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SUMMARY

Colorectal cancer remains a signi�cant public health concern despite the fact that e�ective screening
procedures exist and that the disease is treatable when detected at early stages. Numerous risk factors
for colon cancer have been identi�ed, but none are very predictive alone. We sought to determine
whether there are certain combinations of risk factors that distinguish well between cases and controls,
and that could be used to identify subjects at particularly high or low risk of the disease to target
screening. Using data from the Seattle site of the Colorectal Cancer Family Registry, we �t logic
regression models to combine risk factor information. Logic regression is a methodology that identi�es
subsets of the population, described by Boolean combinations of binary coded risk factors. This method
is well suited to situations in which interactions between many variables result in di�erences in disease
risk. We found that neither the logic regression models nor stepwise logistic regression models �t
for comparison resulted in criteria that could be used to direct subjects to screening. However, we
believe that our novel statistical approach could be useful in settings where risk factors do discriminate
between cases and controls, and illustrate this with a simulated data set. Copyright ? 2004 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Colorectal cancer is the third most common cancer in the United States. It is the second
leading cause of cancer death among men and women despite the fact that the disease is
treatable when detected at early stages [1] and that e�cacious methods exist for early detec-
tion, namely sigmoidoscopy and colonoscopy [2, 3]. Such screening procedures can also detect
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pre-cancerous polyps that can then be removed, thus preventing disease from occurring. The
key problem is that colon cancer screening is underutilized by the general public because it
is invasive and costly, so that most disease is detected after it has progressed beyond the
localized stage.
A range of risk factors for colon cancer have been identi�ed. The motivation for the

work described in this paper is to determine if subsets of the population with very high or
low risk could be de�ned on the basis of these risk factors. This would provide an avenue
for targeting screening e�orts in the population. Individuals at high risk might be o�ered
incentives or otherwise facilitated to undergo screening. Individuals at very low risk, on the
other hand, might be allowed to forego screening and would not unnecessarily consume health
care resources.
The Seattle site of the Colorectal Cancer Family Registry (CCFR) has collected data on

colon cancer risk factors for 1680 cases and 1410 controls. This is a population-based case–
control study with cases identi�ed from the Puget Sound site of the Surveillance, Epidemi-
ology, and End Results (SEER) registry, and controls, matched to cases on age and gender,
selected at random from population lists [4]. As with most cancers, increasing age is the
dominant risk factor for disease. Family history and male gender are also consistently as-
sociated with higher risk of disease. Other established risk factors include lack of physical
exercise, intake of red meat, obesity (in males), alcohol and tobacco use. Use of aspirin and
other non-steroidal anti-in�ammatory agents, high intake of fruits and vegetables, folic acid
taken as a food supplement and use of post-menopausal hormones have all been found to
decrease the risk of colon cancer. Finally, a number of demographic and social factors have
been linked with colon cancer (e.g. ethnicity and education) [5, 6].
Although epidemiologic associations exist with these factors, no one factor appears to be

very predictive. Neither does a linear logistic model that combines risk factor information into
a linear score appear to discriminate well between cases and controls (see Section 5.3). We
suspected that interactions between multiple risk factors might be key in determining risk. For
example, it might be that (‘lack of exercise’ or ‘low dietary �bre’) along with (‘male gender’
or ‘female gender and not on post-menopausal hormones’) would distinguish well between
cases and controls. This subset is described by the logic tree shown in Figure 1. In this paper,
we introduce logic regression as a method that could be useful for �nding combinations of risk
factors which discriminate between subjects at high and low risk of disease. Though a suitable
criterion did not emerge from our risk factor information for colon cancer, we believe that

lack of
exercise

low dietary
fiber intake

and

or

female on
post-menopausal

hormones

Figure 1. Example of a logic tree that evaluates to 1 if the Boolean expression illustrated is true. White
letters on black denote negation of the entry.
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logic regression is amenable to this task since it easily models high-order interactions between
risk factors. In addition, a logic regression model yields a simple characterization of the subsets
of the population at high risk, using logic trees, such as the tree in Figure 1. We begin in
Section 2 with a description of logic regression. This is a new tree-based statistical technique
for identifying subsets of the population de�ned by Boolean functions of binary coded risk
factors, and is therefore well suited to our purposes. We contrast logic regression with another
well known tree-based method for modelling binary data, classi�cation and regression trees
(CART), in Section 2. In Section 3, we describe the CCFR study in some detail. Section 4 is
concerned with the evaluation of a �tted logic regression model for the purposes of developing
criteria that could be used to direct subjects to screening sigmoidoscopy. Our results for colon
cancer, described in Section 5 are disappointing in that useful criteria do not seem to emerge
from the data. Nevertheless, we believe that the novel statistical approach we took could be
useful in settings where interactions between risk factors do discriminate cases from controls.
In Section 6, we demonstrate this with a simulated data set. We conclude in Section 7 with
a discussion of the potential for pre-screening with risk factor information in health care and
further re�nement to the logic regression methodology that may facilitate its use for identifying
pre-screening criteria.

2. LOGIC REGRESSION

Logic regression can be applied to any type of regression outcome as long as the proper
scoring function is speci�ed. We have a binary outcome and use deviance of logistic regression
as the score function. For a given set of Boolean expressions, an example of which was
given in Section 1, the logic regression model is a logistic regression model with those
Boolean expressions as covariates. Speci�cally, we denote a Boolean expression with the
binary variable L, where L=1 is ‘true’ and L=0 is ‘false’. The model is written as

logitP(D=1 |L1; : : : ; LP)= �0 + �1L1 + · · ·+ �PLP (1)

What distinguishes logic regression from simple logistic regression with binary covariates
is that the �tting algorithm both de�nes covariates for the model (using risk factor data)
and estimates the regression coe�cients simultaneously. The output from logic regression
is represented as a series of trees, one for each Boolean predictor, L, and the associated
regression coe�cient. The logic tree for the expression de�ned earlier is shown in Figure 1.
Ruczinski et al. [7] provide a detailed description of logic regression and the simulated

annealing algorithm used to �t it. They also contrast logic regression with other methods
for modelling binary response data. Software for �tting logic regression models using the
simulated annealing algorithm is available from http:==www.bear.fhcrc.org/˜ingor/logic.
Logic regression was proposed for settings where interactions between many variables give

rise to large di�erences in response. This occurs, for example, in single nucleotide polymor-
phism association studies, where multiple genetic point mutations may be jointly associated
with a disease outcome. See Reference [8] for a successful application of logic regression in
this setting. We suspect that disease risk factors may behave similarly. Etzioni et al. [9] use
logic regression to combine two prostate cancer biomarkers together. They use continuous
biomarker data by de�ning multiple dichotomous predictors using various thresholds for the
biomarkers. Ruczinski et al. [7] provide further examples of applications of logic regression.
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CART is another tree-based method for modelling binary data [10]. The classi�cation rule
is displayed as a tree whose leaves are the two classes of interest (e.g. diseased and non-
diseased), and whose branches correspond to dichotomized covariates. Each leaf is reached
by one or more paths through the tree; to reach the leaf, all conditions along the path must
be satis�ed. Thus, a classi�cation tree can be thought of as the collection of all paths that
reach a leaf predicting class 1. Therefore, any classi�cation tree can be written as a Boolean
combination of covariates, as can a logic regression tree. (In the computer science literature,
such rules are said to be in disjunctive normal form (DNF).) However, there are some Boolean
expressions which can be very simply represented as logic trees, but which require fairly
complicated classi�cation trees [7]. It is the simplicity of logic trees which we hope to exploit
in order to produce easily interpretable characterizations of high risk individuals.
In addition to the speci�cation of the scoring function, the �tting algorithm for logic re-

gression also requires speci�cation of the number of logic trees (P in equation (1)) and the
maximum number of variables, or leaves, that can make up a tree (three in the example
in Figure 1). As with any adaptive regression methodology, larger models (those with more
trees and leaves) typically �t better than smaller models. In this paper we chose model sizes
a priori; for interpretability we �t models with four leaves per tree. More generally, one
can select the size of the model with the data using techniques such as cross-validation or
randomization tests, as described by Ruczinski et al. [7].
For a given model size, the selection of the best logic trees Lj is a non-trivial optimization

problem. The logic regression algorithm that we implemented employs a simulated anneal-
ing algorithm. Simulated annealing [11] is a stochastic optimization algorithm similar to the
Metropolis–Hastings algorithm for Markov chain Monte Carlo [7]. As with any stochastic op-
timization algorithm, there is no guarantee that the ‘best’ model is found, though with proper
adjustment of various tuning parameters we can be con�dent that we have selected a good
model.

3. THE REGISTRY DATA

The Seattle Familial Registry for Colorectal Cancer is a member of the International Colon
Cancer Family Registry (CCFR). It was established in 1998 as a resource for studying the ge-
netic epidemiology of colorectal cancer. From 1998 to 2002, cases aged 20–74 years of both
genders diagnosed with incident colon or rectal cancer were identi�ed from the Puget Sound
SEER registry. Controls were randomly selected from two sampling frames. For cases age
20–64 years, controls were identi�ed from lists of licensed drivers; for those age 65–74 years,
controls were selected from �les of the Health Care Financing Administration. All subjects
completed an interviewer administered questionnaire on family and medical history, environ-
mental and lifestyle factors, and screening history, and biological samples were collected [12].
Response rates were high (80 per cent for cases, 71 per cent for controls) [4].
The data used in this analysis are a subset of the registry data. We began with 769 cases

and 657 controls, recruited in the last study year. We set aside one third of the cases and one
third of the controls, randomly selected within age strata, for validation testing of the model.
Logic regression requires binary predictor variables, so we recoded variables into binary

forms. Categorical covariates were coded as a set of indicator variables for each level of the
covariate. Continuous covariates were coded as a series of threshold indicators. For example,
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pack-years of smoking was coded as three indicators: (pack-years ¿0), (pack-years ¿9), and
(pack-years ¿19). Where possible, thresholds were chosen to be quintiles of the covariate in
the control population (with the exception of pack-years, for which thresholds were chosen
a priori). Thresholds for BMI and height were chosen separately for men and women; the
thresholds correspond to quintiles of the gender-speci�c control populations. Subjects who
had a sigmoidoscopy more than 1 year prior to study enrollment were considered to have a
screening history. For two covariates with a large amount of missingness (hours of physical
exercise and fried poultry consumption), indicators of missingness were also included.
The data used to �t the logic regression model include 66 binary covariates. Since the

logic regression algorithm currently cannot handle missing data, subjects with any missing
covariates were not included in the analysis. Missingness was as large as 2.4 per cent for a
given predictor. A total of 463 cases and 415 controls were used to �t the model.

4. OPERATING CHARACTERISTICS OF THE FITTED MODEL

4.1. The receiver operating characteristic (ROC) curve

Recall that the overall objective is to de�ne criteria for who should or should not be rec-
ommended for clinical screening. We evaluate the sensitivity (true positive fraction (TPF))
and speci�city (1—false positive fraction (FPF)) of criteria based on the risk factor model.
Since the data are from a case–control study, with sampling dependent on disease status,
we cannot evaluate predictive values directly from the data, but we can evaluate true and
false positive fractions. It is natural to consider positivity criteria based on the risk score,
P(D=1 |L1; : : : ; LP), or equivalently the linear predictor, exceeding a threshold c:

‘positive’= ‘�1L1 + · · ·+ �PLP¿c’
Such decision criteria are known to be optimal [13]. The associated true and false positive
fractions,

TPF(c)=P(positive | diseased)
and

FPF(c)=P(positive | not diseased)
are quantities derived from cases and controls, respectively. A plot of (FPF(c);TPF(c)) dis-
plays the range of operating characteristics attainable with the risk factors. This plot is known
as the ROC curve.
For our settings, we seek criteria which are either very sensitive and at least moderately

speci�c, or very speci�c and at least moderately sensitive. If a very sensitive criterion were
developed, we could be con�dent that we would not miss many cases by recommending that
subjects who do not meet the criterion forego screening. This would give rise to a savings
in health care resources. If a very speci�c criterion were presented, on the other hand, one
might encourage subjects satisfying the criterion to avail of screening procedures, since these
subjects are at relatively high risk of disease. We therefore focus on points on the ROC curve
that relate either to high values for TPF or to small values for FPF.
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4.2. Predictive values

The predictive values of a criterion quantify the risk of disease for subjects that are positive
or negative on the criterion. These entities relate directly to the usefulness of the criterion
in the population. However, they depend on disease prevalence, which cannot be determined
from a case–control study. With our data, we can only obtain estimates of the true and false
positive fractions associated with a criterion. These are the probabilities of criterion positivity
given incident disease status, and we assume they are valid nationally. We then used the
national SEER incidence rates for colorectal cancer (denoted by �) to calculate predictive
values (PV), using the following relationships:

Positive PV = P(D=1 | positive)

= �TPF={�TPF + (1− �)FPF}

Negative PV = P(D=0 | negative)

= (1− �)(1− FPF)={(1− �)(1− FPF) + �(1− TPF)}

Again, a criterion with a high positive PV could be useful for selecting subjects for clinical
screening. Negative predictive values are always high for a rare disease and so tend to be
less useful. However, it will be important to determine the proportion of the population that
satisfy the criterion �=Prob(positive), in order to assess the impact of using such a criterion
in the population. We calculate � with the formula:

�=�TPF + (1− �)FPF

4.3. Stratum-speci�c performance

As is typical of many case–control studies, the CCFR is designed so that controls are frequency
matched with cases. Matching on gender and age (by decade) was implemented to control
for these major confounders. The implications of matching are threefold: (i) the e�ects of age
and gender on disease risk cannot be estimated. They are �xed in the sample by design; (ii)
the e�ects of other risk factors can be estimated, but only within subpopulations de�ned by
age and gender; (iii) and to do this, it is necessary to include age and gender as covariates
in the model for disease risk [14]. We categorized age into �ve categories, which along with
gender de�nes ten strata. A stratum-speci�c intercept, �s for s=1; : : : ; 10 was included in the
model

logitP(D=1 | age, gender, risk factors)= �s + �1L1 + · · ·+ �PLP
The matching variables are included among the risk factors for de�ning the Boolean covariates
in the model, since their interactions with other risk factors are estimable. If such occurs, the
interpretation is that the relevant risk factor combinations or their e�ects di�er amongst the
strata.
Since the intercepts of our model, �s, are biased due to the matching, we cannot assess the

performance of the model as a predictor in the whole sample. Within matching strata, however,
the intercepts are merely constants, so we can assess criteria such as ‘�1L1 + · · ·+ �PLP¿c’

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1321–1338
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within strata. We therefore calculate the (FPF(c);TPF(c)) values using the cases and controls
within each stratum. We also calculate predictive values, using stratum-speci�c incidence
rates (available from SEER). Since it is not clear how best to summarize these operating
characteristics across strata, particularly if they vary amongst strata, we report all stratum-
speci�c values here.

5. RESULTS FOR COLON CANCER DATA

5.1. The simple one-tree model

We �rst �t a model with a single Boolean tree predictor, i.e. P=1. The tree is shown in
Figure 2. The odds ratio and 95 per cent con�dence interval associated with the tree are
exp(�̂1)=2:9 and (2:1; 3:9), respectively, with p-value ¡0:001.
The factors identi�ed in the data concur with previous reports in the literature. Family his-

tory of disease and overweight (in males) are well established as colon cancer risk factors [5].
Less education is likely to be a surrogate for less healthy lifestyle and less access to health
care resources amongst other things. It too has been found to be associated with higher risk of
colon cancer. Women taking estrogen post-menopausally have a reduced risk of colon cancer.
The logic tree indicates that having a family history of colon cancer or having less education
de�nes a group at substantially increased risk of colon cancer. However, post-menopausal
females in this group who take estrogen are not at increased risk unless they are substantially
overweight. As a group, those satisfying the logic tree are estimated as having a relative risk
of almost 3 compared to subjects of the same age and gender who do not satisfy the tree. This
is likely an overestimate since it is estimated from the same data that selected this covariate
on the basis of its association with risk in this data. We therefore re-estimated the relative
risk associated with the tree using the validation data that we had set aside. The estimated age
and gender adjusted relative risk is 3.0 (95 per cent con�dence interval= (2:0; 4:5), p-value
¡0:001). The odds ratio estimate is the same as that based on the training data, although the
con�dence interval is wider because of the smaller sample size in the validation set.
With only one tree, the operating characteristics of the �tted model are very simple. There

is only one distinct non-degenerate positivity criterion to consider, namely, whether or not the

and

or

family
history

less
schooling

or

overweight p.m. hormones

Figure 2. The single tree, L1, �tted to the colon cancer data. The risk factors included are: family
history (yes=no); less schooling (high school education or less); overweight (body mass index
¿26:6 kg=m2 for females, ¿27:3 kg=m2 for males); and p.m. hormones (women post-menopause

ever taking hormones for more than 6 months).
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tree is satis�ed (L1 = 1). The estimated sensitivity and speci�city values for this criterion are
shown for the eight strata that had ¿20 cases and controls (Table I). Again, we note that
performance is similar with the validation and training data sets, although, as expected, there
is more statistical variability with the smaller validation set. The sensitivities, averaging about
45–50 per cent, are not very high. We certainly could not use this criterion and consider
screening to be unnecessary in the subpopulation that is criterion-negative because about half
of diseased subjects are criterion negative. The speci�city is better, averaging about 76 per
cent across the strata. However, it may not be appropriate to use this criterion for targeting
intense screening encouragement e�orts either: about 24 per cent of non-diseased subjects
would be unnecessarily enticed to undergo clinical screening with this criterion.
It is interesting that the tree, L1, de�nes a group with a high relative risk of disease but does

not yield a criterion with good operating characteristics. We show the stratum-speci�c odds
ratios associated with L1 in Table I, which are reasonably well summarized by the overall
odds ratio exp(1:06)=2:9 from the �tted model. The odds ratios can be calculated directly
from the sensitivity and speci�city values as:

Odds ratio=
TPF

(1− TPF)
1− FPF
FPF

(2)

From equation (2) we see that the odds ratio is a composite of the sensitivity and speci�city.
Clearly it will be large if either the sensitivity is large or if the speci�city is large, since these
yield small denominators, (1−TPF) and FPF, respectively. However, it is notable that criteria
with moderate sensitivity and speci�city values can also have large odds ratios (Figure 3).
This reinforces the need to examine the two components of the odds ratio, (FPF, TPF), not
just their composite, for the sorts of applications we have in mind [15].
We now turn to the population performance of the criterion. Table I displays �, the fractions

of the population that are estimated to satisfy the criterion (the fraction for whom L1 = 1). It
ranges from 29 to 46 per cent across the strata. Note that the incidence of colon cancer is
very low, ranging from about 20=100 000=year in 40–50 year old women to 364=100 000=year
in 70–79 year old men [1]. This, along with the moderate speci�city of the criterion, gives
rise to low positive predictive values (Table I). The highest value is seen in 70–79 year
old females where the incidence of colon cancer is estimated to be 8.1=1000 in women who
are criterion positive. This seems unlikely to provide strong motivation for campaigning for
screening in this population.
Recall that we chose a priori to have a model with four leaves. We performed a cross-

validation analysis to assess whether our choice of model over�t the data. We found that the
four-leaf model had a slightly higher cross-validated deviance than smaller models
(a di�erence of less than 10 on a deviance scale), but we do not expect that this di�er-
ence would be associated with meaningful di�erences in operating characteristics.

5.2. More subpopulations

We next �t models with two trees, P=2. The model was �t six times, resulting in �ve unique
models. Since the simulated annealing algorithm used to �t the logic regression models is not
guaranteed to �nd the ‘best’ model, this variation is to be expected. On any given run, the
model selected may correspond to a peak in the likelihood, but �tting the model several times
allows us to determine if there is some model with an exceptionally good score. The �ve
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Figure 3. Contour plots for the odds ratio. (FPF, TPF) combinations that yield equal values for the
odds ratio are connected. Shown are contours for odds ratios of 1.0, 1.5, 2.0, 3.0, 9.0, and 16.0.

models we found all had very similar scores, indicating that for this problem there are many
models that perform equally well. We present the results for the model whose covariates we
felt are most easily de�ned.
The two-tree model is shown in Figure 4. Interestingly the �rst tree, L1, is the same

as that arrived at when we allowed only one tree in the model. The estimated odds ratio,
3:0= exp(1:096), is also similar. The second tree, L2, involves di�erent risk factors, including
one (poultry consumption) that has not been previously consistently implicated in colon cancer.
The model with linear predictor �1L1+�2L2 = 1:096L1+0:777L2 gives rise to three distinct non-
degenerate criteria for de�ning subpopulations. Let us consider the operating characteristics
for this model. The most speci�c criterion based on the model is where both trees are positive,
which corresponds to choosing c¿1:096+0:777. The most sensitive non-trivial rule is where
tree 1 or tree 2 is positive c¿0:777. The associated operating characteristics in the validation
data are shown in Figure 5. The most speci�c criterion had an estimated speci�city that
averaged 89 per cent across strata, with corresponding average sensitivities of 25 per cent.
If these numbers are accurate, it appears that 25 per cent of cases could be identi�ed for
screening with the criterion without referring more than 11 per cent of non-diseased subjects
for unnecessary screening. The most sensitive criterion averaged 83 per cent with speci�cities
that average 33 per cent across the strata. If these numbers are accurate, we could save 33
per cent of controls from unnecessary screening while continuing to screen the majority of
cases. These operating characteristics are disappointing. We felt that neither the most sensitive
nor the most speci�c rule would be useful in advising individuals to take advantage of or to
forego screening.
As more trees are added to the model, this creates a broader range of criteria that can be

investigated. There are, in fact, 2P criteria that are formed from the linear predictor �1L1 +
· · ·+ �PLP. This follows from the fact that the P binary logic trees partition the population
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Tree #2:  L 2

Tree #1:  L 1
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Figure 4. The trees L1 (upper panel) and L2 (lower panel) �t to the colon cancer data. The �tted age
and gender adjusted model is �1L1+�2L2 = 1:096L1+0:777L2. Variables in L1 are described in Figure 1.
Variables in L2 are: low poultry consumption (62 servings per week); screening sigmoidoscopy (¿1
year before study entry); NSAID use (¿0:25 months using non-steroidal anti-in�ammatory drugs); and

college education (some college education).

into 2P subgroups. In general, the operating characteristics associated with this model are
represented as 2P points along an ROC curve. We did not explore P¿2, but this could be
done in other applications.

5.3. Comparison with linear logistic regression

We �t a linear logistic model to the CCFR data. A stepwise algorithm yielded the results
shown in Table II. Covariates whose statistical signi�cance was p¡0:2 were sequentially
added to the null model. The operating characteristics for criteria based on this model are the
(FPF, TPF) points corresponding to the rules

�1X1 + �2X2 + · · ·+ �KXK¿c (3)

where Xk denotes a covariate in the model, �k is the associated log odds ratio, and c is the
threshold for the rule. Because of the large number of covariates, K =9, and the fact that
some covariates are on a continuous scale, the (FPF, TPF) points map out a continuous ROC
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Figure 5. Operating characteristics for criteria based on the two-tree model. Each point rep-
resents a stratum with numbers of cases and controls shown in Table IB. Values for most

sensitive (◦) and most speci�c (�) criteria are displayed.

Table II. Exponentiated coe�cients from a linear logistic regression model �t to the colon
cancer data.

Odds ratio 95 per cent CI

Education
High school or less 1.00
Some college 0.62 (0:43; 0:91)
College graduate 0.47 (0:32; 0:69)
Body mass index (kg=m2) 1.04 (1:01; 1:07)
Calcium
Months of use 0.96 (0:93; 0:99)
Family history of colon cancer
Yes versus no 2.78 (1:81; 4:28)
Screening sigmoidoscopy
Yes versus no 0.59 (0:40; 0:86)
Fried poultry
Servings per week 1.04 (0:99; 1:10)
Poultry
Servings per week 0.90 (0:82; 0:99)

Age and gender were included in the model.

curve for c ∈ (−∞;∞). The curves may well vary across strata. We estimated stratum-speci�c
ROC curves using the binormal model

ROC(t)=�(as + bs�−1(t))
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Figure 6. Operating characteristics associated with the linear logistic model. The average ROC curve
is shown, ROC(t)=�( �a + �b�−1(t)) with �a=0:55 and �b=1:05. Estimated (FPF, TPF) points for the

single tree logic regression model are also shown.

where � denotes the cumulative standard normal distribution function and (as; bs) are stratum-
speci�c ROC intercept and slope parameters. The LABROC algorithm was used to �nd pa-
rameter estimates [16]. The average curve

ROC(t)=�( �a+ �b�−1(t))

where �a=
∑S

s=1 as=S and �b=
∑S

s=1 bs=S, is shown as the curve in Figure 6. Both the ROC
curve and the (FPF, TPF) points associated with the logic regression model shown pertain to
the validation data. As with the logic regression models, the risk factors do not yield criteria
with adequate operating characteristics from the �tted linear logistic regression model.
In general, we prefer logic regression over linear logistic regression. A logistic regression

model does not yield a simple characterization of the subset of the population at high risk.
The subgroup is simply those subjects whose weighted average of risk factors, (3), is above
a speci�ed threshold. The logic trees, on the other hand, simply characterize the subset of
the population that is at high risk, although this comes at a cost of some constraints on
risk factor parametrization. Logic regression also easily models high-order interactions, while
stepwise logistic regression does not. Though all possible interactions could be coded by hand
and entered into a stepwise procedure, much modi�cation would be needed to ensure that
interactions not be included without their associated main e�ects. In this data set, however,
there do not seem to be identi�able subsets of the population that are at risk, and both
approaches yield inadequate prescreening criteria for colon cancer.
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6. ILLUSTRATION WITH SIMULATED DATA SET

In order to validate the use of logic regression in a setting in which high-order combinations of
covariates are important for predicting disease, we simulated such a data set. We assumed that
disease risk is a function of categorized continuous covariates, since modelling the covariates
continuously would have necessitated assuming an arbitrary functional form for the association.
We generated a population with an age- and gender-speci�c covariate distribution similar to
the controls in the colon cancer registry data. We set the size of the simulated population
at N =7000. Subjects in this hypothetical simulated population were at high risk for colon
cancer if they were heavy males (BMI¿25:7) with a family history of colon cancer, or
female smokers (pack-years ¿0) who were not heavy (BMI6 24:2). This logic tree is shown
in Figure 7. Those satisfying these conditions became cases in the simulation with probability
0.75, while those not in this subgroup became cases with probability 0.2. We then selected
100 cases and 100 controls at random from each of the 10 age and gender strata. The stratum-
speci�c operating characteristics of the logic tree used to generate the data are contained in
Table III. The fact that membership in the high risk subgroup is rare and that the large number
of subjects outside of this group developed cancer by some other cause with probability
0.2 means that there are a large number of cases who are not described by the logic tree.
Consequently, some of the stratum-speci�c sensitivities are very low (0–2 per cent). The
speci�cities are high, a result of the rarity of the high risk subgroup (87–100 per cent).
A logic regression model with one tree and eight leaves, including age and gender e�ects,

was �t to the simulated data (see Figure 8). By comparing Figures 7 and 8, we can see
that the �tted tree is not exactly the same as the tree used to generate the data, but the
high risk subgroups described are very similar. In fact, only 15 of the total 2000 subjects
are di�erentially classi�ed by the two trees. It is possible that further model selection would
result in a model that is even more similar to the true model. For comparison, a stepwise
logistic regression model, also including age and gender, was �t to the data. The operating
characteristic of the logic and logistic models were assessed using a very large validation data
set (N =78000). The stratum-speci�c empirical ROC curves for the logistic model are shown

or

and and

and and

male female

heavy family
history

heavysmoke

Figure 7. The tree used to generate the simulated data. Subjects are at high risk of colon cancer if
they are heavy (BMI¿25:7 kg=m2) males with a family history of colon cancer, or if they are female

smokers (pack-years ¿0) who are not heavy (BMI624:2 kg=m2).
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Table III. Operating characteristics of the tree used to generate the data (shown in Figure 7).

Age (years) Gender Sensitivity per cent Speci�city per cent

30–39 Female 2.0 100.0
30–39 Male 48.0 92.0
40–49 Female 53.0 87.0
40–49 Male 1.0 100.0
50–59 Female 54.0 93.0
50–59 Male 2.0 100.0
60–69 Female 50.0 95.0
60–69 Male 13.0 97.0
70–79 Female 42.0 98.0
70–79 Male 0.0 100.0

or

and

and and

sake
drinker sigmoidoscopymalesmokefemale heavy

and andor

family
history

over-
weight

Figure 8. The logic tree �tted to the simulated data. Risk factors include smoking (pack-years ¿0) and
not being heavy (BMI624:2 kg=m2) for females, and a family history of colon cancer, not drinking
sake (currently) and not having had a screening sigmoidoscopy (¿1 year before study entry) for males.

in Figure 9; sensitivities and speci�cities for the logic regression model are superimposed on
these plots. We see that in some strata, the stepwise logistic and logic models perform equally
well, while for others, the logic regression model has signi�cantly better discrimination. In
each stratum, the �tted logic regression model performs as well or slightly better than the
tree used to generate the data.
This simulation illustrates the potential value of logic regression. In settings where the high

risk subpopulation is described by a complex combination of risk factors, a logic regression
model yields a simple and interpretable characterization of the high risk subgroup. A logic
regression model can also result in a rule that has better discrimination between cases and
controls compared to the criterion that corresponds to a stepwise logistic regression model.
The operating characteristics of the tree used to generate the simulated data, shown in

Table III, also have important implications. Recall that individuals falling into the subgroup
described by the tree were very likely to become cases in the simulated data set (0.75 prob-
ability), while those not in this subgroup were much less likely to be cases (0.2 probability).
However, the fact that a small portion of the population (15 per cent) fell into the high risk
subgroup meant that a large number of cases were generated outside of the high risk subgroup.
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Figure 9. Operating characteristics for the stepwise logistic model �t to the simulated data. The empirical
ROC curve is shown for each of the ten strata. Estimated (FPF, TPF) points for the �tted logic regression

model (Figure 8) are also shown for comparison.

Thus, the stratum-speci�c sensitivities of the tree used to generate the data are low, but the
speci�cities are high. This is probably not an unlikely scenario; we would expect that, if an
extremely high risk subgroup existed for a particular disease, membership in the subgroup
would be rare. Hence, even a small likelihood of disease outside this subgroup would mean
that a rule which discriminates between cases and controls based on their subgroup member-
ship would have low sensitivity and high speci�city. As a result, any model which attempts
to describe the high risk subgroup is limited by these operating characteristics.

7. DISCUSSION

Risk factors have been established for many diseases. One potential use for such information
is for targeting interventions, such as screening, or for identifying groups where interventions
are not needed. Risk scores based on multiple risk factors have been developed. Examples are
the Framingham risk score for cardiovascular disease [17] and the Gail et al. breast cancer risk
prediction (BCRP) model [18]. Rockhill et al. [19] have criticized the BCRP model because
it is not very discriminatory. Many subjects who do not get disease have high risk scores
while many breast cancer cases have low values prior to their disease onset. Similarly, the
Framingham risk score does not discriminate well between those destined to become cases and
those destined to become controls [17]. Better discriminators would clearly be more useful.
We sought to identify criteria that would be discriminatory for colon cancer, with either high
sensitivity or high speci�city. Unfortunately, our data did not present such a criterion.
The technique that we used for extracting criteria from risk factor data is logic regression,

a technique that is well suited to settings where the presence (or absence) of various combi-
nations of risk factors yields similar risk. In our opinion, logic regression generates a much
simpler characterization of the subsets of the population at high risk than does linear logistic
regression, which depends on weighted averages of covariate values.
The algorithm that we implemented used the deviance (−2×log likelihood) as the objective

function for determining the Boolean predictor variables and their co-e�cients. This choice
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of objective function enabled us to naturally compare logic and stepwise logistic regression.
However, the deviance is not directly related to notions of accuracy associated with model-
based positivity criteria (i.e. FPF, TPF, and PV). In addition, the ratio of cases to controls in
the sample will a�ect the models selected if deviance is the objective function. It is possible
that another objective function could yield better performing criteria. One possibility is to
restrict attention to predictor variables that yield FPF (or TPF) values within a desirable range
and to maximize TPF (or minimize FPF) within that subset. Eguchi and Copas [20] discuss
such an objective function with FPF �xed at a particular value. Maximizing the area under the
ROC curve associated with the �tted model has also been discussed [20, 21]. Etzioni et al. [9]
implemented logic regression using a weighted misclassi�cation rate, w(1−TPF)+(1−w)FPF,
as the objective function. They varied w to yield corresponding single tree models whose
FPFs varied from 0 at w=0, to 1 at w=1. This approach might also be used in risk factor
modelling to �nd Boolean criteria with desired levels of speci�city (or sensitivity).
We chose thresholds or indicators corresponding to continuous covariates based on quantiles

of the control distribution. De�ning thresholds a priori according to other cut-o�s may have
yielded di�erent results, although established cut-o�s did not exist for the variables in our
data set.
We had missing data on a number of covariates, and chose simply to drop subjects with any

missing values. The amount of missing data was relatively small (6.3 per cent in controls,
and 7.8 per cent in cases), especially when considered by predictor, where the maximum
amount of missingness in cases occurred with multivitamin use (2.9 per cent) and in controls
with non-steroidal anti-in�ammatory drugs (NSAID) use (2.0 per cnt). Moreover, there was
a clear lack of signal in our data. Therefore, we did not implement special procedures, such
as imputation methods, to correct for bias due to missing data.
When statistical models are selected in an adaptive fashion, as is the case both for

logic regression and stepwise logistic regression, selection of the ‘right size’ model can
be quite important. In this paper we avoided this problem for logic regression by select-
ing the model size a priori. That is, we selected model sizes for logic regression that we
felt would be easy to interpret. Ruczinski et al. [7] argue for the use of cross-validation and
randomization tests to select the model that predicts best. (Software is available from:
http:==www.bear.fhcrc.org/˜ingor=logic.) A post hoc cross-validation analysis we carried out
suggests that, for both the one and two tree logic models for the colon cancer data, smaller
models would produce at least equally good results. There is some evidence that the model
sizes we chose over�t the data more than smaller models, but we felt that the amount of
over�tting would not correspond to meaningful di�erences in the operating characteristics.
For any statistical model, selected using cross-validation or a priori, honestly assessing

the prediction cannot be carried out on the same data that was used to �t the model. To
make such an assessment, we either need a second level of cross-validation, or we need to
use a separate test data set. For this analysis, we chose to split our data, using one part for
training to identify predictors and estimate parameters, and the other for assessing operating
characteristics of the associated criteria. This was a simple solution that worked well in our
application because of the relatively large sample sizes. However, it is a somewhat ine�cient
use of data, and cross-validation techniques may be necessary with more limited data sets.
We have introduced logic regression, a new tree-based statistical technique for modelling

binary data. Logic regression is useful for detecting subpopulations at high or low risk of
disease, characterized by high-order interactions among covariates. The logic trees provide
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easily interpretable descriptions of these subpopulations, and thus the methodology was well
motivated for our colon cancer application. Unfortunately, our colon cancer data did not give
rise to particularly high or low risk subgroups. We are con�dent in concluding that there is
no combination of these risk factors which would be useful for targeting screening e�orts in
the population. However, we feel that logic regression would be useful in situations in which
high-order interactions are important in determining disease risk. Our simulation demonstrates
that, if there is such signal in the data, logic regression will detect it.
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