f] log

Iq[f]
Iq[g]

= Iq[f]Iq

[
fq log

fq

gq

]
¿0:

Since

nD(f‖g)− K(Pf; Pg) = n
n∑

q=1

{
Iq

[
f log

f
g

]
− Iq[f] log

Iq[f]
Iq[g]

}
;

we have the desired result.
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Here we prove that n−2�=(2�+1) is a lower bound. For notational convenience, choose r to be an odd integer
such that J = 2j + r − 1 is even. Let K = J=2 and Kj = {k: k = 1; : : : ; K}. For �= (�k)k∈Kj ∈{0; 1}K , de�ne

g� =M22−�j

(
K∑

k=1

�kBj; k −
K∑

k=1

�kBj; k+K

)
:

where M2 is a constant to be chosen below. Let us observe that

‖g�‖B�pq6CM22−�j2j(�−1=p)2

(
K∑

k=1

�pk

)1=p
6CM2

and

‖g�‖∞6M22−�j: (22)

De�ne

 (�) = log
∫
I
exp(g�):

From (22), we have

| (�)|6M22−�j: (23)

For j → ∞ as n → ∞, we consider the set of vertices of a cube
Fj = {f� = exp(g� −  (�)): �∈{0; 1}K}:

By (22), one can choose M2 such that Fj is a subset of F�pq(M) and that ‖logf‖∞6C, which implies
together with (23) that

C−16f6C for all f∈Fj: (24)

Now let fi = f�i ∈Fj with �1 6= �2. By Lemma 4.2 of DeVore and Popov (1988) and the properties of
B-splines, we have

‖logf1 − logf2‖22¿C2−j

(
K∑

k=1

(�1k − �2i − d)2 +
K∑

k=1

(�1k − �2i + d)2
)
¿C2−j

K∑
k=1

(�1k − �2k)
2;

where d=  (�1)−  (�2). By Lemma 3.1 of Koo (1993), there is a subset F∗
j of Fj such that

‖logf − log g‖2¿C2−�j; f 6= g∈F∗
j and log(|F∗

j | − 1)¿ 0:272(2j); (25)

when n is su�ciently large and 2j ¿ 8. It follows from Lemma 1 in Barron and Sheu (1991), (24) and (25)
that

D(f‖g)¿C2−2�j for f 6= g∈F∗
j : (26)

Using Lemma 1 in Barron and Sheu (1991) and (24), we obtain

D(f‖g)6C2−2�j for all f; g∈Fj: (27)
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By Fano’s lemma, see for example Yatracos (1988), if T̂ is any estimator of f based on Y1; : : : ; YQ, then

sup
f∈F�pq(M)

Pf(D(f‖T̂ )¿c2−2�j)¿ sup
f∈F∗

j

Pf(D(f‖T̂ )¿c2−2�j)

¿ 1−
supf; g∈F∗

j
K(Pf; Pg) + log 2

log(|F∗
j | − 1)

¿ 1−
n supf; g∈F∗

j
D(f‖g) + log 2

log(|F∗
j | − 1)

:

Apply (26) to the second line, and Lemma 2 to the third line. Finally, let 2j � n1=(2�+1) as n → ∞. Then the
desired result of Theorem 3 follows for the smoothness class from (26), (27) and (28).

6.3. Proof of Theorem 4

The following lemma is Lemma 4 in [KKP].

Lemma 3. If (A2) and (A3) hold; then (i) M−1
1 6f(x)6M1 for x∈ I ; and (ii) 
2 = O(J−�) and 
∞ =

O(J−�+1=p).

Now we prove Theorem 4. Assume that (A2) and (A3) hold. Choose J � n1=(2�+1) and Q � n(�+1)=(2�+1).
From Lemma 3 it follows that 
2

√
J = O(J−(�−1=2)) = o(1) and 
∞ = O(J−(�−1=p)) = o(1). Theorem 1 now

implies that D(f‖f∗) = O(J−2�) = O(n−2�=(2�+1)). On the other hand, J=
√
n � n(1−2�)=(4�+2) = o(1) and

J=Q2 = O(n−1). Theorem 2 implies that

D(f∗‖f̂) = OP
(
J
n
+

J 2

Q2

)
=OP

(
J
n

)
=OP(n−2�=(2�+1)):

Since D(f‖f̂) = D(f‖f∗) + D(f∗‖f̂) (see Lemma 3 in [KKP]), the proof of Theorem 4 is now
complete.
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