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Logic Regression is a new adaptive regression methodology that attempts to

construct predictors as Boolean combinations of (binary) covariates. In this

paper we modify this algorithm to deal with single-nucleotide polymorphism

(SNP) data. The predictors that are found are interpretable as risk factors of

the disease. Significance of these risk factors is assessed using techniques like

cross-validation, permutation tests, and independent test sets. These model

selection techniques remain valid when data is dependent, as is the case for

the family data used here. In our analysis of the Genetic Analysis Workshop

12 data we identify the exact locations of mutations on gene 1 and gene 6 and

a number of mutations on gene 2 that are associated with the affected status,

without selecting any false positives.
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LOGIC REGRESSION

Finding associations between many genes/environmental factors and disease out-
comes leads to statistical problems with a high-dimensional predictor space. In this
paper we first discuss a new adaptive regression methodology, Logic Regression,
which we apply to sequence data for the general population of the Genetic Analy-
sis Workshop (GAW) 12 data. Logic Regression [Ruczinski 2000; Ruczinski et al.,
2001] is intended for situations where most predictors are binary (0/1), and the
goal is to find Boolean combinations of these predictors that are associated with
an outcome variable. First assume that all predictors Xi, i = 1, . . . , p are binary
and write Xi instead of Ind(Xi = 1) and Xc

i instead of Ind(Xi = 0), where Ind(·)
is the usual indicator function. The type of regression problem is irrelevant, all we
need is a score function such as RSS in linear regression, log-likelihood in gener-
alized regression, partial log-likelihood in Cox regression, or misclassification, that
relates fitted values with the response. For simplicity, we assume in here that Y is
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a binomial random variable. The simplest Logic Regression model is now

Ŷ = Ind(L = 1), (1)

where L is any logic (Boolean) expression that involves the predictors Xi, such as
L = X1 or L = X1 ∧ (Xc

2 ∧ (X3 ∨ Xc
4)). Misclassification,

∑
(Y 6= Ŷ ), would be

the score for equation 1. If we want a regression equation of this form, the main
problem is to find good candidates for L, as the collection of all possible logic terms
is enormous.

It turns out to be very convenient to write logic expressions in tree form. For
example, we can draw X1 ∧ (Xc

2 ∧ (X3 ∨Xc
4)) as the tree in the first panel of Figure

1. Using this “logic tree” representation it is possible to obtain any other logic tree
by a finite number of operations such as growing of branches, pruning of branches
and changing of leaves (borrowing from CART [Breiman et al. 1984] terminology).
In the remaining panels of Figure 1 we show three of the logic trees that can be
obtained by applying one operation to the original tree.

Using this representation and these operations on logic trees we can adaptively
select L using a (stochastic) simulated annealing algorithm. We start with L = 1.
Then, at each stage a new tree is selected at random among those that can be
obtained by simple operations on the current tree. This new tree always replaces
the current tree if it has a better score than the old tree, and it is accepted with a
probability that depends on the difference between the scores of the old and the new
tree and the stage of the algorithm, otherwise. This simulated annealing algorithm
has similarities with the Bayesian CART algorithm [Chipman et al., 1998], in which
a CART tree is optimized stochastically. Both of these algorithms are distinct from
the greedy algorithm employed by CART, in that at any stage they not necessrily
pick the move that improves the fit most. Diagnostics, and a scheme that adjust the
above-mentioned probabilities slowly enough during this algorithm, guarantee that
we will find (close to) the optimal model. An advantage of simulated annealing is
that we are much less likely to end up in a local maximum of the scoring function.
Properties of the simulated annealing algorithm depend on Markov chain theory,
and thus on the set of operations that can be applied to logic trees [Aarts and Korst,
1989].

We should point out that the rules obtained by the Logic Regression algorithm
are distinctly different from those found by tree based algorithms, such as CART
[Breiman et al., 1984]. For those type of methods, the eventual decision rules are
like
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Figure 1: Logic tree representation of X1 ∧ (Xc
2 ∧ (X3 ∨Xc

4)) (first panel) and three
logic trees that can be obtained by simple operations on this tree.
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if (X1 ∧Xc
2 ∧Xc

3) ∨ (X1 ∧Xc
2 ∧X4) predict Ŷ = 1. (2)

In general, rules are of the form ∨iEi, where Ei = ∧jSij and the Sij are simple
relations, such as Xk ∈ X . Rules of this form are said to be in Disjunctive Normal
Form (DNF) [Fleisher et al., 1983]. Though any logic expression can be written
in DNF, the complexity of such an expression can be reduced considerably if logic
expressions of other forms are allowed. Note, for example, that the condition in
equation 2 can be reduced to (X1 ∧Xc

2 ∧ (Xc
3 ∨X4)). This latter expression is not

in DNF, however.
For complicated problems, we may want to consider more than one logic tree at

the same time. Thus, we can extend the classification model (equation 1) (using a
binomial likelihood) as

logit(Y = 1|X) = β0 +
m∑

j=1

βjLj , (3)

where each of the Lj is a separate logic tree.
In practice not all predictors may be binary. Continuous predictors can still be

included in Logic Regression models by allowing terms like Xi ≤ a to enter the
model [Ruczinski, 2000]. Alternatively, we can include continuous predictors in a
regression model, in addition to logic terms, as we did for the GAW12 data (see
Application to the GAW 12 Data).

Using model selection, in addition to a stochastic model building strategy, is of
critical importance, as the logic tree with the best score typically overfits the data.
A variety of methods of model selection using cross-validation and randomization
tests exist [Ruczinski, 2000]. For the GAW12 data we have replicate data; thus
we decided to fit our models on one replicate (training set), and validate them on
another replicate (test set).

LOGIC REGRESSION AND GENETIC DATA

In this paper we use the Logic Regression methodology to explore the relationship
between single-nucleiotide polymprphisms (SNPs) in sequence data and response
variables related to a disease outcome. For sequence data we create two predictors
for each site with zero, one or two variant alleles. Let X1 = 1 if the site has two
variant alleles, and X1 = 0 if it has zero or one variant allele, and let X2 = 1 if the
site has one or two variant alleles, and X2 = 0 otherwise. As the selection of a logic
tree takes place in an adaptive manner, whether X1 or X2 ends up in the logic tree,
implies whether a dominant model or recessive model, respectively, for this site best
fits the data. As the adaptive methodology removes unnecessary details from the
tree, X1 and X2 will not end up in the same logic tree, since X1 ∨ X2 ≡ X2 and
X1∧X2 ≡ X1, so that the search algorithm automatically reduces such a branch to
X1 or X2. When more than one logic tree is fit X1 can appear in one logic tree, and
X2 can appear in another logic tree, effectively fitting an additive or multiplicative
model.

In the application to the GAW12 data we ignore the family structure of the data,
and opt for a direct application of the Logic Regression algorithm to a binary and
a continuous response. Application of the Logic Regression algorithm to a model
that incorporates family data requires identification of a score-function (likelihood)
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for a logic model such structure was primarily a matter of convenience. Since we
carried out model selection using a test set that satisfies the same family structure
as the training set, ignoring the family structure only affects the efficiency of our
approach.

APPLICATION TO THE GAW12 DATA

In analyzing the GAW12 data we decided up-front that we would use (part of) the
first 25 replicates as training data and the second 25 replicates as an independent
test set. Using an independent test-set simplifies the model selection. We applied
the Logic Regression algorithm to the 25th replicate data set for the general pop-
ulation. We used the 42nd replicate as the test data set and ignored the family
structure. We have sequence data for 1,000 persons. We repeated part of our ex-
periments on a few other replicates and found very similar results. We processed
the sequence data for all of the first 25 replicates, keeping only those sites for which
among the people that have sequence information fewer than 98% of the persons
had zero variant alleles and fewer than 98% had two variant alleles. This left us with
694 sites on the 7 genes combined, that were recoded in 2× 694 = 1388 predictors
using the scheme detailed in the previous section.

In the remainder we identify sites and coding of variables as follows: Gi.D.Sj
refers to site j on gene i, using dominant coding, i.e. Gi.D.Sj = 1 if at least one
variant allele exist. Similarly, Gi.R.Sj refers to site j on gene i, using recessive
coding, i.e. Gi.R.Sj = 1 if two variant alleles exist. We identify complements by
the superscript c, e.g. Gi.D.Sjc.

Affected status. As our primary response variables we used the affected status.
We fitted a logistic regression model of the form

logit(affected) = β0+β1×environ1+β2×environ2+β3×gender+
K∑

i=1

βi+3×Li. (4)

Here gender was coded as 1 for female and 0 for male, environj , j = 1, 2, are the
two environmental factors that were provided, and the Li, i = 1, . . . , K are logic
expressions based on the 1,388 predictors that were created from the sequence data.

Initially we fit models with K = 1, 2, 3, allowing logic expressions of at most size
8 on the training data. In Figure 2 we show the deviance of the various fitted Logic
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Fugure 2. Training (solid) and test (open) set deviances for Logic Regression
models for the affected state. The number in the boxes indicate the number of logic
trees.
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Regression models. As very likely the larger models overfit the data, we validated
the models by computing the fitted deviance for an independent test set keeping
the models fixed at those selected. These results are also shown in Figure 2. From
this figure we see that the models with three logic trees with a total of three and
six leaves have the lowest test-set deviance. As the goal of the current investigation
is to identify sites that are possibly linked to the outcome, we prefer the larger of
these two models. In addition, when we repeated the experiment on a training set
of five replicates and a test set of 25 replicates the model with six leaves had a
slightly lower test set deviance than the model with three leaves. We carried out a
randomization test, conditioning on the model with three leaves, to determine how
much better a model with six leaves fits the data if a model with three leaves is
the true model. As the improvement that we observed is much larger than what
would be expected by chance, this confirmed that the model with six leaves fits the
data better than a model with three leaves. The model with six leaves that was
fitted on the single replicate is presented in Figure 3. The logistic regression model
corresponding to this Logic Regression model is

logit(affected) = 0.44 + 0.005× environ1 − 0.27× environ2 + 1.98× gender

−2.09× L1 + 1.00× L2 − 2.82× L3.

All but the second environment variable in this model are statistically significant.
Note that for all 1000 persons with sequence data in replicate 25 site 76 on gene

1 is exactly the opposite of site 557, which was indicated as the correct site on the
solutions (for example, a person with v variant alleles on site 76 always has 2 − v
variant alleles on site 557). Similarly, the Logic Regression algorithm identified site
5007 on gene 6, which is identical for all 1,000 persons to site 5782, the site which
was indicated on the solutions. We note that the “correct” site on gene 1 appears
twice in the logic tree model. Once, as a recessive coding (G1.R.S557) and one ef-
fectively as a dominant coding (G1.R.S76c ≡ G1.D.S557 on this replicate) for site
557, suggesting that the true model may have been additive. When two sites are
in (almost) perfect disequilibrium, as is the case for these sites, the Logic Regres-
sion algorithm may identify one of these sites as the algorithm cannot distinguish
between them. The three remaining leaves in the model are all part of gene 2: two
site close to the ends of the gene and one site in the center.

Quantitative trait 5. In the solutions to the GAW12 data it was described
that Quantitative trait 5 (Q5) depended on the sequence data of gene 2, but the
exact pattern of the mutations that were influencing this trait were not given. To
investigate this further we decided to fit another Logic Regression model of the form
equation 4, with Q5 as the response variable using linear regression. We would
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Figure 3. Fitted Logic Regression model for the affected state data with three trees and six leaves.

Variables that are printed white on a black background are the complement of those indicated.
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expect that this way we would be better able to find a more precise dependence on
gene 2 than for the logistic model using affected status as the response. We carried
out model selection identical to that for the logistic regression described above.
While the solutions indicated that the (sequence) dependence of Q5 was only on
gene 2, we allowed all genes in the model. The model that was selected had three
logic trees and a total of seven leaves. The three trees were

L1 = (G2.D.S851 ∧G2.D.S1289c) ∨G2.R.S8657c,

L2 = G2.D.S1400 ∨G2.D.S4977,
and

L3 = G2.D.S334 ∨G2.D.S10091.

Thus, a model that depends on a large number of sites on gene 2 is fit. The
solutions indicate that Quantitative trait 5 indeed depends on gene 2 and not on
the other genes. (Models with different numbers of trees or leaves for Q5 always
exclusively depended on sites on gene 2.) Except for site 8657, all sites occurred
in the fitted model as dominant genes. While this could be related to the way the
data was generated, it is also possible that the data was generated using an additive
model, as for six of the seven sites that were selected few people had two variants,
and the power of selecting recessive codings of a site is thus smaller than that of
selecting the dominant codings of the same site.

DISCUSSION

Our analysis of the GAW12 data shows the potential usefulness of Logic Regression.
While our algorithm was provided with data on hundreds of predictors (sites), it
correctly picked out those few that were the responsible sites in the underlying
model. No tweaking of the algorithm was needed to achieve these results.

In applying Logic Regression, it is advantageous to use raw sequence data, rather
than data that has been aggregated as haplotypes, as such predictors would yield
few categorical variables with many levels, while sequence data yields many vari-
ables with few levels. In combining these variables the Logic Regression algorithm,
effectively, determines which levels of the haplotype are associated with disease.
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