JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 9, Number 1, 2002

Mary Ann Liebert, Inc.

Pp. 55-66

Improved Background Correction for
Spotted DNA Microarrays

CHARLES KOOPERBERG,! THOMAS G. FAZZIO,? JEFFREY J. DELROW,?
and TOSHIO TSUKIYAMA?

ABSTRACT

Most microarray scanning software for glass spotted arrays provides estimates for the in-
tensity for the “foreground” and “background” of two channels for every spot. The common
approach in further analyzing such data is to first subtract the background from the fore-
ground for each channel and to use the ratio of these two results as the estimate of the
expression level. The resulting ratios are, after possible averaging over replicates, the usual
inputs for further data analysis, such as clustering. If, with this background correction pro-
cedure, the foreground intensity was smaller than the background intensity for a channel,
that spot (on that array) yields no usable data. In this paper it is argued that this prepro-
cessing leads to estimates of the expression that have a much larger variance than needed
when the expression levels are low.

Key words: Bayesian statistics, low intensity spots.

1. INTRODUCTION

ENE EXPRESSION REGULATES THE PRODUCTION OF PROTEIN, which in turn governs many cellu-

lar processes in biological systems. The knowledge of gene expression has applications ranging
from basic research and trying to better understand the mechanism of protein production to applica-
tions such as diagnosing, staging, and finding treatments of diseases. With cDNA microarrays, it is
now possible to measure rapidly and efficiently the expression level of genes expressed in a biological
sample.

In this paper, we focus on how to process data that arises from glass-spotted arrays. On these arrays,
typically several thousand cDNA spots corresponding to different ORFs are applied. Two types of probes
labeled from different isolates of messenger RNA are hybridized to this array. One of these types is
labeled with Cy3 (“green”) dye, the other with Cy5 (“red”) dye. After the hybridization has been carried
out, the intensity of the green dye and the intensity of the red dye on a particular spot indicate how much
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expressed RNA of the particular type was hybridized to that spot. The relative intensities of the green and
the red dyes provide an estimate of the expression ratio for the particular gene of the two tissues from
which the RNAs were extracted.

Two problems associated with this procedure are that some of the probe will attach to the array, even
when there is no cDNA available. This is known as “background intensity.” To some extent, the data can
be corrected for background intensity by combining the intensities of the dye at a particular spot with the
intensities of the dye at a (nearby) area of the array where there was no cDNA spotted. Another problem
is that, not only does a probe that corresponds to the “correct gene” hybridize with the cDNA, but also
some probe corresponding to other genes may hybridize. This is known as cross-hybridization. It is much
less clear how to correct for this problem.

In this paper, we primarily deal with the problem of background correction. As we will see, this
problem is intimately related to the estimation of the expression ratio. The standard approach to background
correction is to subtract an estimate of the background intensity from the intensity measured in the spot (the
foreground intensity). This approach can cause problems when the foreground intensity is low, for example,
of the same magnitude as the background intensity. This situation will cause estimates of the expression
ratio to become very noisy, or even undefined, when the background intensity is higher than the foreground
intensity. Still, these spots do contain valuable information. In Fig. 1 we show the foreground intensity of
the red channel for two repeat arrays. Triangles (crosses) in this plot have a foreground intensity that is
below the background for one (two) of the arrays. As can be seen, most of these spots are as reproducible
as the other spots on the array, which suggests that the intensities for these spots are real. As such, inclusion
of the data of such spots in further analysis, such as clustering (e.g., Eisen et al., 1998; Hastie et al., 2000;
Tibshirani et al., 1999) or analysis of variance (Kerr et al., 2000), will improve the results of such analysis.
In this paper, we introduce an alternative Bayesian method to correct for background noise. A feature of
this method is that it only uses the summary statistics (mean, median, SD) for each spot that are provided
by the typical scanning software and does not require analysis of the raw pixel data that is obtained from
the scanner (GenePix, 1999).

We are not aware of a method to “correct” spotted glass array data for cross-hybridization. In Section 3.2,
we give an example in which we compare expression ratios estimated using glass spotted arrays and
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FIG. 1. Median foreground expression for the red channel of two repeat arrays. Spots for which the expression level
is below background in one (two) channels are shown as triangles (crosses). There are 82 triangles and 16 crosses in
this figure.
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estimated using northern blot. Northern blot analysis does not suffer from cross hybridization to the extent
that glass spotted arrays do. We here find out that this is the main cause of inconsistency between northern
blot and glass array results.

One of the earliest papers discussing algorithms for the computing of expression ratios for glass spotted
arrays is by Chen et al. (1997). There, the background area is identified as a group of pixels that have a
significantly lower (using a Wilcoxon statistics) intensity than the remaining pixels. As in this paper, they
assume that the median intensity level of the foreground pixels has a normal distribution. This assumption
is being used to identify spots for which the expression ratio (not the log-expression ratio) is significantly
different from zero. It is not clear who first proposed the method which we label as “traditional” to correct
for background and compute expression ratios, though it may go back to Eisen et al. (1998). Newton
et al. (2000) propose a Bayesian approach to computing the log-ratio, after background correction has
already taken place. They assume that the true foreground intensities for the red and green channels follow
a Gamma distribution. Theilhaber et al. (1999) also proposes a Bayesian algorithm to estimate the fold
change. Their paper also assumes that background correction of the intensities has already taken place.
They do, however, acknowledge the possibility that the observed background intensity may sometimes be
larger than the foreground intensity by putting a prior on the foreground intensity. Theilhaber et al. (1999)
carry out the computations for the expression ratio on a regular rather than a logarithmic scale (as did Chen
et al. [1997]). We feel that this is somewhat unfortunate, since the resulting algorithm is not “symmetric”
for exchanging the red and green channels.

In the next section, we discuss a Bayesian algorithm for background correction. All parameters in
the proposed methodology can be estimated based on the limited number of summary statistics that are
provided by most scanning/image analysis software packages. In Section 3, we apply our algorithm to a
number of glass spotted arrays of yeast. We end with a brief discussion.

2. A BAYESIAN APPROACH TO BACKGROUND CORRECTION

Most scanning devices and software for the analysis of glass spotted arrays provide the user with
estimates of a number of quantities for both channels for every spot on an array. In particular, we will
have the following information: the mean of the foreground intensities X s over all pixels within a region
of interest, the standard deviation Sy of these intensities, the median of the intensities Y, and the number
of pixels within the foreground region ny. We will also have estimates of the same quantities over an
appropriately defined background region. We refer to the background quantities as X5, Sp, Y», and np. The
actual background region will be different depending on the scanning software used; that is, the background
region could be all the pixels near the spot that are not in the foreground region, they could be all the
pixels near the spot that are at least a few pixels away from the foreground region, or they could be a
selected other region. The calculations that are discussed in this section are carried out for every spot and
both channels separately. We omit subscripts g and r for the Cy3 dye (“green”) and Cy5 dye (“red”),
respectively, and an index i for the spot, whenever this causes no confusion.

It is assumed that the amount of probe that hybridizes to a particular spot has an approximate linear
relation with the intensity. Within the background region, the RNA can attach to the (unprocessed) array.
Within the foreground region, the RNA can hybridize to the target cDNA or to the glass itself. These two
effects are assumed to be additive. Formally, the intensity of every pixel in the foreground is assumed
to be a random variable with mean uy = p; + Up, Up, 4: = 0 and the intensity of every pixel in the
background is assumed to be a random variable with mean up. The goal of this section is to obtain a
posterior distribution for the mean of the target u;.

From the statistical theory on point processes (e.g., Ripley, 1981) it follows that if the number of RNA
molecules that hybridize to a particular area is independent to those that hybridize at another area then
the intensity of a single foreground (background) pixel i Z;r (Z;») would be proportional to a Poisson
distribution. In particular, «Z;s and «Z;, would each have a Poisson distribution with means @/« and
wp /o, respectively. The proportionality constant o could depend on the channel. We will get back to these
assumptions shortly. R

For the model described above, the maximum likelihood estimate for wu;, (., is Xy — Xp. In practice,
either u; or the difference between the median levels of foreground and background ; = Yy ~ Y} is used
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to estimate the target intensity. Using these estimates can cause problems if ¢ ™~ wp so that u, ~ 0, as
now it is possiblg that u; < 0 or u; < 0. This causes difficulties, as further analysis is often based on an
expression ratio i /[y, SO that spots for which either p;; < 0 or u;, < 0 have to be ignored in further
analysis. As we will see in Section 3, this approach can increase the variance substantially. To circumvent
this, we take a Bayesian approach.

2.1. Informal description of the Bayesian approach

Informally the Bayesian approach can be summarized as follows. If the true background intensity is
Wb, we will observe a background intensity Xj that may be smaller or larger, roughly following a normal
distribution with mean wp. Without any further information, our best estimate for u, would be Xp.

Similarly, if the true foreground intensity is pf = + 1y, we will observe a foreground intensity X f
that may be smaller or larger, roughly following a normal distribution with mean 7. If we would just
look at the foreground, our best estimate for u ¢ would be X r.

However, we know that i Z 0, and thus W = wp. So, if X > Xy it has to be true that the X;, that we
observed was larger than the true background intensity w, or that the Xy that we observed was smaller
than the true foreground intensity u f, since otherwise p; < 0, which we know to be false. Reversing these
arguments, we would now guess that 1, < X, orthat uy > X, and thus that u;, = s = up > X5 = Xp.
If X¢ is only slightly larger than X,, this does not have to be the case, but it is still likely that u, >
Xr ™ Xp.

After we completely describe the relation of Xj to up, the relation of X to uy and our prior beliefs
concerning s and up, we can formalize this argument and use the posterior distribution to get a better
estimate of ;.

2.2. Posterior distribution of i;

Since Xy and X, are means over fairly large numbers of pixels, because of the central limit theorem
Xp © N(up, abz) and X5~ N(us + Wb, a]%) for some o and oy. We assume that, conditional on pp,
W, 0p, and o, Xp and X ; are independent. Let p,, and p,, be the prior distributions of the target and
background intensities, respectively. We assume that these prior distributions of u; and w, are independent
of each other and do not depend on o and oy. (As we will see below, the posterior distributions are not
independent though.) Using Bayes’ theorem we get

)= p(Xy, Xplpwe, o, of,op)p(s, Mb'af, op)
p(Xs, Xploys, op)
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where ¢ (*) is the density of the standard normal distribution.
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Let o4 = b2+ a]%, the standard deviation of the difference Xy — X;. If we take a noninformative

improper uniform prior for 1, and wup on [0, ®°) equation (1) reduces to

/Ow¢(xf—v—u,)¢(xb—v)dv

of

puloy, op, Xp, X ) = / / (Xf u ) (Xb )dudv

A noninformative prior is typically assumed if we do not want to make any strong prior assumptions about
the parameters (Box and Tiao, 1973). In the current setup, the noninformative prior can also be seen as
the limit of a gamma prior when we let its parameter go to infinity. A simple transformation of variables

now y1€1dS
X X (X I)C Xpo
5 ( f 1253 b) I ( f n b f

o4 0 f0p0y

| = r
p(uilop, o, Xp, Xr) X = X, , 2)
o4 0] dv
of

if 4y = 0 and 0 otherwise, where ®(x) = f X ¢ (x)dx, the cumulative standard normal distribution.

We now return to the assumptions and their implications. It is fairly common that in practice not all
pixels in a spot show hybridization at the same level. The reason for this is that the probe may not be
uniformly distributed on the array. (For example, it is not uncommon that because of the mechanics of
spotting arrays the center of the spot has less target deposited. This is sometimes known as the doughnut
effect. See Fig. 3 of Chen et al. [1997].) To circumvent this problem, we propose to use the median
intensities in the foreground and background region, Yy and Y}, instead of the mean intensities, X r and
X, respectively. Since the number of DNA molecules that hybridize at an individual pixel will be large, the
Poisson distribution of aZ;r (and aZ;p) is well approximated by a normal distribution. This implies that,
like X ¢ and X, Yy and Y} have approximately normal distributions with means w ¢ and up, respectively.
Therefore, Equation (2) remains approximately valid, even if we substitute the medians Yy and Y}, for the
means Xy and Xj,.

Thus, for each of the two channels, Equation (2), with Y’s substituted in for the X’s, provides a way
to compute the post rior distribution of w;, provided we have estimates for oy and op. It is tempting
touse of = Sy 71 T/V2ns r and op = Sb\/ 7 /Y 2np. (Note that the standard deviation of the median of
n independent identically distributed normal random variables is o/ T/ \/ﬂ.) However, this would be a
valid approach only if the intensity levels of the individual pixels within one foreground (background)
region are independent and identically distributed. While, depending on the image segmentation algorithm,
the assumption of identical distributions may be questionable, it is also clear that pixel values are not
independent.! If we assume that the intensities of the pixels do have an identical distribution, and that the
correlation between the intensity of two spots depends only on the distance between these two spots, it
follows that

S
0y = a 3)
f 7
and
_ S
op Clvﬁ (4)

for some constant a, ignoring boundary effects (Ripley, 1981).

I'This is, for the background pixels, the assumption that is being made by Theilhaber e al. (1999).
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An implicit assumption of background correction is that the background intensity is locally constant.
If we assume that p, is (approximately) constant from one spot to the next spot, the empirical standard
deviation of Y}, for that spot and the (four) spots that are physical neighbors of that spot ig_an alternative
estimate o, for that spot. We estimate a separately for each channel by regression 7‘2’:—_17 on oy, for all spots

on an array. This estimate a is then combined with both the background (4) and foreground (3) standard
deviations provided by the software package to obtain estimates oy and op.

The Bayesian approach to background correction implicitly assumes that, for pixels for which the
background intensity Y}, is larger than the foreground intensity Y, this usually occurs when the target
mean u; is very small, and that we observe a chance event. In particular, we assume that

Y, T Yy NN(/L;,U]%+Ub2).

As u; = 0, the quantity

g= Y f2 Yy
oy + sz

provides some sort of significance level for the assumption that p, = 0 and thus that the model is in
this aspect reasonable. Since we will usually compute g for both channels for all spots simultaneously,
we apply a Bonferoni correction to circumvent that we will identify 5% of all spots if the model was
reasonable, but only identify any spots in 5% of the experiments (e.g., Bickel and Doksum, 1977). For
example, for the yeast arrays discussed in Section 3 there are 6,309 spots. This means that we label spots
for which

Yf - Yb -1 .05 ~ _
2 — < =/ 45 (@)
;?U} + sz 2 % 6309

as suspicious.

2.3. Combination of both channels

Using the methodology described in Section 2, E (g |afg, obg, Yrg, Yg) and E(psr |afr, obrs Yir, Yor)
are obtained from (2) using numerical integration (which is straightforward assuming that ¢ (") and ®()
are readily available) as estimates of the posterior distribution of the mean of the target u;, and p,, for
the green and red channels, respectively. A natural estimate for the log-ratio log(s/theg) is

LR = E(log(ﬂtr|(7fr, obr, Yfr, Yor) — E(log(ﬂtg|(7fg, obg, Yfg, ng))-

Kerr et al. (2000) discuss analysis of variance models for combining (normalized and background corrected)
estimates of the log expression for different channels in situations more complicated than the comparison
of two channels on the same array.

While it is unlikely that the posterior distributions of log(u) and log(us) are independent, it is
tempting to take V = Var(log(utr|afr, Obr, Yfr, Ybr) + Var(log(utg|afg, Obg, Yfg, Ybg) as a measure of the
relative accuracy of the log-ratio for different spots on the same array and for spots of the same gene on
different arrays. In our experience though, the correlation between the two channels is high (correlations
between median background levels of the green and the red channels upwards of 0.95 are common), so that
fairly small changes in the local correlation structure from from one spot to another spot would dominate
the variation. As such, we would recommend more empirical methods to determine the variance of the log-
expression ratios. For example, after appropriate preprocessing, we could use a local polynomial estimator
of the variance as a function of the mean expression ratio, for example using data like that displayed in
Fig. 2. An alternative approach is to estimate the variance of the log-expression ratio using repeat data,
after which analysis could be made using standard t-statistics. As for the data used for the examples in
the next section, finding genes with “significant” expression ratios was not a goal of the experiment; we
do not pursue that approach further.
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3. APPLICATION

3.1. Wildtype—wildtype

We applied the methodology described in the previous section to fifty glass spotted yeast arrays produced
by the Fred Hutchinson Cancer Research Facility array facilities. Ten of these arrays are so called “wildtype-
wildtype” experiments, where both channels show expression of genes in the same wildtype yeast cells,
so that we know that the true expression ratio is 1. In Fig. 2, we show for one of these arrays both the
traditional estimate of the log-expression ratio

Yfr = Ypr _ .
log\ — (correction factor) (6)
Y Y,
fg bg

and an estimate based on applying the method described in the previous section
LR ~ (correction factor)’. 7

The two correction factors in Equations (6) and (7) are chosen such that the median expression ratio
for eight yeast control genes on the array is one for the particular method. One reason to correct the
estimate is that the proportionality constant, &, may be different for both channels. For the traditional
method (6), we exclude spots for which either Yj, z Yy, or Yig z Yy, and spots that were labeled
as “bad” by the investigator For the new method (7), we exclude spots that are suspicious according to
(5) and spots that were labeled as “bad” by the investigator. The effect of this is that many spots that
are excluded for the traditional approach are not excluded for the new approach. These spots are shown
as triangles in Fig. 2. There were 14 spots excluded for the new proposed method; all of these spots
were also excluded for the traditional approach. Figure 3 shows for the red channel both _the gstimate of
the intensity for the traditional approach (Yy ~ Y) and the new proposed estimate E(M;'O’f, op, Y7, Yp).

traditional approach Bayesian approach

log(expression ratio)

T T T T T T T T T T

2 4 6 8 10 2 4 6 8 10

log(expression) log(expression)

FIG. 2. Two estimates of the log-expression-ratioagainst the mean of the log-expression for both channels. The 255
genes for which the traditional method did not yield an estimate of the ratio are triangles for the Bayesian method.
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low expression level
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tradional approach
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FIG. 3. Traditional and Bayesian estimate of the expression level for the red channel. The right side enlarges the

area in the box that contains genes that have low expression levels.

The zoom-in on the right side shows that the proposed methodology essentially modifies the estimates for
which Yy = Y} is small, while if Yy — Y} is large the proposed estimate essentially equals the traditional
estimate. This is partly the effect of using a noninformative uniform prior: if Yy — Y} is large, the prior
does not modify the traditional estimate, but if Yy — Y, is small, the prior, which requires p; > 0, will
yield a larger estimate than the traditional approach. The results shown in Figs. 2 and 3 are typical for all
ten wildtype—wildtype arrays and both channels. In Table 1, we summarize for the ten wildtype-wildtype
arrays the mean squared error between the estimated log-expression ratio and the true log-expression ratio
of 1. The SD is the standard deviation of the mean squared error over the ten arrays. As can be seen from

TABLE 1. AVERAGE MEAN SQUARED ERROR PER ARRAY IN THE LoG-EXPRESSION RATIO?

Traditional Bayesian
approach approach
Spots averaged over Mean SD Mean SD
All spots not labeled suspicious by (7) — — 0.042 0.021
All spots for which the traditional method yields an 0.051 0.029 0.038 0.020
expression ratio
Spots for which the traditional method does not yield an — — 0.187 0.122
expression ratio
Spots for which the expression level is among the 0.233 0.149 0.096 0.061
10% lowest levels on the chip
Spots for which the expression level is not among the 0.031 0.017 0.032 0.017
10% lowest levels on the chip
Fraction of spots for which an estimate was obtained 0.975 0.008 0.997 0.001

4The SD shows the array-to-array variation.
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FIG. 4. Scatterplot matrix for the traditional and Bayesian estimates of the log-expression ratio for four replicate
chips of the same mutant. Combinations for which the traditional method did not yield an estimate of the ratio are
triangles for the Bayesian method; there are between 110 and 160 such points in each panel, most of which fall on
top of the other points.

this table, the traditional and the Bayesian procedures perform virtually identically when the expression
levels are high, but when the expression level is low the Bayesian procedure has a considerably reduced
variance.

3.2. Mutants

We also analyzed data on forty arrays where one channel contained RNA from wildtype yeast cells and
the other channel from yeast cells in which some genes were mutated.There were ten different type of
mutants, each of which was used on four arrays, twice as the green channel and twice as the red channel
(“reverse fluoring”). In contrast to the wildtype—wildtype experiments, for these arrays we do not know
what the true expression ratio is.

In Fig. 4 we show a pairs plot of the traditional (left) and Bayesian estimate (right) of the expression
ratio for the four replicates of one of the mutants. The average correlation coefficient of the six correlation
coefficients is 0.59 for the traditional approach and 0.82 for the Bayesian approach (0.77 if we exclude
the points for which the traditional approach does not yield an estimate). Combining all ten sets of
replicates, the average correlation for the traditional approach is 0.58 and the average correlation for the
Bayesian approach is 0.77 (0.72 excluding the points for which the traditional approach does not yield an
estimate).

The expression ratios of the mutants for some of the genes were independently verified using Northern
Blot. In particular, we have Northern Blot data for 126 gene/mutant combinations. In Fig. 5 we show a
plot of the traditional (left) and the Bayesian (right) estimates of the expression ratio for each of the four
replicates (i.e., there are 4 X 94 = 376 points in these plots.? In Fig. 5, we show the (unweighted) average
of the expression ratios against the Northern Blot data. Visually, there seems to be little difference between
these approaches, although the root mean square difference between the cDNA estimate of the expression
ratio and the Northern Blot estimate of the expression ratio is somewhat lower for the Bayesian estimate
(0.694) than the traditional estimate (0.769).

2Two expression ratio are missing for the traditional approach.
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FIG. 5. Traditional and Bayesian estimate of the log-expression ratio based on the average of four arrays against a
Northern Blot estimate of the expression ratio.

We do notice from Fig. 5 that there seems to be a systematic difference between the array measurements
(independent of the computational approach) and the Northern Blot measurements. In particular, North-
ern Blot yields larger log-expression ratios for those gene/mutant combinations that already yield high
expression ratios. We eventually determined that the reason for this apparent bias was that the standard
Northern Blot analysis only measures the expression level for RNA of the correct length and excludes
cross-hybridization, while for glass spotted arrays the expression level includes cross-hybridization. Ef-
fectively this “inflates” both the numerator and the denominator for the glass spotted array technique,

traditional approach Bayesian approach
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FIG. 6. Traditional and Bayesian estimate of the log-expression ratio based on the average of four arrays against a
Northern Blot estimate of the expression ratio that has been adjusted to include cross-hybridization.
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TABLE 2. AVERAGE MEAN SQUARED DIFFERENCE BETWEEN THE CDNA ESTIMATE AND
THE NORTHERN BLOT ESTIMATE OF THE LoG-EXPRESSION RATIO?

Number of gene/ Traditional Bayesian

Genes mutant combinations approach approach
20 selected for biological reasons 94 0.393 0.394
4 with low expression levels 30 0.463 0.183
All 124 0.411 0.343

4The two spots for which the traditional approach did not yield an estimate have been eliminated.

yielding somewhat smaller log-expression ratios. It is, unfortunately, not possible to exclude this cross-
hybridization. On the other hand, it is possible to estimate the Northern Blot expression level including
cross-hybridization (something we usually would not want to do). To this extent, we reread the Northern
Blot films that were used in Fig. 5 to include cross-hybridization. Figure 6 contains these corrected re-
sults; as can be seen, now there appears to be little bias and little difference between the two approaches.
Numerically, the root mean squared difference between the Northern Blot estimates and the traditional es-
timates is 0.411, while the squared difference between the Northern Blot estimates and the Bayesian esti-
mates is 0.343.

In total there were 24 genes for which Northern Blot was done for some of the mutants. Of these 24
genes, 20 were selected because they were of interest for biological reasons (their analysis will be reported
elsewhere), the remaining four were selected because they had low expression levels, and it was suspected
that we may see differences between the traditional and the Bayesian analysis method. In Table 2, we
summarize the differences between the two analysis methods separately for the two groups of genes. As
can be seen, similarly to the wildtype experiments, the gain of the Bayesian approach comes from the
experiments with low expression levels.

4. DISCUSSION

In this paper, we propose a Bayesian method for background correction and the computation of log-
expression ratios. The proposed approach reduces the variation of the estimates of the expression ratio
when the expression levels are low. At the same time, it keeps the estimates for expression ratios virtually
unchanged when the expression levels are higher. After this preprocessing, the standard error of estimates
of the log-expression ratio appears to be approximately independent of the expression level (see Fig. 2).
This is desirable, since it allows users to informally compare estimates of expression ratios, without having
to worry too much about the standard errors of these estimates.

Undoubtedly, spots with low expression levels have many problems, for example image segmentation
algorithms are likely doing a poorer job on spots where the expression level is low, and such spots are more
likely to be the result of faulty spotting on the array. Still, reliable estimates of the expression level will
improve further analysis, such as clustering, as good clustering algorithms will not depend on the precise
expression level of a single spot, but rather depend mainly on the magnitude of (groups) of log-expression
ratios.
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