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SUMMARY

In early detection of disease, combinations of biomarkers promise improved discrimination over
diagnostic tests based on single markers. An example of this is in prostate cancer screening, where
additional markers have been sought to improve the specificity of the conventional Prostate-Specific
Antigen (PSA) test. A marker of particular interest is the percent free PSA. Studies evaluating the benefits
of percent free PSA reflect the need for a methodological approach that is statistically valid and useful in
the clinical setting. This article presents methods that address this need. We focus on and-or combinations
of biomarker results that we call logic rules and present novel definitions for the ROC curve and the area
under the curve (AUC) that are applicable to this class of combination tests. Our estimates of the ROC
and AUC are amenable to statistical inference including comparisons of tests and regression analysis.
The methods are applied to data on free and total PSA levels among prostate cancer cases and matched
controls enrolled in the Physicians’ Health Study.
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1. INTRODUCTION

In early detection of disease, combinations of biomarkers promise improved diagnostic performance
over single markers, which may be lacking in sensitivity and/or specificity. An important example is
that of prostate cancer screening with Prostate-Specific Antigen (PSA). Although high PSA levels are
associated with prostate cancer, benign conditions may also cause elevation of PSA. Consequently, the
conventional criterion for a positive test (PSA> 4.0 ng ml−1) yields a non-trivial false-positive rate, with
high costs in terms of unnecessary biopsies and emotional distress (Brawer, 2000). However, PSA consists
of two different subtypes, free and complexed PSA, and while their sum tends to rise in the presence of
a malignancy, the proportion of free PSA tends to decline (Stenmanet al., 1991). This fact leads to the
obvious question: Could combining information on the ratio of free to total PSA (RPSA) with the total
PSA level (TPSA) improve discrimination of prostate cancer cases from healthy men?
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There is a substantial literature on the potential gains that might be achieved from the use of RPSA in
combination with TPSA (e.g. Beduschi and Oesterling, 1998; Brawer, 2000; Carlsonet al., 1998; Catalona
et al., 1995, 1997; Gannet al., 2002; Partinet al., 1996; Reissiglet al., 1996). To date, the vast majority of
published studies have explored the use of RPSA when TPSA levels are mildly elevated, within a specified
diagnostic gray zone, or reflex range. The combination tests are of the form: test positive ifR(a, b, c) is
true, where

R(a, b, c) = TPSA> c OR (b < TPSA� c AND RPSA< a).

Here the reflex range is the interval(b, c).
The endpoints of the TPSA reflex range and the optimal threshold for RPSA within this range are

matters of some debate. Initial studies focused on a reflex range for TPSA of 4–10 ng ml−1, and found
that use of RPSA within this range appeared to substantially improve specificity with only small losses
in sensitivity (Catalonaet al., 1995; Partinet al., 1996). Subsequent studies suggested that RPSA might
be useful when PSA levels were even lower than 4.0 ng ml−1 (Catalonaet al., 1997; Reissiglet al.,
1996). A recent report by Gann and colleagues observed that use of RPSA within a TPSA reflex range
of 3–10 ng ml−1 could actually improve both specificity and sensitivity simultaneously relative to the
conventional test (Gannet al., 2002). As with the reflex range, the recommended percent free PSA
threshold has varied across studies, from a minimum of approximately 10% to a maximum of 25%.

Although the studies published to date collectively suggest that combining RPSA with TPSA
may indeed be useful, the individual studies each explore a very restricted subspace of the potential
combination rules (e.g. by fixing the reflex range) and generally do not quantify the statistical significance
of any apparent improvement in diagnostic performance. In our opinion this is largely a consequence of the
lack of an accessible statistical methodology for identifying and comparing tests that combine information
on multiple markers in a clinically meaningful way. In this article we introduce such a methodology and
illustrate its utility in practice. We consider the space of clinically meaningful combination rules to be the
set of ‘and–or’ combinations of threshold rules in each biomarker, which we refer to aslogic rules; the
rule R(a, b, c) above is a specific instance of a logic rule.

Logic combination rules are preferred by clinicians for their interpretability and simplicity. By
identifying the space of candidate rules with the logic rules, we consider combination tests that have not
been previously explored. These include, for instance, rules that extend the TPSA reflex range below
4.0 ng ml−1, but use a more stringent RPSA criterion for men below versus above this threshold;
such a rule has been suggested in the clinical literature, but never formally evaluated (Beduschi and
Oesterling, 1998). We also introduce graphical and quantitative methods for comparing the performance
of the combination rules with conventional or competing rules. These methods extend Receiver Operating
Characteristic (ROC) curve methodology in an intuitive and interpretable way from tests based on a
single marker to tests based on logic combinations of markers. The methods are applied to data on free
and total PSA levels among prostate cancer cases and matched controls participating in the Physicians’
Health Study (Gannet al., 1995, 2002). By introducing these methods and illustrating their applicability
to a highly relevant and controversial problem, we hope to provide a useful approach to developing
combination tests for the early detection of disease.

2. METHODS

2.1 Overview

In this section, we develop a definition of the ROC curve for logic combinations of biomarkers (‘logic
rule ROC curve’). This development assumes availability of a classification algorithm for identifying
predictive rules combining multiple biomarkers. Classification algorithms search the space of possible
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rules for the optimal rule, namely the one minimizing a specified objective function. After presenting our
notation, we describe the classification algorithm used in our application. The definition of the logic rule
ROC curve follows from assuming a particular form for the objective function. This objective function,
which is closely related to the probability of misclassification, is applicable also in the case of a single
biomarker, and provides us with a unified definition of the ROC curve which is valid for both the single-
and multiple-biomarker settings. For comparing rules we define a concept analogous to the area under
the ROC curve (AUC) with one marker, which we call the Probability of Correct Classification (PCC).
The PCC is relatively straightforward to estimate in practice and lends itself to statistical inference, in
contrast to the empirical AUC. We derive conditions under which the PCC equals the empirical AUC,
which allows us to determine how closely the PCC will approximate the area under the logic rule ROC
curve in practice. We then show how to apply theory recently developed for AUC regression with one
marker (Dodd and Pepe, 2002a) to the PCC to compare the performance of different rules while adjusting
for covariates.

2.2 Notation

Consider the case of two markers,X andY; the methods presented below extend easily to the case of
more than two markers. In our application,X will denote TPSA andY RPSA. Denote the marker values
for cases byXD andYD and for controls byXD̄ andYD̄. Let c1, c2, . . . cm be the set of thresholds of
interest inX, and, similarly, letd1, d2, . . . dn be the set of thresholds of interest inY; the sets{ci } and{dj }
may be informed by the specific application or they may simply be evenly spaced percentiles or uniform
grids over the relevant biomarker ranges.

The set of logic rules consists of the space of rules given by and–or combinations of expressions
like X > ci andY > dj . Graphically, a logic rule would be represented by a set of rectangles, or step-
functions traversing the scatterplot ofX–Yvalues as illustrated in Figure 1. Many classification algorithms
exist to identify ‘good’ logic rules (e.g. Breimanet al., 1984; Quinlan, 1993; Ruczinskiet al., 2003).
These algorithms typically require specification of an objective function which quantifies the predictive
performance of any given rule. To identify high-quality rules, the algorithms search through the space of
classification rules to find the rules that optimize the objective function. We use a specific classification
algorithm, and a specific objective function, but the development here does not depend on these particular
choices.

2.3 Logic regression

The classification algorithm used in this application is logic regression, an adaptive regression method-
ology developed for binary covariates (Ruczinskiet al., 2003). Logic regression searches for Boolean
combinations of predictors in the entire space of such combinations, while being completely embedded
in a regression framework, where the quality of the models is determined by the respective objective
functions of the regression class.

As in many nonparametric regression methodologies, the goal in logic regression is to predict a
response variable based on predictor variables. We here assume that all predictors are binary. In our
setting, the predictors are logic combinations of threshold conditions in each biomarker (e.g.X > ci

or its complement). The type of regression problem is determined by an objective function that relates
fitted values with the response. Possible objective functions include the residual sum of squares in linear
regression, the log-likelihood in generalized regression, the partial log-likelihood in Cox regression, or
misclassification in classification problems. In our application we use classification models; the response
is an indicator of case-control status and our objective function is simply the number of misclassified
individuals.
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Fig. 1. Graph of the TPSA/RPSA data for study participants, together with the conventional TPSA-based rule and the
rule identified by Gannet al. (2002). For display purposes we have plotted data from a random 50% of controls, and
have cut off the horizontal axis at TPSA= 20 ng ml−1; 17 cases and 8 controls had TPSA values above 20 ng ml−1.
All of these cases and 6 of the 8 controls also had RPSA values below 0.2.

In logic regression, the challenge is to find good candidates for the logic term, as the collection
of all Boolean expressions is enormous. Using a tree-like representation for logic expressions, we can
adaptively select this term using a simulated annealing algorithm. In our setting leaves of each tree are
the threshold conditions in each biomarker, and the root and knots of the tree are the Boolean (and–or)
operators (Figure 2). Simulated annealing is a probabilistic, iterative algorithm. At each step a possible
operation on the current tree, such as adding or removing a knot, is proposed at random. This operation is
always accepted if the new logic tree has a better score (objective function value) than the old logic tree,
otherwise it is accepted with a probability that depends on the difference between the scores of the old and
the new tree and the stage of the algorithm. Properties of the simulated annealing algorithm depend heavily
on Markov chain theory and thus on the set of operations that can be applied to logic trees (van Laarhoven
and Aarts, 1987). The complexity of a specific model is defined by the size of its logic tree which is given
by the number of leaves. Naturally, models of greater complexity will tend to fit the observed data best.
To avoid overfitting, the algorithm first selects model size using a cross-validation approach (Ruczinskiet
al., 2003).

2.4 The logic rule ROC curve

The misclassification objective function can be written asFP+ FN, whereFPdenotes the number of false-
positive errors andFN the number of false-negative errors. More generally, a weighted misclassification
error function,L(α) = αF P + F N, may be more appropriate, for example because the ratio of cases to
controls in the data set may be arbitrary. Higher values ofα will lead the algorithm to search for logic
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Fig. 2. An example of a logic tree, corresponding to the rule: TPSA� 10.0 ng ml−1 OR ((3 � TPSA < 10)
AND RPSA < 0.2). (Note that this rule would usually be reduced to TPSA� 10.0 ng ml−1 OR (3 � TPSA AND

RPSA< 0.2) by the logic regression algorithm.)

rules with lower false-positive error rates and conversely. The weightα may in general be thought of as an
index of conservatism with higher values ofα yielding rules that are more conservative in the sense that
they are less likely to declare a test positive. The logic rule ROC curve is defined in terms ofα as follows.

DEFINITION 1 The logic rule ROC curve,ROC(α), is a plot of the true- versus false-positive rates
corresponding to the optimal logic rules under the weighted misclassification error function,L(α), asα

varies.

This definition is justified also in the one-dimensional (single marker) setting. In the single-marker
case, the ROC curve,ROC(c), corresponding to the test TPSA> c, consists of the pairs of true- and
false-positive rates asc varies. However, suppose that false-positive errors have weightα relative to false-
negative errors. Then, for any given value ofα, there will exist a thresholdc that minimizes the weighted
misclassification error function,L(α). As α increases, so will the cutoffc and vice versa. Sincec is
therefore a monotonic function ofα, wecan define the ROC curve as the plot of true-positive versus false-
positive rates either as the cutoffc changes or as the indexα changes. This is a key insight because in the
multidimensional setting there are multiple cutoffs for each of the different biomarkers and the resulting
space of possible combination rules lacks the ordering that is necessary to construct an ROC curve. The
indexα effectively provides an ordering of rules regardless of the number of markers, and thus a provides
aunified definition of the ROC curve that applies to both the single and multiple marker settings.

RESULT 1 For each attainable false-positive rate, the corresponding point on the logic rule ROC curve
maximizes the true-positive rate.

This observation can be proved by contradiction. For, suppose the point(F Po, T Po) is the point on
the logic rule ROC curve that corresponds toα, and there exists another ruleR∗ with false-positive rate
F P1 equal toF Po, and a true-positive rateT P1 that exceedsT Po. Then, the weighted misclassification
error rate forR∗ is even smaller than that associated with(F Po, T Po), i.e.αF P1+ F N1 < αF Po + F No,
whereF N1 = 1 − T P1 and F No = 1 − T Po. However, if this is the case, then by Definition 1,T P1
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must be the value of the logic rule ROC curve at false-positive rateF Po. Therefore, the point(F Po, T Po)

cannot be on the logic rule ROC curve.
The importance of this result is that it allows us to establish the connection between our method

and previous approaches to developing and evaluating tests based on multiple biomarkers. For example,
Baker (2000) discretizes a bivariate biomarker space and notes that withn intervals in one dimension
andm intervals in another dimension, each split of the resultingn by m space in two corresponds to a
classification rule. Plotting the true-positive versus the false-positive rates for each rule yields a cloud
of points. Baker defines the ROC curve as the one connecting these points that lies ‘highest and farthest
to the left’ and provided an algorithm from the econometric literature to derive it. Noting that the rules
considered by Baker correspond to the set of logic rules given the assumed discretization, we observe that
his algorithm identifies the logic rules that maximize the true-positive rate for each observed false-positive
rate. By Result 1, these are theoretically the same as the optimal rules identified by the logic regression
algorithm.

In practice, the results of our algorithm and that of Baker (2000) will likely differ because of our use
of a probabilistic algorithm to search the rule space, our cross validation approach and our use of training
and test data sets, all of which introduce some randomness into the procedure.

A similar argument illustrates the equivalence of our ROC concept and that of McIntosh and Pepe
(2002). These authors show that the optimal combination test, namely the one that maximizes the true-
positive rate for any specific false-positive rate, should be based on the risk score defined as the probability
of disease given the observed biomarker values. There are many ways to model the probability of disease,
but if a logic regression model is used, then the resulting space of possible combination rules corresponds
to the space of logic rules, and their ROC curve for the optimal combination test will match ours.

A consequence of this result is that the logic rule ROC curve is monotone increasing. In practice,
however, we consider a grid of values forα, {α1, α2, . . . αk}, and estimate the logic rule ROC curve
as follows. First, the classification algorithm is run for eachα value to select the corresponding logic
rule. Then the true-positive rates for the selected logic rules are plotted against the associated false-
positive rates. Because the classification algorithm may not always identify the optimal rule in practice,
the estimated ROC curve may exhibit some non-monotonicity.

Note that eachα value yields a corresponding point on the logic rule ROC curve. Therefore, the logic
rule ROC curve is defined by a set of rules,R∗ = {R∗

α j
; j = 1, . . . K }, where theα are in decreasing

order, and the corresponding rules are ordered by increasing false-positive rate. Each of these rules may
be thought of as defining a subspace of the two-dimensional biomarker space, within which all subjects
will be declared test-positive. This is analogous to the positivity region of Baker (2000). For a given rule,
R, we say that an individual’s test result is inR if he would be declared positive on the basis of the rule
R.

2.5 Comparing diagnostic tests

The area under the ROC curve (AUC) is a standard omnibus-type statistic for comparing diagnostic rules
based on tests with continuous outcomes. In the one-dimensional setting where there is a single markerX,
the AUC is interpretable asP[XD > XD̄], whereXD and XD̄ are marker values for randomly selected
diseased and healthy individuals respectively. Note that this can be rewritten asP[XD > r andXD̄ �
r for somer ∈ (−∞, ∞)]. Thus, the conditionXD > XD̄ is equivalent to the existence of a threshold, or
one-dimensional rule, separating the two biomarker values, such that the test result for the diseased person
is positive and that for the health person is negative. This notion of a separating rule generalizes directly
to multiple dimensions and provides us with a concept that is analogous to the area under the curve.
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DEFINITION 2 For a given logic rule ROC curve defined by set of rulesR∗, the probability of correct
classification (PCC) is the probability that for any randomly selected pair of diseased and healthy
individuals, with marker values(XD, YD) and(XD̄, YD̄), there exists a ruleR in R∗ such that(XD, YD)

is in R and(XD̄, YD̄) is not.

By the preceding discussion, the PCC is equal to the AUC in the case of a single marker. In the case
of multiple markers, however, the PCC is provably equal to the AUC only if the rules comprisingR∗ are
nested.

DEFINITION 3 The rules in the setR∗ are nested if the subspace defined byR∗
αi

is contained within that
defined byR∗

α j
for all i < j .

As an example of nested and non-nested rules, consider the rulesR : X > x andY < 1 and
R′ : X > 2 andY < 2. If x � 2 then the rules are nested, otherwise they are not.

Although we anticipate that the subspaces defined by the rulesR∗
α j

will generally increase in size asj
increases, they may not all nest, especially if we are attempting to constrain the rule size for purposes of
predictive accuracy. In the case where the rule set is nested, we have the following result.

RESULT 2 For the logic rule ROC curve defined byR∗ = {R∗
α j

; j = 1, . . . K }, if the setR∗ is nested,
then the PCC is equal to the area under the logic rule ROC curve calculated by numerical integration.

PROOF1 To prove this result, denote the sequence of rules inR∗ by R1, R2, . . . RK corresponding to
increasing false-positive ratesF P1, F P2, . . . F PK . By Definition 2, the PCC is given byP[(XD, YD) ∈
R and(XD̄, YD̄) �∈ R for someR ∈ R∗]. But this can be rewritten as

PCC=
K∑

m=1

P[(XD, YD) ∈ Rm and(XD̄, YD̄) �∈ Rm but (XD̄, YD̄) ∈ Rk for k � m + 1],

whereRK+1 classifies all subjects as positive. Equivalently,

PCC=
K∑

m=1

P[(XD, YD) ∈ Rm]P[(XD̄, YD̄) �∈ Rm but (XD̄, YD̄) ∈ Rm+1].

But this is just equal to
∑K

m=1 T Pm(F Pm+1 − F Pm), whereT Pm is the logic rule ROC curve value
corresponding to false-positive rateF Pm and F PK+1 = 1. This is simply the area under the logic rule
ROC curve calculated by numerical integration. �

Estimation of the PCC is straightforward. If the data for diseased individuals are denoted(XD
i , YD

i )

and those for non-diseased individuals are(XD̄
j , YD̄

j ), then

P̂CC=
nD∑
i =1

nD̄∑
j =1

Ii j /nDnD̄,

whereIi j = I ((XD
i , YD

i ) ∈ R and(XD̄
j , YD̄

j ) �∈ R for someR ∈ R∗).
The discretization of the biomarker ranges and the finite set of values considered forα may lead to

ties between pairs of diseased and non-diseased observations in the sense that for everyR in R∗, both
observations will either be simultaneously inR or not. We label these pairs of observations as neutral
pairs. In practice, we assignIi j to one for half of the neutral pairs and to zero for the other half. When
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the rules are nested, the corresponding estimate of the PCC corresponds to calculating the empirical AUC
using the trapezoidal rule.

When the rules inR∗ are not all nested, there will exist pairs(XD
i , YD

i ) and (XD̄
j , YD̄

j ) such that

(XD
i , YD

i ) ∈ R and(XD̄
j , YD̄

j ) �∈ R but, in addition,(XD̄
j , YD̄

j ) ∈ R′ and(XD
i , YD

i ) �∈ R′ for at least
two rules R and R′ in R∗. We call these pairs of pointsinconsistentunderR∗ because although there
exists a rule that separates the points and correctly classifies them as diseased and not diseased, there also
exists a rule that separates the points and classifies them incorrectly. The relative frequency of inconsistent
points is directly related to (a) the number of non-nested rules in the sequence of rules ordered by false-
positive rate and (b) the probability content of the non-nested regions. With a low frequency of inconsistent
points, the probability content of the non-nested regions will be low and the estimate of the PCC based
on Definition 3 will approximate the AUC estimated by numerical integration. This is illustrated in our
application.

Our definition of the PCC allows us to compare combination tests with competing tests using methods
developed for AUC regression (Dodd and Pepe, 2002a). These methods allow us to model the AUC (or the
PCC) as a function of covariates using generalized linear models. As an example, consider comparing the
PCC for the test combining TPSA and RPSA with the PCC for TPSA alone. By Definition 2, the PCC for
the combination test is simply the expectation of the binary variablesIi j , and the PCC for the TPSA-based

test is also an expectation of binary variables given byI (XD
i > XD̄

j ); these expectations can be compared
using binary regression with a single covariate representing test type (combination test or TPSA test). In
this case, a set of indicators{Ii j } is defined for each test type and the resulting 2× n1 × n2 indicator
variables are considered as response variables in the analysis. This approach is also useful because it
allows us to adjust the comparison for other covariates that might affect the result. For example, among
prostate cancer cases in the Physicians’ Health Study, the time from testing to diagnosis ranges from 1 to
12 years. We anticipate that sensitivity will depend strongly on this interval.

When computing variances of the regression parameter estimates for hypothesis testing purposes, it is
important to recognize that the binaryIi j variables are cross-correlated. Like Dodd and Pepe (2002a), we
use bootstrapping to estimate parameter variances, and use the asymptotic normality of the parameter
estimates for hypothesis testing. For each bootstrap sample, we obtain the logic rule ROC curve as
described above, with one exception; for computational efficiency, we specify a model size of four, which
we have found to produce similar results to those obtained when selecting a rule of size at most four by
cross-validation. We then use binary regression to compare the PCC for the logic rule and the PCC for
TPSA, adjusting for the time interval from testing to diagnosis for the disease cases.

3. THE PHYSICIANS’ H EALTH STUDY

The Physicians’ Health Study (PHS) was a randomized, placebo-controlled trial of aspirin and beta-
carotene among 22 071 US physicians aged 40–84 years in 1982 (Gannet al., 1995). At enrollment, 68%
of participants provided a blood sample which was stored. Subsequently, serum from 430 men diagnosed
with prostate cancer up to 12 years following enrollment was re-assayed for PSA and free PSA (Gannet
al., 2002). The majority of these cases were diagnosed prior to widespread adoption of the PSA test for
prostate cancer screening. TPSA and RPSA data were available for these 430 cases and 1642 age-matched
controls who had not been diagnosed with prostate cancer. For the combination rules, we discretized
the TPSA range by cutpoints{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, where all measurements are in ng ml−1 units.
Cutpoints above 10 ng ml−1 were not considered because values of TPSA in this range are generally
considered sufficiently high to recommend biopsy in the absence of any additional information. Similarly,
we discretized the RPSA range by cutpoints{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}; based
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Table 1.Characteristics of cases and controls. Shown are data from cases and
controls with both TPSA and RPSA values available at enrollment. Unless

otherwise specified, numbers in parentheses are standard deviations

Cases (n = 429) Controls (n = 1640)
Mean age at test (years) 60.29 (7.22) 60.66 (7.33)
Mean TPSA at test (ng ml−1) 5.50 (11.08) 1.84 (2.68)
Number with TPSA> 4.0 ng ml−1 (%) 147 (34.3) 144 (8.8)
Number with TPSA> 10.0 ng ml−1 (%) 49 (11.4) 21 (1.3)
Mean RPSA level 0.20 (0.12) 0.30 (0.15)
Number with RPSA< 0.2 (%) 247 (57.6) 403 (24.5)
Mean time from test to diagnosis (years) 8.57 na

on clinical information, we felt that higher values of RPSA would not feature in the combination tests of
interest.

The prostate cancer substudy of the Physicians’ Health Study (Gannet al., 1995) is possibly one
of the most cited studies regarding the operating characteristics of TPSA. Since it is a retrospective,
longitudinal, repository study (a Phase 3 study in the lexicon of Pepeet al. (2001)), it is not subject to the
typical problems like selection bias and verification bias that are present in prospective screening studies
(Begg, 1991). However, the definitions of sensitivity and specificity in this setting differ somewhat from
the traditional definitions, namely the probability of a positive test given disease is present at the time
of the test, and the probability of a negative test, given no disease present at that time. Rather, sensitivity
here is the probability of a positive test given afuturediagnosis of disease within a maximum time interval
following the test, and similarly, specificity is the probability of a negative test given no future diagnosis
of disease within this time. Thus, disease status is not ascertained for either cases or controls at the time
of the test. Given that cases may be diagnosed up to 12 years after the time of their test, we anticipate that
sensitivity for this group as a whole will be somewhat lower than it would be in the prospective setting
and that sensitivity will likely depend on the time between testing and diagnosis.

4. RESULTS

Table 1 summarizes key characteristics of cases and controls. As noted by Gannet al. (2002), the age
distribution at the time of the test was similar for cases and controls due to the age-matched design. PSA
levels were significantly higher among cases (p < 0.01, Wilcoxon rank-sum test), as were complexed PSA
levels (p < 0.01). The average ratio of free to total PSA was significantly lower among cases (p < 0.01).
All of these differences were observed in spite of the median time from test to diagnosis for cases being 8
years. Figure 1 provides a scatterplot of the TPSA and RPSA results for the cases and controls in the study.
For display purposes we have plotted data from a random 50% of controls, and have cut off the horizontal
axis at TPSA= 20 ng ml−1; 17 cases and 8 controls had TPSA values above 20 ng ml−1. All of these
cases and 6 of the 8 controls also had RPSA values below 0.2. The plot shows that a significant proportion
of cases have TPSA values below the conventional cutoff of 4.0 ng ml−1, and that a number of controls
have TPSA values above this cutoff. However, the cases with TPSA below 4.0 ng ml−1 tend to have longer
time intervals between testing and diagnosis than those with PSA above 4.0 ng ml−1 (7.5 versus 9.1 years
on average, Wilcoxon rank-sump < 0.001) and the controls with TPSA above 4.0 ng ml−1 tend to be
older than those with lower TPSA values (60.2 versus 65.1 on average, Wilcoxon rank-sump < 0.001).

Figures 3 and 4 display the results of the logic regression to determine optimal combination rules
corresponding to different relative weights for cases and controls. To avoid overfitting, we randomly
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divided our data into two subsets, a training dataset consisting of two-thirds of the cases and the controls,
and a test dataset consisting of the remaining one-third. We used the training dataset to identify logic
rules for each value ofα by cross-validation, but evaluated the logic rule ROC curve and PCC on the test
data. This procedure (splitting the data two-thirds/one-third, identifying logic rules on the training data
and estimating the ROC/PCC on the test data) was repeated 25 times, with different random splits of the
whole dataset for each run. Results presented correspond to the run yielding values for the logic rule PCC
and the TPSA-based AUC that were closest to their means over the 25 runs. This run was selected so as
to provide results for what might be considered a ‘typical’ rather than an ‘extreme’ split of the data into
test and training sets.

Figure 3 plots a sample of the rules themselves with varyingα weights and corresponding false-
positive and false-negative rates based on the complete data. This figure shows how, as the weight of
false-positive relative to false-negative errors increases, the selected logic rule becomes more stringent,
simultaneously reducing both true- and false-positive rates. The top two rules are nested, as are the bottom
two rules, but the four rules together do not constitute a nested set. While the rules that were obtained all
have the form of step-functions, the logic regression algorithm could have come up with any shape rules,
including combinations of disjoint regions; the only restriction being on the size of the rule.

Figure 4 shows the ROC curves for the TPSA-based rule as well as for the combination rule. For
fairness in the comparison, we evaluated a discretized TPSA-based rule with possible thresholds (in
ng ml−1) given by(1, 1.5, 2, 2.5, 3, . . . , 10); this discretization yielded a frequency of neutral rules that
was similar to the sum of neutral and inconsistent rules for the logic rule ROC curve (approximately
8%). Since high specificity is important in cancer screening studies, the plots also show the ROC curve
values for false-positive rates below 20%. The results indicate an apparent advantage for the logic rules
within this region. Indeed, the plot shows that the classification algorithm identifies logic rules that have
both lower false-positive and false-negative rates than the standard TPSA> 4.0 ng ml−2 rule, which has
sensitivity equal to 33.6% and false-positive rate equal to 9.5%. As an example, the combination rule that
most closely matches the sensitivity of the TPSA-based rule is (TPSA> 1.0 ng ml−1 AND RPSA< 0.1)
OR (TPSA> 3.0 ng ml−1 AND RPSA< 0.15), which has sensitivity equal to 34.3% and a false-positive
rate of 5.9%. The presence of these rules is consistent with the findings of Gannet al. (2002), that it is
possible to identify combination rules with improved sensitivity and specificity relative to the standard
TPSA> 4.0 ng ml−1 rule. However, it is important to test whether these apparent improvements are in
fact statistically significant.

The area under the ROC curve for the TPSA-based rule is 0.747 and the PCC for the logic rule ROC
curve is 0.752. The PCC for the logic rule closely approximates the area under the curve computed by
numerical integration (trapezoidal rule), namely 0.749. The frequency of inconsistent pairs is low (3.1%)
which explains the concordance; our estimate of the PCC assumes that separating rules in the sense of
Definition 2 exist for half of these pairs.

For comparing tests, we used the following binary regression model:

logit(pi jk ) = β0 + β1Xk + β2Ti + β3XkTi ,

where pi jk is the probability that a rule of test typek exists, separating case observationi from control
observationj , Xk is an indicator of test type, andTi denotes time interval from test to diagnosis for case
observationi . TheTi term allows us to incorporate the impact of this time interval, while the interaction
term allows us to discern whether the relative performance of the two tests changes with time prior to
diagnosis and thus to determine whether one test might diagnose disease earlier in its natural history than
the other (Etzioniet al., 1999). In a prospective screening setting, this information would naturally not
be useful since time prior to clinical diagnosis is not known at the time of screen detection. However,
when making screening policy decisions, it is important to know whether one test is able to detect disease
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Fig. 3. Logic rules identified by the logic regression algorithm for different indexesα with corresponding true- and
false-positive rates.

earlier in its natural history than others, since such a test could ultimately lead to improved effectiveness
and cost-effectiveness.

Our estimate of the odds ratio corresponding to the coefficientβ3 was−0.0523 with bootstrapZ-
value given by−0.179, indicating that the relative performance of the two tests did not change over
time. Eliminating the interaction term, the coefficient estimate forβ2 was −0.107 with bootstrapZ-
value given by−2.181, indicating that, as expected, diagnostic performance for both tests degrades as
the time from testing to diagnosis increases. The results forβ1 (coefficient estimate 0.0697,Z-value
0.694) show a statistically non-significant improvement in performance associated with the combination
test; this translates into only a modest improvement in the PCC as shown in Table 2. In addition, the lack
of a significant interaction between the test type and time variables shows that the combination test does
not appear to identify disease cases sooner than the test based solely on TPSA.
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Fig. 4. Logic rule ROC curve for the combination of TPSA and RPSA and the rule based on TPSA. Data are split
into training(2/3) and test(1/3) set. Logic regression is run on the training set and the rules identified are evaluated
on the test set; this procedure is repeated 25 times. The ROC curves are plotted for the test data yielding values for
the logic rule PCC and the TPSA-based AUC closest to their means over the 25 runs. (a) Entire curve. (b) Portion of
the curve with false-positive rates ranging from 0 to 0.2 (partial ROC curve). Solid curve: combination test. Dashed
curve: TPSA-based test. The lack of monotonicity of the ROC curve is likely due to our restriction of the rule space
to rules of size 4 and/or the use of test data to evaluate and plot the ROC curves.

5. DISCUSSION

Current scientific advances promise that many novel biomarkers will soon become available for use
in early detection and prognostication. Since it is difficult to find single biomarkers that perform well,
attention has shifted to panels of biomarkers, and tests that combine marker values. However, standard
statistical approaches for identifying and evaluating combination tests are not well developed. The
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Table 2.Fitted values of the PCC for the TPSA-based test
and the logic rule combining TPSA and RPSA by time prior
to diagnosis for cases. Data are split into training(2/3) and
test (1/3) set. Logic regression is run on the training set
and the rules identified are evaluated on the test set; this
procedure is repeated 25 times. Results are based on the test
data yielding values for the logic rule PCC and the TPSA-

based AUC closest to their means over the 25 runs

Years from test to diagnosis TPSA PCC Logic Rule PCC
1 0.890 0.886
2 0.877 0.874
3 0.863 0.859
4 0.843 0.843
5 0.831 0.825
6 0.812 0.806
7 0.792 0.786
8 0.770 0.763
9 0.747 0.740
10 0.721 0.714
11 0.695 0.687
12 0.667 0.659

RPSA/TPSA controversy illustrates the consequences of the lack of a formal methodology for quantifying
the diagnostic gains associated with combining biomarkers. A large clinical literature exists concerning
appropriate ways to use information on RPSA with TPSA measures, but results vary and conclusions are
mixed. Although this is no doubt partly due to differences in study design and population characteristics,
the studies also differ in their analytic approaches. Most analyses are exploratory and the vast majority
are ad hoc from a statistical point of view. Typically, results pertaining to specific combination rules are
presented, suggesting that improvements in false-positive rates can be attained with little or no decline in
true-positive rates. However, it is not clear how the combination rules have been identified, nor whether
the apparent improvements are statistically significant.

Statistical methods like ROC curve analysis have become more or less standard tools for evaluating
diagnostic performance when test results can be reduced to a single measurement. However, it has not been
clear how to extend these methods to the multidimensional setting of combination tests. Some methods
have been developed to deal with linear combinations of markers (e.g. Pepe and Thompson, 2000), but
methods for logic combinations, which are most clinically appealing, are largely lacking. An exception to
this is the recent article by Baker (2000). The main problem when considering logic rules is that the rule
space is multidimensional and unordered. Therefore, the ROC curve, which relies on an ordering of the
rule space, is difficult to define. We have proposed a mechanism for constructing such an ordering that is
intuitively reasonable, namely to order the rules according to theα value for which they are optimal. Rules
that are never optimal for anyα are dominated by other rules and need not be considered. The result is
a unifying and interpretable concept of the ROC curve and the probability of correct classification which
is analogous to the AUC, so that these measures can be used to quantify the discriminating capacity of
tests based on any number of biomarkers. An additional advantage of our approach is that it is applicable
to essentially any class of combination tests, and not solely the logic combinations, although we have
focused on this class because of its clinical utility and interpretability.
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In comparing the standard TPSA-based test with tests combining TPSA and RPSA, we found the PCC
for the combination to be only slightly higher than that for the TPSA-based test, suggesting that at best a
modest overall improvement in discrimination due to combining the biomarkers might be expected; this
finding is consistent with the analysis of Baker (2000). With widespread use of the test, however, even a
small improvement in diagnostic performance could translate into a clinically important reduction in the
number of unnecessary prostate biopsies performed. The improvement could be greater when comparing
specific TPSA thresholds with specific combination rules, when considering population subgroups (e.g.
older men), or within specific regions of the ROC curve (e.g. for false-positive rates below a certain
threshold) in which case partial ROC curves and their areas are of most interest (Baker, 2000; Dodd and
Pepe, 2003). In the case of a single marker,Y, the partial AUC is the joint probability thatYD > YD̄ and
thatYD̄ falls within a region of interest (i.e. below a specified quantile defined by a target false-positive
rate). For logic combination tests, the partial AUC (or, more accurately, the PCC) would similarly be the
joint probability that there exists a logic rule separating the two points and that the point for the non-
diseased subject falls within the region of interest. However, it is not clear how to translate a specific
quantile or false-positive rate into a ‘region of interest’ in the logic rule space. We plan to address this
topic in future work.

When faced with an ROC curve which represents a collection of rules, it is natural to ask whether
there is an ‘optimal’ or ‘best’ rule. Although the common wisdom is that rules ‘higher and farther to
the left’ are preferable to rules that are ‘lower and farther to the right’ on the curve, the rule of choice
will ultimately depend on the relative costs of false-positive and false-negative errors. The magnitudes
of these costs will typically depend on the setting and even on the decision-maker. Discussion of these
costs and their implications for rule selection are beyond the scope of this article; we have focused on
a prerequisite to this step, namely whether, in the case of PSA testing, one should seek to determine
an optimal TPSA-based test or, rather, one combining information on TPSA and RPSA. Baker (2000)
presents one approach to identifying a ‘target region’ for the combination rule ROC curve which takes
cost considerations into account. As noted by Baker (2000), in the case of screening interventions the
target region should concentrate on rules with low false-positive rates. We have focused on methods for
identifying clinically interpretable combination rules and have noted that rules combining TPSA and
RPSA appear to improve diagnostic performance over the TPSA-based test in precisely this target region.

In their recent article that inspired this work, Gannet al. (2002) noted a ‘need for methodological
research to determine if sophisticated but user-friendly mathematical functions can provide better
discrimination of cases and controls in various populations than our arbitrary selection of reflex ranges
and cutpoints for testing.’ The approach we have presented provides precisely such methodology, yielding
a statistically valid and clinically accessible framework for quantifying the performance of rules that
combine two or more biomarkers. We believe that these methods can circumvent the arbitrariness inherent
in many prior studies of the role of free PSA in combination with total PSA. Moreover, they will provide a
level of satisfaction that the space of clinically relevant rules has been systematically covered in the quest
for combination rules with low false-positive and false-negative error rates.
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