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In earlier articles, we developed an automated methodology for using cubic splines
with tail linear constraints to model the logarithm of a univariate density function. This
methodology was subsequently modi� ed so that the knots were determined by stepwise
addition-deletionand the remaining coef� cients were determined by maximum likelihood
estimation. An alternative approach, referred to as the free knot spline procedure, is to use
the maximum likelihood method to estimate the knot locations as well as the remaining
coef� cients. This article compares various approaches to constructing con� dence intervals
for logsplinedensity estimates, for both the stepwiseprocedureand the free knot procedure.
It is concludedthat a variationof the bootstrap,in which only a limited number of bootstrap
simulations are used to estimate standard errors that are combined with standard normal
quantiles, seems to perform the best, especially when coverages and computing time are
both taken into account.

Key Words: BIC; Cubic splines; Free knots; Maximum likelihood estimation; Stepwise
knot selection; Tail linear constraints.

1. INTRODUCTION

Polynomial splines have successfully been used to model unknown functions. The
typical polynomial spline methodology employs a stepwise addition-deletion procedure.
That is, initially a minimal model is � t to the data, after which additionalbasis functions are
added to the model. In one-dimensionalproblems these additional basis functions typically
involve new knots for a spline function, while in higher dimensional problems they may
involve knots in one of the components or tensor products of lower dimensional splines.
Which basis function is added next is usually decided by maximizing the Rao statistic,
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which is based on a quadratic approximation to the log-likelihood.After a maximal model
is reached, basis functions are deleted one at a time. Here typically the Wald statistic,
also based on a quadratic approximation to the log-likelihood, is used to decide which
basis function to remove next. Polynomial spline methodologies include MARS (Friedman
1991),Logspline(Kooperberg and Stone1991,1992),Hare (Kooperberg,Stone,and Truong
1995), and Polyclass (Kooperberg, Bose, and Stone 1997). Stone, Hansen, Kooperberg, and
Truong (1997) contains an overview of polynomial spline methods.

Getting reliable con� dence intervals corresponding to function estimates that are ob-
tainedusing such stepwise procedures is challenging.After model selectionhas beencarried
out, the estimated function has a simple parametric form. However, treating the � nal model
as a � xed parametric model, ignoring the large amount of model selection that may have
occurred, yields con� dence intervals with too low coverage.

At least for one-dimensional problems, such as logspline density estimation, this prob-
lem can potentiallybe circumvented by using free knot splines: polynomialsplines in which
the knot locations are treated as additional parameters to be estimated along with the other
parameters. Although intuitivelyappealing, free knot splines have gotten relatively little at-
tention in statistics because of both the numerical problems associated with implementing
them and the mathematical dif� culty in investigating their theoretical properties.

Recently, Stone and Huang (2002) successfully investigated the theoretical properties
(rates of convergence) of statistical modeling with free knot splines and their tensor prod-
ucts in the general context of extended linear modeling, which includes not only density
estimation but also regression, logistic regression, and hazard regression as special cases.
These theoretical results add motivation for further investigations of the methodological
aspects of statistical modeling with free knot splines.

Lindstrom (1999) developed a computationally feasible algorithm for � tting free knot
splines in the context of univariate regression. In this algorithm she added a small penalty
term to prevent knots from coalescing. She did not investigate the effect of using free knot
splines for obtaining con� dence intervals.

This article compares con� dence intervals for logspline density estimates using a free
knot splineprocedure to that usinga stepwise addition-deletionprocedure.Computationally,
the free knot spline procedure is considerably more time-consuming than the stepwise
procedure for logspline density estimation. We believe that it is conceptually useful to
think of the stepwise procedure as being a computational shortcut for approximating the
free knot spline estimate. A proper understanding of properties of estimates and related
con� dence intervals based on free knot splines should provide us with insight about the
stepwise procedure.

An alternative approach to accessing uncertainty caused by adaptive model selection is
the Bayesian approach (Smith and Kohn 1996; Denison, Smith, and Mallick 1998; DiMat-
teo, Genovese, and Kass 2001; Hansen and Kooperberg 2002), in which Bayesian inference
is carried out by putting priors on knot positions, number of knots, and perhaps parameters.
Interestingly, while the Bayesian procedure supposedly gives an automatic mechanism for
constructing credible (Bayesian con� dence) intervals, most of these articles do not provide



108 C. KOOPERBERG AND C. J. STONE

such intervals, and none study their properties. Because this article is primarily a compar-
ison of free knot and stepwise procedures, we will discuss Bayesian methods only brie� y
in Sections 3.3 and 5.

Section 2 brie� y reviews logsplinedensity estimation in general and the free knot spline
procedure in particular. Section 3 discusses the various approaches to obtaining con� dence
intervals. These approaches are compared by means of a simulation study in Section 4.
Section 5 applies the various approaches to a real example. We end with a brief discussion.

2. BASIC METHODOLOGY

Consider an unknown density function f on a compact interval [L; U ], where ¡ 1 <

L < U < 1. We will estimate ² = log f by a cubic spline b² on [L; U ] having J ¶ 2 knots
® 1; : : : ; ® J with L < ® 1 < ¢ ¢ ¢ < ® J < U . To avoid unacceptably high variance of b² near
L and U , we impose the tail linear constraints b² 00(L) = 0 and b² 00(U ) = 0. We also require
that bf = exp(b² ) be a density function; that is, that

R U

L
bf(y) dy = 1. To this end, we write

b² = bg ¡ bC , where bg satis� es the tail linear constraints and bC is the normalizing constant.
Given the knot sequence ° = ( ® 1; : : : ; ® J) let G ® ®® denote the space of cubic splines on

[L; U ] corresponding to ° and satisfying the tail linear constraints. Thus, a function g on
[L; U ] is a member of G if and only if g is twice continuously differentiable on [L; U ], the
restriction of g to each of the intervals [L; ® 1], [ ® 1; ® 2], : : : , [ ® J¡1; ® J ], [ ® J ; U ] is a cubic
polynomial, g00(L) = 0, and g00(U ) = 0. Observe that G® ®® is a (J + 2)-dimensional linear
space.Setp = J+1, and let1; B® ®® 1; : : : ; B® ®® p be a basisofG ® ®® . Given µ = ( ³ 1; : : : ; ³ p) 2 Rp,
consider the corresponding candidate ² ® ®® ( ³ ) for b² given by

² ® ®® (y; µ) = ³ 1B® ®® 1(y) + ¢ ¢ ¢ + ³ pB® ®® p(y) ¡ C® ®® ( ³ ); L µ y µ U;

where

C® ®® ( ³ ) = log

ÃZ U

L

exp( ³ 1B® ®® 1(y) + ¢ ¢ ¢ + ³ pB® ®® p(y)) dy

!

:

Note that since [L; U ] is a compact interval exp ² ® ®® (y; µ) is a positive density function on
[L; U ] for every ° and µ.

Let Y1; : : : ; Yn be a random sample of size n from a distribution having density f and
log-density ² = log f . The corresponding log-likelihood is given by

®̀ ®® (µ) =

nX

i= 1

² ® ®® (Yi; µ) =

pX

j = 1

³ p

nX

i= 1

B® ®® j(Yi) ¡ nC ® ®® (µ):

2.1 LOGSPLINE DENSITY ESTIMATION WITH STEPWISE KNOT SELECTION

For the stepwise addition-deletion procedure (Stone et al. 1997), let bµ
s

® ®® denote the
maximum likelihood estimate of µ and set

b̀s = ®̀ ®®

³
bµ

s

® ®®

´
= arg max

³ ³³
®̀ ®® (µ):
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(The superscript s is used to refer to estimates obtained by using stepwise addition-deletion
of knots; the superscript f is used below to refer to estimates using free knots.) In this
context we need to select both the number J of knots and the vector ° of knot locations.
This selection is carried out by means of stepwise addition-deletion: after positioning a
few initial knots at selected order statistics we add knots one at a time to increase the log-
likelihood as much as possible until a maximum number of knots is reached; then we carry
out a stepwise deletion procedure. Let bµ

s

J and b̀s
J denote the parameter estimates and the

log-likelihood,using the stepwise addition-deletionprocedure with J knots. To select J , we
will employ the (generalized) Akaike information criterion AICJ;a = ¡ 2b̀f

J + dJa, where
dJ is the number of free parameters in a model with J basis functions and a is a complexity
parameter. For the stepwise addition-deletion procedure we ignore the knot selection, so
bµ

s

J has p = dJ = J + 1 free parameters. We use the AIC criterion with a = log n to
select the number J of knots. Let bµ

s
, b² s, and bfs denote the parameter estimates and the

logspline estimates of the log-density and density function, respectively, using the stepwise
addition-deletionprocedure.

Kooperberg and Stone (1992) described an alternative stepwise procedure using only
stepwise deletion of knots. In this procedure more initial knots are positioned at selected
order statistics of the data and the “least signi� cant” knots are deleted one at a time. In
this article we will only show results using the stepwise addition-deletion procedure. We
did, however, carry out all simulations for the stepwise deletion procedure as well, and the
corresponding results are brie� y summarized in Section 4.1.

2.2 LOGSPLINE DENSITY ESTIMATION WITH FREE KNOTS

Let
¡
b°f ; bµ

f ¢
denote the maximum likelihood estimate of (° ; µ), so that

b̀f = `b® ®® f

³
bµ

f
´

= arg max
® ®® ;³ ³³

®̀ ®® (µ):

Computing maximum likelihood estimates with free knots is a highly nontrivial numerical
problem, as the likelihood function ®̀ ®® (µ) is severely multimodal, and degenerate solutions
exist when too many of the knots ® j get close together.

Observe that the positive integer parameter J must also be chosen. Let b°f
J , bµ

f

J , and
b̀f
J now indicate the dependence of b°f , bµ

f
, and b̀f , respectively, on J . For the free knot

procedure b°f
J has J free parameters and bµ

f

J has p = J +1 free parameters, so dJ = 2J +1.

We select the value bJf of J that minimizes AICJ;2. Set b°f = b°f

bJf
, bµ

f
= bµ

f

bJf , and

b² f (y) = ² b® ®® f

¡
y; bµ

f ¢
. We refer to bff (y) = exp b² f (y) as the logspline estimate with free

knots of the density f at y.
For logspline density estimation with free knots we choose a = 2 (AIC) as the com-

plexity parameter. When free knots are used we have found a = log n, which is used for the
stepwise addition-deletionprocedure, to be too large for two reasons. First, a large parame-
ter promotes smaller models,with lower variance and somewhat larger bias. For exploratory
data analysis this is quite desirable; however, for con� dence intervals the coverages will
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be too low if estimates are overly biased. A second reason is that in the free knot spline
approach all knots are parameters. Thus, a model with J knots now has dJ = 2J + 1
parameters and gets a penalty of (2J + 1)a, while for the stepwise approach such a model
had dJ = J + 1 parameters and got a penalty of (J + 1)a. In our experience, however, the
increase in log-likelihood that is achieved by adding a basis function with a � xed knot is
considerably larger than the increase in log-likelihood that is achieved by making a � xed
knot a free knot.

3. CONFIDENCE INTERVALS

3.1 FREE KNOT SPLINES

Let brf
J ² (y) denote the (2J + 1)-dimensional gradient of ² ° (y; µ) at the maximum

likelihood estimate
¡
b°f ; bµ

f¢
, and let bHf

J denote the corresponding Hessian when there are
J free knots. Set brf ² (y) = brf

bJf
² (y) and bHf = bHf

bJf
. The standard error in the estimate

b² (y) is given by

SEf (b² f (y)) =

rh
brf ² (y)

iT ³
¡ bHf

´¡1 brf ² (y): (3.1)

(To compute the various derivatives in this formula, Theorems 2.51, 2.55, and 4.27 of
Schumaker (1991) are employed.) This leads to the nominal 95% con� dence interval

³
b² f (y) ¡ 1:96 SEf (b² f (y)); b² f (y) + 1:96 SEf (b² f (y))

´

for ² (y) and the corresponding nominal 95% con� dence interval
³

exp
³

b² f (y) ¡ 1:96 SEf (b² f (y))
´

; exp
³

b² f (y) + 1:96 SEf (b² f (y))
´´

(3.2)

for f (y).

3.2 STEPWISE ADDITION-DELETION

For the stepwise addition-deletion procedures we can construct con� dence intervals
similar to those for the free knot procedure, except that the knots are now considered � xed.
Thus, brs

J ² (y) is the (J + 1)-dimensional gradient of ² ® ®® (y; µ) at the maximum likelihood
estimate bµ

s
and bHs

J is the corresponding Hessian when there are J knots selected using
the stepwise procedure. These quantities can now be used to construct con� dence intervals
using (3.1) and (3.2).

Alternatively,we can employ the usual bootstrap procedure to obtain con� dence inter-
vals corresponding to logspline density estimates. In this article we examine the coverage
of bootstrap percentile intervals (Efron and Tibshirani 1993) for the log-density function.
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That is, we take B (we used B = 1;000) samples Yi with replacement of size n from the
data Y1; : : : ; Yn, and for each sample Yi we obtain the logspline density estimate. The 95%
pointwise con� dence interval for b² (y) is then from the 2.5th to the 97.5th percentile of the
B bootstrap estimates for the log-density.

Clearly, the bootstrap is a computationally time-consuming procedure for getting con-
� dence intervals, as we need to � t B logspline densities. However, it is still slightly faster
than a procedure for � tting logspline densities with free knots.

A considerably cheaper approach is to hope that the logspline estimates of the log-
density function have approximately a normal distribution, but that the estimates of the
standard errors that are obtained using standard techniques are too small. If so, we can get
by with a much smaller number B of bootstrap estimates (say B = 25) by using these
estimates to obtain bootstrap estimates of SE(b² (y)) and then using Equation (3.2) or the
equivalent to obtain con� dence intervals for ² .

3.3 A BAYESIAN APPROACH

Hansen and Kooperberg (2002) described a Bayesian approach to logspline density
estimation, which involves a prior p(J) on the dimension of the model, a prior p( j J)

on the location of the knots, and a prior P (µ j  ; J) on the coef� cients. They discussed
several Bayesian versions for logsplinedensity estimation,differing somewhat in the choice
of priors and hyperparameters. Hansen and Kooperberg (2002) pointed out that, depending
on how priors are selected, a Bayesian procedure can be similar in performance to a greedy
stepwise procedure using AIC to select the number of knots when a geometric prior on the
number of knots is used, or it can be similar to a smoothing spline approach when a uniform
prior on the number of knots and a particular multivariate normal prior on the coef� cients
are used.

Given the data Y1; : : : ; Yn, the posterior distribution of (J;  ; µ) is explored using a
reversible jump Markov chain Monte Carlo (Green 1995) algorithm. To make (pointwise)
95% credible (Bayesian con� dence) intervals about the logspline density estimate obtained
from this Bayesian procedure, the 2.5th and 97.5th percentiles of all Markov chain Monte
Carlo simulations are used. The algorithm of Hansen and Kooperberg (2002) for logspline
densityestimationis similar to algorithmsfor univariateregressionusingpolynomialsplines
proposed by Denison, Mallick and Smith (1998) and Smith and Kohn (1996).

Because there are many more options and parameters that need to be selected for the
Bayesian procedure, we opted not to include this procedure in the comparison in the next
section, but we do include it in Section 5.

4. SIMULATED EXAMPLES

This section applies the various approaches to obtaining con� dence intervals for log-
spline density estimation to data that were simulated from four distributions:
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Figure 1. The four densities used in the simulation study.

Figure 2. Bias for three of the situations in the simulation study.
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Normal 2. A mixture of two normal distributions, so that the true density of Y is given by

f (y) = c

µ
1
3

fZ1(y) +
2
3

fZ2 (y)

¶
ind( ¡ 4; 8);

where Z1 has a normal distribution with mean 0 and standard deviation 0.5, Z2

has a normal distribution with mean 2 and standard deviation 2, ind(¢) is the usual
indicator function, and c is the normalizer to correct for the truncation to ( ¡ 4; 8).

Normal 4. As in example 1, but the mean of Z2 is 4 and Y is truncated to ( ¡ 2; 10).

Normal 6. As in example 1, but the mean of Z2 is 6 and Y is truncated to ( ¡ 1:5; 12).

Gamma 2. A gamma distribution with shape parameter 2 and mean 1, with Y truncated to
the interval (0; 9).

Figure 1 shows the four true densities. The Normal 2 density has one mode, but a clear
second hump; Normal 4 has two, not very well separated, modes; Normal 6 has two well
separated modes; and the Gamma 2 density is unimodal. For each of the four densities we
generated N = 250 samples of size 250 and also N samples of size 1,000. For a particular
distribution, let b² u

i and bf u
i , u 2 ff; sg be the logspline density estimates for the log-density

and density function, using the two different knot selection schemes described in Sections
2.1 and 2.2; set ² u(y) = N ¡1

P
i b² u

i (y), which we think of as a Monte Carlo estimate of
E(b² u(y)); and set f

u
(y) = exp ² u(y).

Figure 2 compares f (y) (solid), f
f
(y) (dashed), and f

s
(y) (dotted), as well as ² (y),

² f (y), and ² s(y). Especially from the dip between the modes for the two Normal 6 examples
we note that the free knot spline procedure appears less biased than the stepwise procedure.
The Normal 6 density yields (for both approaches) the most biased results, while the results
for the other three densities are fairly comparable. The bias in the extreme tails is partly due
to the log-density estimates in the tails being restricted to be linear, while the true densities
are approximatelyquadratic. Removing the tail-linear constraints reduces the bias but at the
expense of a substantially increased variance. Since the con� dence intervals, which except
for the bootstrap percentile approach are all centered on the estimate, do not correct for
this bias, we expect that the tail-linear constraints may be responsible for the coverages
being somewhat too low in the extreme tails and, conceivably, also in the region between
the modes for the two Normal 6 examples.

Table 1 shows the mean integrated squared bias for the log-density for both approaches,
as computed over the 249 quantiles corresponding to the probabilities i=250, i = 1; : : : 249
of the true density.From this tablewe see that the free knotprocedureperforms considerably
better than the stepwise procedure for n = 1;000, but the results are similar for n = 250:
for the Gamma 2 density, the least complicated density in our simulation,with n = 250 the
stepwise procedure actually had less bias.

Let SDu(b² u(y)) =
p

varfb² u(y)g denote the pointwise sample standard deviation of
the N = 250 estimates of b² u. Let SEu(b² u(y)) be the standard errors as de� ned in Sec-
tions3.1 and 3.2. In addition,let SEFXf (b² f (y)) be the standard errors assuming the knotsof
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Table 1. Mean Integrated Squared Bias for Two Logspline Procedures

Density Free knot Stepwise

n = 250

Normal 2 0.0054 0.0052
Normal 4 0.0019 0.0052
Normal 6 0.0048 0.0096
Gamma 2 0.0099 0.0052

n = 1,000

Normal 2 0.0006 0.0029
Normal 4 0.0003 0.0019
Normal 6 0.0008 0.0031
Gamma 2 0.0002 0.0020

Figure 3. Estimates of the standard deviation and standard errors of the log-density for three of the situations in
the simulation study.
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Figure 4. Estimates of the normalized bias of the log-density for three of the situations in the simulation study.

the free knot procedure are � xed (so that they make use only of the ( bJf + 1) £ ( bJf + 1)

Hessian matrix for the coef� cients). Note that SEs also assumes that the knots are � xed.
Let SEBTs(b² s(y)) be the standard error of b² s(y), estimated as the standard deviation

from the log-density estimates of 25 bootstrap samples. Let SE
u
(b² u(y)), SEFX

f
(b² f (y)),

and SEBT
s
(b² s(y)) be the average of SEu(b² u(y)), SEFXf (b² f (y)), and SEBTs(b² s(y)),

respectively, over the N = 250 simulations.
Figure 3 examines the various estimates of the standard error for three of the situations

in the simulation study, for both the free knot spline and the stepwise addition-deletion
procedure. From the plots on the left side of this � gure we note that the SEFX

f
and even

SE
f

consistentlyunderestimateSDf . This suggests that using free knot splinesmay improve
the coverages of con� dence intervals, but the intervals using the free knot spline procedure
will probably still have too low coverages. We will see below that this is indeed the case. For
the stepwise procedure we note that SE

s
is much smaller than SD

s
, but SEBT

s
is actually

slightly larger than SD
s
, suggesting that the bootstrappingintroducedsome extra variability.

Set

» u(y) =
² u(y) ¡ ² (y)

SDu(b² u(y))
; u 2 ff; sg:



116 C. KOOPERBERG AND C. J. STONE

Table 2. Percent Coverages for Five Different Approaches to Obtaining Con�dence Intervals for a
Log-Density, Estimated Using Logspline

Procedure Stepwise addition-deletion

method Free knot bootstrap
density SE f SEFX f SE s percentiles SEBT s

n = 250
Normal 2 84.0 77.4 72.2 98.1 96.5
Normal 4 88.8 82.5 73.0 98.0 96.4
Normal 6 89.0 84.0 70.8 97.6 95.8
Gamma 2 86.2 81.2 58.6 98.2 97.4

n = 1,000
Normal 2 89.2 79.6 67.6 97.7 94.9
Normal 4 89.3 82.7 68.8 98.8 95.8
Normal 6 86.2 81.4 69.8 98.2 95.4
Gamma 2 84.0 77.3 57.9 98.2 95.6

Average 87.1 80.7 67.3 98.1 96.0

We interpret » u as a normalized bias. Observe that » u provides a rough indication of how
much the actual coverage probabilitiesof correspondingnominal 95% con� dence intervals
would fall below 0:95. To see this, note that if W is normally distributed with standard
deviation ¼ and nominalmean · but actualmean · ¤ , then P (W ¡ 1:96 ¼ < · < W +1:96¼ )

equals 0:943, 0:921, 0:830 according as ( · ¡ · ¤ )=¼ equals §0:25, §0:5, §1:0. Figure 4
shows the normalized bias of both logspline procedures for three of the simulation set-
ups. Interestingly, this plot suggests that the normalized bias for the stepwise procedure
is slightly smaller than that for the free knot procedure. Not surprisingly, the dip between
the two peaks for the Normal 6 distribution is the region in which all procedures are most
biased.

Table 2 shows the percent coverages of nominal pointwise 95% con� dence intervals
for the density estimates, averaged over the 249 quantiles corresponding to the probabilities
i=250, i = 1; : : : 249 of the true density. The numbers in the “coverage” columns are the
averages of these numbers for the N realizations. (The standard errors of these averages
are around 1%.) We show results for all the standard errors discussed above, as well as the
bootstrap percentile approach, discussed in Section 3.2. Observe from this table that while
the free knot standard errors (SEf ) yield much better coverages than the standard errors that
keep the knots � xed (SEFXf and SEs), they still give coverages that are considerably too
low. The differences in coverages between the intervals that keep the knots � xed and those
using free knot standard errors suggest that an important reason for the low coverages of
the former is that they assume that the knots are � xed.

Both bootstrap intervals provide coverages that are either accurate or slightly too con-
servative. Surprisingly, the coverages for the bootstrap percentile interval procedure are
consistently too high. It is our impression that this is due to some instability in the stepwise
logspline algorithm when there are many repeat observations, causing the intervals to be
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Figure 5. Coverages of various approaches to obtaining con� dence intervals for logspline density estimates. The
long dashes are the nominal 95% coverages.

occasionallytoo large. Similarly, the valuesof the SEBTs were slightly too large in Figure 3.
We should keep in mind that, after SEs, SEBTs is by far the cheapest to compute: it require
only 25 bootstrap samples, as opposed to the 1,000 needed for the bootstrap percentiles,
while the stepwise procedure is orders of magnitude faster than the free knot procedure.

Resampling from the � tted logspline density, rather than from the data, would prevent
the problem of having repeat observations. However, with that approach the density from
which we sample is no longer the true density, but rather a logspline density. A bootstrap
procedure using resampling from the logspline density does therefore not address the un-
certainty caused by approximating a true density (which is not a logspline density) by a
logspline density.

For three of the simulation set-ups we show in Figure 5 the percent coverages of a
variety of the con� dence intervals. On the left side we observe that, for the intervals based
on free knot splines, the two coverages follow each other fairly closely, having good and
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Figure 6. Logspline density estimation for the income data using a number of different procedures.

bad coverages at the same locations. For the stepwise procedures, the interval based on
SEs (solid) clearly has unacceptably low coverages. In fact, there are virtually no values
of y for which the coverage is above 95% for any of the three targets that we show. The
interval based on SEBTs (dotted) has overall good coverage, but too low coverage at some
spots, for example near the valley between the two peaks for the Normal 6 examples. The
con� dence intervals using bootstrap percentiles (short dashes) are almost everywhere close
to the nominal values (long dashes).

4.1 COMPARISON WITH THE STEPWISE DELETION PROCEDURE

We now brie� y describe our experience in applying the stepwise deletion procedure of
Kooperberg and Stone (1992). For the most part this procedure behaves comparably to the
stepwise addition-deletionprocedure used in the previous section. In particular:

° The stepwise deletionprocedureyields slightlyless biased results for the easy targets
(Normal 2 and Gamma 2), but more biased results for the harder target (Normal 6).
This is understandable, since the stepwise deletion procedure is less adaptive.

° SDs and SEs for both stepwise procedures are comparable. The normalized bias
for the stepwise deletion procedure is, in places such as the dip for the Normal 6
distribution,much worse than for either the stepwise addition-deletionprocedure or
the free knot procedure.

° The overall coverage of the stepwise deletion procedure is very similar to that of the
stepwise addition-deletion procedure; however, at the hard locations the coverages
of the stepwise deletion procedures are much worse.
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Figure 7. Comparison of the logspline pointwise con�dence interval and Bayesian pointwise credible intervals
for the income data.

5. INCOME DATA

We applied logspline density estimation with free knots to the income data, which
we also discussed in Kooperberg and Stone (1991, 1992) and Stone, Hansen, Kooperberg,
and Truong (1997). Figure 6 compares the logspline density estimation procedures with
free knots and stepwise addition-deletion. The free knot spline � t has seven knots, and
the stepwise addition-deletion � t has 10 knots. The “Bayesian” estimate, version (v) from
Hansen and Kooperberg (2002), also has uniform priors on knot location, a uniform prior
on the model size, and a multivariate normal prior distributionon the coef� cients µ. Hansen
and Kooperberg argued that this is a good choice of priors both with respect to the amount
of smoothing and the MCMC exploration of possible logspline densities. We note that all
estimates are very similar, except near the dip to the right of the peak. The free knot spline
� t has a conspicuous small bump, which does not appear in the stepwise � t.

The left side of Figure 7 shows the (pointwise) 95% con� dence intervals, using SEf

and SEBTs. Observe that the con� dence intervals using SEf are considerably narrower
than those using SEBTs. The evidence for a small bump seems slim. Although this bump
is present when we use free knots, the con� dence interval allows for a curve without this
bump. Because the con� dence intervals are pointwise, this does not allow us to draw � rm
conclusionsabout the presence of the bump; however, out of 1,000 additionalbootstrap esti-
mates of the logsplinedensity using stepwise addition-deletion,the extra bump was present



120 C. KOOPERBERG AND C. J. STONE

in only 58 estimates. We also computed the bootstrap percentile intervals for the stepwise
procedure (not shown in the � gure). Overall, these intervals agree with the conclusion from
the previous section: the bootstrap SE approach yields reasonable con� dence intervals at
a computing price that is much smaller than that for free knot splines or a full bootstrap
approach.

The right side of Figure 7 shows the same pointwise con� dence intervals based on
SEBTf as on the left side, but this time we added 95% credible intervals corresponding to
the Bayesian estimate shown in Figure 6. The results shown in this � gure are based on a run
of 100,000 MCMC iterations, which takes a CPU time that is comparable to the bootstrap
percentile approach and which is considerably larger than what is needed to obtain good
point estimates. The 95% credible intervals are considerably smaller than the bootstrap
intervals, suggesting that the coverages of the former intervals may be signi� cantly under
95%.Several otherversions thatwe exploredof the Bayesian procedureproposedby Hansen
and Kooperberg (2002) had too small intervals as well.

6. DISCUSSION

In this research we have carried out an investigation into various approaches for ob-
taining con� dence intervals for logspline density estimates. To this end, we compared three
methods for obtainingdensity estimates: the stepwise deletionprocedure of Kooperbergand
Stone (1992), the stepwise addition-deletion procedure of Stone et al. (1997), and a novel
estimate employing free knot splines. Both stepwise estimates have similar bias behavior,
except when the underlying curve has substantial spatial variation, in which case the step-
wise addition-deletionprocedure yields less biased estimates. The more adaptive free knot
procedure evidently works well at yielding a nearly unbiased estimate, but it is very CPU
intensive. It would be worthwhile to investigate other numerical approaches involving, for
example, simulated annealing to get good starting values for the free knot spline procedure.

In order to obtain parametric pointwise con� dence intervals for the various estimates,
we � rst need to determine the corresponding standard errors. To this end, we have mainly
employed the classical approach involving the negative of the Hessian matrix of the log-
likelihood at the maximum likelihood estimates of the unknown parameters as an estimate
of the Fisher information matrix. For the free knot procedure here we have properly taken
into account the fact that the free knots are additional estimated parameters, something
that is ignored for the stepwise procedures. The standard errors that we have obtained
in this manner are evidently signi� cantly too small for the estimates of the log-density
and density functions, even for the free knot spline procedure, presumably because they
ignore the adaptivity in the choice of the number of free knots. The resulting estimates of
con� dence intervalshave, not surprising, substantiallytoo low coverages.Bayesian credible
intervals for density estimates that look reasonable appear too small. Bootstrap percentile
intervals appear slightly ragged, suggesting that very large numbers of bootstrap samples
are needed, and their coverages are too high. The bootstrap SE approach—estimating the
standard error based on a limited number of bootstrap estimates and using “1.96” to obtain
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95% con� dence intervals—seems to have the best performance. The coverage is about
right, the computational expense is low, and the pointwise con� dence intervals are fairly
smooth. This performance came as a pleasant surprise to us and suggests that the bootstrap
SE approach deserves a more thorough investigation. We suspect that for the free-knot
approach a bootstrap SE approach would also yield better con� dence intervals. However,
the large amount of computing needed for free-knot splines would make such an approach
unattractive.

There is an interesting difference between the two stepwise procedures: the stepwise
addition-deletionprocedure ismore adaptivethan the stepwise deletionprocedureand yields
less biased results when there are sharp peaks or valleys in the density. As a result, for the
bootstrapSE intervals, the coverages for the stepwise addition-deletionprocedure are better
than those for the stepwise deletion procedure.

We believe that the improvement of the free knot spline procedure over the stepwise
addition-deletion procedure for logspline density estimation from Stone et al. (1997) is
minimal and may not justify using the free knot spline procedure in practice (a similar
conclusion was reached about the Bayesian approach by Hansen and Kooperberg (2002)).
To some extent this was to be expected: for cubic splines, as used in logspline, the in� uence
of a knot is global rather than local (after all, it is virtually impossible to detect the location
of knots for cubic splines by eye); hence the exact location is only of secondary importance.
This is quite different for linear splines, as used in Hare (Kooperberg, Stone, and Truong
1995), Polyclass (Kooperberg, Bose, and Stone 1997) and Triogram (Hansen, Kooperberg
and Sardy 1998). Again, a similar conclusion was reached about the Bayesian approach by
Hansen and Kooperberg (2002). Nevertheless, we believe that it is conceptually useful to
think of the stepwise addition-deletionprocedure for logspline density estimation as being
a computational shortcut for approximating the free knot spline estimate.
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