
BIOINFORMATICS Vol. 19 no. 6 2003, pages 686–693
DOI: 10.1093/bioinformatics/btg079

Directed indices for exploring gene expression
data
Michael LeBlanc 1,∗, Charles Kooperberg 1, Thomas M. Grogan 2

and Thomas P. Miller 2

1Fred Hutchinson Cancer Research Center, PO Box 19024, Seattle, WA 98109, USA
and 2Arizona Cancer Center, 1515 N. Campbell Ave, Tucson, AZ 85724, USA

Received on May 25, 2002; revised on August 20, 2002; November 16, 2002; accepted on November 29,

2002

ABSTRACT
Motivation: Large expression studies with clinical out-
come data are becoming available for analysis. An
important goal is to identify genes or clusters of genes
where expression is related to patient outcome. While
clustering methods are useful data exploration tools, they
do not directly allow one to relate the expression data to
clinical outcome. Alternatively, methods which rank genes
based on their univariate significance do not incorporate
gene function or relationships to genes that have been
previously identified. In addition, after sifting through
potentially thousands of genes, summary estimates (e.g.
regression coefficients or error rates) algorithms should
address the potentially large bias introduced by gene
selection.
Results: We developed a gene index technique that
generalizes methods that rank genes by their univariate
associations to patient outcome. Genes are ordered based
on simultaneously linking their expression both to patient
outcome and to a specific gene of interest. The technique
can also be used to suggest profiles of gene expression
related to patient outcome. A cross-validation method is
shown to be important for reducing bias due to adaptive
gene selection. The methods are illustrated on a recently
collected gene expression data set based on 160 patients
with diffuse large cell lymphoma (DLCL).
Availability: A program written in the R language imple-
menting the gene index can be obtained at http://www.
crab.org/papers/
Contact: mikel@crab.org

INTRODUCTION
There is an expection that subsets of thousands of gene
expression measurements may be meaningfully associated
with patient outcome and will help researchers understand
disease biology and progression. Sufficiently powered
clinical/expression studies should yield insights into the
associations of gene expression to patient outcome.

∗To whom correspondence should be addressed.

Unsupervised statistical methods have been useful for
studying the joint associations of gene expression data.
Clustering techniques, which depend on all pair-wise
associations between expression measurements, have been
widely used. For clinical correlative studies, the clusters
obtained from unsupervised methods have then been
related to patient outcome. Alternatively, techniques have
been proposed for investigating relationships between
individual gene expressions and outcome (e.g. Tusher et
al., 2001). Other approaches have suggested supervised
methods that simultaneously cluster genes and link to
patient outcome (e.g. Tibshirani et al., 2002).

Interpretations of large clusters of genes can be difficult,
since the understanding of the biology of the given system
is often quite limited. Therefore, we investigate a more di-
rected and hopefully more interpretable strategy for inves-
tigating genes that jointly relate to patient outcome and to
a specific ‘reference gene’ of interest. This reference gene
could be the gene identified to be most strongly related
to outcome, or, more likely, it may be suggested from ex-
ternal data such as a protein analysis using immunohisto-
chemistry or other experimental work.

The methods are illustrated with a large expression
data set consisting of 160 patients with DLCL identified
through the Lymphoma and Leukemia Molecular Profiling
Project (LLMPP) (Rosenwald et al., 2002). This data set
includes a much larger number of patients with aggressive
non-Hodgkin’s lymphoma (NHL) than the approximately
50 cases described in Alizadeh et al. (2000).

METHODS
Gene Indices
Assume values xi j for j = 0, . . . , p genes (clones) and an
outcome measure yi for i = 1, . . . , n samples. For cDNA
arrays these are typically the logarithm of expression
ratios and for oligo type arrays they are proportional to the
logarithm of expression. Our examples are based on cDNA
arrays and we assume interest focuses on correlating
expression with patient survival. However, there is nothing
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specific to survival data in the following development.
The method also applies to other ordered or categorical
patient outcome variables. Let y and x j , j = 0, . . . , p,
denote the n-tuples for the n observations. The expression
measurements, x j , are standardized within gene to have
mean zero and variance one. Let x0 denote the expression
measurements for the reference gene.

We consider two measures of association. Let β̂ j be
the association between outcome y and x j . We take β̂ j
to be the regression coefficient in the model relating y
to x j , appropriate for the outcome of interest. Since the
expression measurements are assumed to be standardized,
the regression coefficients are proportional to coefficients
standardized by their standard error. Let ρ̂ j0 represent the
correlation between the expression measure x j and the
expression for the reference gene x0. The correlation can
be standard Pearson correlation. However, we take ρ̂ j0
to be a correlation conditional on outcome to account
for the potential marginal association of each expression
variable with the outcome. For example, suppose there
were two correlated expression variables and two classes,
Class A observed for high levels of both variables 1
and 2 and Class B observed for low levels of variables
1 and 2. The Pearson correlation would be large, but
for individuals within a class there may be essentially
no correlation between the expression measurements. Set
ρ j0|y = cor(x j , x0|y) and ρ j0 = ∫

cor(x j , x0|y)d F(y),
where F(y) is the distribution of the outcome. For two
class data an estimate of ρ j0 is a weighted average of the
correlation between features within each class. For linear
regression, one can estimate ρ j0 by regressing each gene
expression variable x j on y and calculating the correlation
between the residuals for gene j and the reference gene
0. We discuss an extension of this correlation measure for
survival data in the Survival Data Section .

‘Target’ values are defined for each of these measures;
let β∗ denote the target association to the outcome, and
ρ∗ be the target correlation to the reference gene. Ex-
amples of target correlation values to outcome could be,
β∗ = −h (for some large positive h ) and β∗ = h, which
corresponds to picking genes with a large negative and
positive associations, respectively, with patient outcome.
Alternatively, one could choose the target to be some
moderate value, for instance, something close to β̂0. The
target correlation to the reference gene is most likely high
positive, ρ∗ = 1, or negative, ρ∗ = −1, correlation. How-
ever, there may be some cases where there is interest in
genes that are uncorrelated to the reference gene, ρ∗ = 0.

It may also be desirable to find genes within the same
(possibly functional) class. Let c j denote the class label for
the j th gene and c∗ the (target) class. Typically, this is the
class of the reference gene, c0. In the lymphoma example
described later, we identify the major histocompatibility
(MHC) Class II complex. The reference target class need

not be same class as the reference gene: for the lymphoma
data, one may want to use a specific MHC Class II gene
as the reference gene, but focus on relationships to genes
within the MHC Class I group.

An univariate ordering based on a weighted combination
of distances to the target parameters is constructed. To
summarize, the three components of the gene index are:

(1) Correlation with patient outcome.

(2) Correlation between other gene expression and
reference gene expression.

(3) Class membership of genes.

The gene index (GIN) for gene j is defined as

Q( j) = νo Do(β̂ j , β
∗) + νe De(ρ̂ j0, ρ

∗) + νc Dc(c j , c∗)
(1)

where the functions Do, De and Dc measure the departure
of β̂ j from the target outcome association, ρ̂ j0 from
the target correlation and c j from the target gene class,
respectively. We use squared difference for the functions
Do and De, and Dc = 0 if c j = c∗ and 1 otherwise.
There is no natural scale for (1), since it involves
both correlations to outcome and between expressions,
so the components are standardized to have standard
deviation one. The three parameters (νo, νe, νc) specify the
relative weight attached to each component. The special
case of (νo, νe, νc) = (1, 0, 0) is the ranking based
only on single gene associations to the outcome, and
(νo, νe, νc) = (0, 1, 0) ranks genes in terms of correlation
to the reference gene. In general, the GIN is a quadratic
in the template coefficient β∗ and correlation ρ∗ that is
modulated by class membership if νc �= 0. Figure 1 shows
contours of equal GIN for a hypothetical data set (with
one class of genes highlighted). The impact of a non-
zero νc would be to move contours for genes that are not
within the same class as the reference gene. In practice,
it is reasonable to constrain constrain νo, νe and νc to be
non-negative and sum to one.

To summarize the ordering, we plot the marginal
estimates β̂ j versus the rank of the GIN (1) resulting in a
scatterplot of marginal associations, corresponding to a list
of genes. These lists of genes that can be flexibly ordered
by different weights (νo, νe, νc). Of course, if interest was
primarily in gene associations, one could plot correlations
ρ̂ j0 versus the rank of the GIN.

Survival Data
We illustrate our approach with the DLCL data set,
described in detail in the Lymphoma Example Section.
Initial investigation of this data set suggested there were
associations between major histocompatibility (MHC)
Class II gene expression and survival. The MHC Class
II DR gene was particularly interesting, as there is a
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Fig. 1. Contour plot of the gene index (GIN) Equation 1 for
hypothetical data where the target coefficient is β∗ = 0.7 and target
correlation is ρ∗ = 1. The filled circles denote genes in the same
class as the reference gene. The dashed contour lines apply to genes
of the same class as the reference gene and the solid to other genes,
assuming the gene class weight νc > 0.

lymphoma biology publication (Miller et al., 1988) based
on protein data showing an important role for that gene in
terms of disease progression. We choose a DR beta clone
as our reference gene and considered several different
weights for the GIN. Some genes are represented by
multiple clones on the arrays used for the DLCL data set;
we treat them separate in this analysis and to simplify text,
we will refer to them as ‘gene’ rather than ‘gene/clone’.

For a survival outcome, it was natural to choose β̂ j to
be the Cox (1972) regression coefficient for gene j . The
survival outcome is typically coded as y j = (ti , δi ) where
ti is time under observation and δi indicates if the patient
was alive (δi = 0) or dead (δi = 1) at time ti . The hazard
function for a model including a single gene is

λi (t) = λ0(t) exp(β j xi j )

where λ0(t) is an unspecified baseline hazard function.
If β j > 0 higher values of expression are associated
with worse survival (hazard ratios greater than 1) than
those with lower expression, and if β j < 0 larger
values of expression are associated with better survival
(hazard ratios less than 1). We standardized the expression
measurements to have mean zero and variance one and
we removed some genes with a large amount of missing
data or low information. We chose a 1-step approximation
to the Cox (1972) partial likelihood estimate, to facilitate
rapid parallel computation across the genes (e.g. LeBlanc
and Crowley, 1999). To estimate the correlation between
genes conditional on the patients uncensored outcome, we
use the individual components of the partial likelihood
score vector. This correlation only depends on the ranks

of the survival times. We also did the GIN analysis using
standard Pearson correlation (results not shown) and the
results were quite similar.

For this example a template association of survival β∗ =
−0.5, close to the estimate for the DR clone was chosen.
An alternative would be to set β∗ to a large negative
number to select the genes most strongly (negative)
associated with survival. Figure 2 plots the coefficients
β̂ j for the 100 genes with the smallest value of the GIN
for different choices of (νo, νe, νc). Filled circles indicate
the MHC Class II genes. In Figure 2A only the outcome
association has non-zero weight ((νo, νe, νc) = (1, 0, 0)).
Since, the expression measurements are standardized, the
order on the horizontal axis is almost the same for the
usual ranking of genes based on univariate significance
of the null hypothesis β = β∗. Many of the largest
negative Cox regression coefficients are from the MHC
Class II genes, but there are also large negative effects
for some genes not in that class. In Figure 2B we only
weight the correlation of the gene expressions to the DR
clone of interest ((νo, νe, νc) = (0, 1, 0)). It is clear that
the most highly correlated genes are also MHC Class II
genes (in fact some are just different clones for the same
genes). Figure 2C only weights the class of the genes
corresponding to the Dc(c, c∗), component ((νo, νe, νc) =
(0, 0, 1)), so it brings every MHC Class II expression
variable to the left side to the figure. (Within a group,
ties are resolved at random.) Finally, in Figure 2D we
show an example of a weighted combination: in particular
(νe, νo, νc) = (0.6, 0.2, 0.2) which places 60% of weight
on outcome and 20% on both the correlation with DR
and on MHC Class II membership. Now, most of the
MHC Class II genes are in view, with some other strongly
negatively prognostic expression genes. Of course other
weights would change the relative importance of outcome
versus the correlation of DR beta clone expression to
other genes. In addition, one could then view the list of
corresponding genes as ordered in the horizontal axis of
the plot. This list is included as Table 1 in a supplementary
document at http://www.crab.org/papers/.

If desired one could also choose weights (νe, νo, νc) to
optimize some objective function related to the GIN, for
example to chose weights that lead to the largest average
of β̂ j for the q genes with smallest GIN. Since such a
selection is adaptive, K -fold cross-validation could reduce
selection bias, as described below.

We estimate parameter estimates β̂ j , rather than test-
statistics for the hypothesis β j = 0. As we standardize
expression measurements, there is a close connection
between those two summary statistics. As an alternative,
one could plot individual score test statistics versus the
rank of the GIN and score statistics (or a reduction in
prediction error) could be used directly in the GIN as the
first component to focus on the genes most predictive of
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Fig. 2. Illustrations of the marginal effects against the rank of the GIN for the DLCL data using different weighting schemes. The filled circles
denote MHC Class II genes. Plot A: weight only outcome association, (νo, νe, νc) = (1, 0, 0), with template β∗ = −0.5. Plot B: weight only
on correlation with DR clone, (νo, νe, νc) = (0, 1, 0). Plot C: weight only on class variable (MHC Class II), (νo, νe, νc) = (0, 0, 1). Plot D:
combination weight of the three components, (νo, νe, νc) = (0.6, 0.2, 0.2).

outcome. Our software also calculates standardized test
statistics rather than parameter estimates β̂ j .

Bias Correction by Cross-validation
The small number of genes with the smallest value of
the GIN (1) are selected from potentially thousands of
candidate genes. Therefore, estimates of the GIN and
the marginal associations β̂ j associated with the smallest
ranks are closer to the template effect β∗ than one would
expect for the associations calculated on a new data set.
Let r(i) denote the index j of the gene with the i th
smallest value of the GIN. Ideally we would compute
‘true’ association β̂ j on a large test set (ynew, xnew r(i)).
As often a large test set is not available we use K -fold
cross-validation to adjust for selection bias. The adjusted
estimator is

β̂ad j (r(i)) = β̂(r(i)) + �̂(r(i)),

where �̂(r(i)) is the selection adjustment. The algorithm
to determine �̂(r(i)) is:

(1) L, is divided at random into K test samples Lk of
about equal size. Let L(k) = L − Lk, k = 1, . . . , K
be the training samples.

(2) Construct the GIN on L(k).

(3) Calculate β̂k on Lk .

(4) Loop over (2)–(3): k = 1, . . . , K .

(5) Calculate the smooth adjustment

�̂(r(i)) = S(β̂k(r(i)) − β̂(r(i)))

S(·) represents a scatterplot smoother (we use
‘loess’ Cleveland and Devlin, 1988) estimate of the
selection bias.

Typically, we choose K = 5 or 10, and average over
a small number of repeated K-fold cross-validations to
reduce variance. We choose a relatively small K (rather
than leave 1 out (K = n)) to reduce computation. See
Hastie et al. (2001) for a discussion on how to choose
K for cross-validation in general. We note that if there
are one or more known strong prognostic clinical factors
cross-validation could be stratified on a prognostic index
to reduce variance.

Figure 3 gives an illustration of the smoothly cor-
rected 5-fold cross-validated (averaged 5 times) for the
lymphoma data, using the DR beta reference gene and
(νo, νe, νc) = (0.6, 0.2, 0.2). We refer to a plot like
Figure 3 as a marginal GIN plot. The amount of selection
bias depends on several aspects, including the weighting
in the GIN, the number of genes and the strengths of
association between genes and outcome. Figure 3 shows
that the most extreme effects do not appear to have large
bias. However, many of the cross-validated effects on
the right two thirds have been shrunken substantially to
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Fig. 3. Marginal GIN plot of the observed associations on the
training data (diamonds) and associations corrected using smooth
cross-validation (crosses) to adjust for the selection bias.
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Fig. 4. Bundled GIN plot for the association with survival for
bundled predictors based on the training data (diamonds) and by
cross-validation (crosses) using MHC DR Clone as reference gene.
The ‘bundle association’ is the Cox (1972) regression coefficient on
the mean expression in for the genes in the bundle standardized to
have variance equal to one. Large selection bias is present at the
right side of the plot.

zero suggesting limited outcome associations with those
variables.

As expected, we have noted in other plots (not shown)
that a larger weight νo associated with the outcome associ-
ation leads to larger selection bias in β̂. We confirmed this
in a small simulation study (results not shown).

Constructing Gene Summaries via Bundling
Selection of the genes with the smallest GIN was intended
to order gene expression to explore individual effects of
genes. However, the ordering could also be used to bundle
genes. A simple bundle could be the mean of the reference

gene expression and the q closest genes with the smallest
GIN

xq = 1

q

q∑
i=0

xr(i).

The measure of association β̂(0,q) between xq and the
outcome y is calculated for each q. As q varies, the
trajectory of β̂(0,q) can be used to investigate different
combinations of the gene expression variables.

The bundled gene effects are also biased by the adaptive
selection of the variables in the plot. Therefore, cross-
validation can be used to obtained less optimistic bundle
estimates. Since bundled features are already averages,
the use of the smoother, as in the previous section, is not
needed. In this case, one can take

β̂
ad j
(0,q)(r(i)) = Average{k}β̂k

(0,q)(r(i)),

where β̂k
(0,q)(r(i)) is the kth test sample estimate, based

on the closest q genes determined from the kth training
sample. In the survival setting, we use a stratified partial
likelihood Cox (1972) to calculate the ‘average’ β̂

ad j
(0,q). We

standardize the mean expressions for each bundle to have
variance one, to make the β̂(0,q) comparable for different
sized bundles.

Figure 4 shows the Cox regression coefficients for the
mean expression in bundle trajectory constructed using
GIN weights (νo, νe, νc) = (0.6, 0.2, 0.2), corresponding
to association to outcome, correlation and class member-
ship for the MHC Class II. The variance of the mean ex-
pression is standardized to have variance one, so that the
prognostic performance between smaller and larger bun-
dles can be compared. We call Figure 4 a bundled GIN
plot. The target outcome association was taken to be a
large negative value (β∗ = −2). The goal is to pick the
largest negative associations. The lower line of points are
estimates from the training data. These estimates of β̂(0,q)

become slightly smaller in magnitude until approximately
25 genes. This slight decrease in magnitude is explained
by the strong correlation and the weight on MHC Class
II membership in the GIN. Past that point the ordering
is mostly driven by large negative associations with out-
come and it appears as if constructing a large bundle of
genes including other genes in addition to the MHC Class
II genes substantially improves the magnitude of the asso-
ciation to survival. The maximum standardized coefficient
is at 175 genes (not shown), after that point the coefficients
get smaller in magnitude (as one would expect them to
get close to zero as more unrelated genes are added to the
bundle). The 5-fold cross-validated estimates are quite dif-
ferent, however. These estimates remain quite close to the
training estimates for bundles up to about 25 genes (almost
all MHC Class II genes) but then the effect wains more
rapidly than the learning sample as additional genes are
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added. We investigated this further on a relatively small
test data set available for the the Lymphoma data set con-
sisting of an additional 80 patients. We calculated the log-
arithm of partial likelihood ratio on the test sample, based
variables selected from learning data, and denote this as
TestLRatio. We calculated these measures for a bundle of
25 genes (TestLRatio = 1.4) and bundles leading leading
to the largest magnitude coefficient on the learning sam-
ple (175 genes) (TestLRatio = 1.1). While performance is
close, there is somewhat poorer performance for the large
model. A much larger test sample would be needed for a
definitive conclusion. With similar performance between
summaries based on different numbers of genes, a model
with smaller number of genes is to be preferred due to sim-
plicity of interpretation and because potential follow-up or
validation studies may involve gene expression measure-
ments by means other than microarrays.

We note that some researchers have constructed classi-
fiers and predictors based on large numbers of genes. (e.g.
Kato et al., 2002, Khan et al., 2001). Our simple example
suggests there is at least the potential for selection bias to
lead to erroneous conclusions that a large cluster of genes
related best to outcome; while, in fact, these additional
genes are just adding noise.

LYMPHOMA EXAMPLE
We use data from previously untreated patients with
the most common type of lymphoma, diffuse large cell
lymphoma (DLCL). Various clinical features are known
to be quite strongly associated with patient survival. A
subset of these features, stage, performance status, lactate
dehydroginase levels, presence of extra nodal disease have
been combined to form the International Prognostic Index
(IPI) (Shipp et al., 1993). The IPI has been widely adopted
in reporting of non-Hodgkin’s lymphoma clinical studies,
for stratification of new randomized studies and even
for selection of patients for more aggressive therapies.
However, while the IPI model has clinical utility it
provides little insight into disease biology.

In contrast to the IPI there have been many biologi-
cal/molecular studies of DLCL with correlations to patient
outcome. Some examples include HLA-DR, proliferation
or transcription (KI-67, C-MYC) and apoptosis (BCL-2)
(Miller et al., 1988; Grogan et al., 1988; Silvestrini et
al., 1993; Gascoyne et al., 1997; Kramer et al., 1998).
Typically these studies involved one or a small number of
molecular factors. Recently a large high dimensional gene
expression data set has been developed for DLCL as part
of the LLMPP consortium. A primary goal of the LLMPP
was to define the classification of human lymphoid
malignancies in molecular terms. A second major goal
was to define molecular correlates of clinical parameters
which can be used in prognosis and in the selection of

appropriate therapy for these patients. Our goal is to
explore genes which appear to be predictive of patient
survival but that are also related to genes documented
in previous studies. We considered the sample of data
from 160 patients that was used as the training data in
Rosenwald et al. (2002).

Frozen tissue specimens and patient outcome data
were collected from the seven collaborating groups. The
mRNA from frozen DLCL biopsies was used to profile
gene expression on Lymphochips specifically designed
for expression analysis for lymphomas. The patients were
mostly treated with CHOP or CHOP like regimens, which
has been demonstrated in a randomized clinical trial to
be standard (or preferred) therapy for advanced disease
patients (Fisher et al., 1993). The patients in the study all
had Stage I–IV disease.

For the purposes of this example, we do not combine
expression measurements for genes and instead leave each
expression clone as separate variable. We filter the genes
based on amount of missing elements (removing clones
with > 20% missing) and minimum information (remov-
ing clones with marginal partial likelihood information in
the lowest 20% of all clones) to obtain 3822 genes for con-
sideration. The minimum information selection, is essen-
tially a minimum variance requirement on the gene ex-
pression measurements. We chose not to adjust for the IPI
in the analysis and only focus on the molecular features.

First, we explore the data with respect to important
single gene associations with survival times. We use a one-
step approximation to the marginal Cox (1972) regression
coefficients to speed computation (e.g. LeBlanc and
Crowley, 1999). As a preliminary analysis, we calculated
permutation sample estimates (based on 100 permutation
samples) of the false discovery rate (FDR) (the fraction of
genes called associated when they are truly not associated
with survival) using score tests based on the Cox model.
For the FDR calculation, we compare the observed
distribution of the score test statistics to the distribution of
the permutation sample test statistics. We do not calculate
differences from the expected order statistics as in SAM
procedure (Tusher et al., 2001). There appear to be clear
associations between expression data and outcome in this
data with the estimated FDR corresponding to the upper
and lower 0.5% of the expression outcome associations
being 0.24 and 0.13 respectively. Our further investigation
will be based on the GIN below.

The higher levels of the MHC class of gene expression
are found to correspond to better survival. We return to
the analysis using the DR (beta) clone as the reference
gene described in Survival Data Section and now consider
labels corresponding to genes. For the lower right panel of
Figure 2 the names of the top 40 genes are presented in
Table 1 in a supplementary document at http://www.crab.
org/papers/.
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Fig. 6. Marginal GIN plot with associations with survival based on
the training data (diamonds) and by cross-validation (crosses).

The top four entries on the list are DR beta and alpha
clones. In addition, to the list of MHC Class II genes, there
are also MHC Class I antigens lower in the list, including
MHC Class I A2 and G. The invariant chain, which we did
not label as MHC Class II, also appears in the list and is
known to participate in the MHC Class II presentation.

As a second example, we took the C-MYC gene as the
reference gene (Kramer et al., 1998). The corresponding
protein is a transcription factor that is required for
proliferation. We used a weighting scheme for the GIN
of (νo, νe, νc) = (0.75, 0.25, 0): we assign 75% weight
to the outcome and 25% to expression correlation. The
list of genes is given in Table 2 in the supplementary
document. While large positive associations are identified,
no clear picture emerges. There is a striking number of
ribosomal genes in the list. Ribosomal genes which are
involved in protein synthesis are known to be impacted

by C-MYC (e.g. Chappell et al., 2000). We denote the
ribosomal genes on Figure 5.

The training set and cross-validated estimates of the as-
sociation of individual genes are presented in Figure 6,
and the corresponding estimates for bundles are presented
in the supplementary document. The cross-validated esti-
mates are considerably smaller in magnitude and empha-
size the presence of a strong selection bias.

Both the results on the training data and those by cross-
validation suggests that bundling a large number genes
does not strengthen the C-MYC association with survival
over a bundle of a small number (4–5) genes. The rapid
increase in magnitude of the association for the first few
genes was likely because C-MYC was not close to the
strongest marginal association with survival. Therefore,
it was improved upon addition of a small number of
genes. However, adding other genes lower in the list,
including the many ribosomal genes, does not seem to help
strengthen the association with survival.

We have just presented two potential reference genes for
this type of exploration. For DLCL there are a substantial
list of alternatives that have been investigated in previous
studies such as proliferation Ki-67, apoptotis BCL-2 and
T/B cell signature genes.

DISCUSSION
The gene index (GIN) is a simple empirical tool to aid
in the statistical analysis of gene expression data. The
GIN combines associations to patient outcome, expression
correlations, and gene class membership to provide a
rich class of indices to explore. The tool allows one to
link previously studied genes to the discovery of new
gene/outcome associations. Since the user needs to pick
a reference gene, we think the ranking by the GIN can
be easier to understand than hierarchical clustering, which
leads to more symmetric joint interpretations. Simulation
studies (results not reported due to space requirements)
show that including the gene correlations in the GIN can
increase the probability of selecting genes truly related to
outcome when there are correlations between expression
variables. Since the ordering is adaptively based on the
marginal effects to patient outcome, there is potential for
a large selection bias in the estimated effects. We have
used cross-validation to adjust for this selection process.
We note that gene selection bias (‘gene data dredging’)
is a problem for other gene expression procedures that
select among thousands of genes using small numbers of
patient samples. While those data analyses will sometimes
include the use of permutation sampling to ‘test’ for some
association with patient outcome, unadjusted summaries
such as estimated survival curves or error rates are also
presented after selecting the genes. The simulated data and
lymphoma data results suggest even with a relatively large
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number of patients (>100 samples) the interpretation of
prognostic results should incorporate reasonable methods
to adjust for that gene selection bias.

We believe the current proposal will be best suited to
expression studies with relatively large numbers of patient
samples (e.g. >100 samples), but this is true for many
other methodological proposals that attempt to link noisy
patient outcome, such as survival or clinical response to
expression. For other applications, where relationships are
stronger, smaller numbers of samples would be sufficient.
For instance, if the outcome variable was histological
type, one would expect to have a stronger relationship
of expression to outcome. The number of genes is less a
concern, given the method functions on marginal effects
and correlations. The GIN approach also is applicable
for clinical studies where one wants to adjust for known
clinical factors by using the adjusted score residuals after
fitting those factors in a regressionmodel.

In essence, our proposal is to combine gene-gene
similarity (correlation between genes) with gene-sample
similarity (correlation with patient outcome) and gene-
functional group similarity (class membership). Clearly
these three similarities can be defined in different ways,
and they can be combined in different (convex) ways.
We believe our proposal is a reasonable way to do so.
Generalizations are easy to imagine.
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