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Signi�cance testing for small microarray experiments
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SUMMARY

Which signi�cance test is carried out when the number of repeats is small in microarray experiments
can dramatically in�uence the results. When in two sample comparisons both conditions have fewer
than, say, �ve repeats traditional test statistics require extreme results, before a gene is considered statis-
tically signi�cant di�erentially expressed after a multiple comparisons correction. In the literature many
approaches to circumvent this problem have been proposed. Some of these proposals use (empirical)
Bayes arguments to moderate the variance estimates for individual genes. Other proposals try to stabilize
these variance estimate by combining groups of genes or similar experiments. In this paper we compare
several of these approaches, both on data sets where both experimental conditions are the same, and
thus few statistically signi�cant di�erentially expressed genes should be identi�ed, and on experiments
where both conditions do di�er. This allows us to identify which approaches are most powerful without
identifying many false positives. We conclude that after balancing the numbers of false positives and
true positives an empirical Bayes approach and an approach which combines experiments perform best.
Standard t-tests are inferior and o�er almost no power when the sample size is small. Copyright ?
2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Research laboratories often perform microarray experiments with only a few (say less than
�ve) repeats. Reasons for the small number of repeats include availability of specimens and
economics. While the number of repeats in each experiment is small, commonly the same lab
will carry out related experiments: e.g. cell-line A is hybridized three times with and three
times without treatment �, the related cell-line B is hybridized four times with and two times
without treatment �, and so on. Typically the goal of each individual comparison is to identify
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genes that are ‘di�erentially expressed’. Ambitious analyses may want to identify classi�ers
for the di�erent classes or �t more complicated models.
The limited number of repeats, together with the large variability that even the best mi-

croarray platforms have, make small sample comparisons unattractive. A standard t-test for
a three-versus-three comparison only has four degrees of freedom. The resulting two-sided
test, with �=0:05 and a Bonferoni correction for 10 000 genes requires a t-statistic of 33
or more for signi�cance. The lack of degrees of freedom is really what drives the extremely
large signi�cance threshold for t-statistics: the same � and Bonferoni correction for 20 degrees
of freedom requires a t-statistic of 6.2 or more while a normal distribution only requires a
Z-statistic of 4.6 or more.
To overcome this lack of degrees of freedom we need to combine data one way or another.

There are two obvious choices: to get a better estimate of the residual variance for each
gene we can combine di�erent genes in the same experiment or we can combine experiments.
When genes are combined we can either choose to combine those genes for which the general
expression level is similar, or we can choose to combine all genes. If there are closely related
experiments, e.g. results on the same tissue under slightly di�erent conditions, we can probably
combine experiments. However, just like for combining genes, it may not be clear what we
can combine: other tissues? experiments that were carried out earlier? experiments from other
labs?
An alternative approach to obtain more power with small experiments is to add a stabilizing

constant to the estimate of the variance for each gene or to use some (Bayesian) model for
the expression levels. SAM [1] is a methodology that adds a constant to the estimate the
variance. The approaches by Baldi and Long [2], L�onnstedt and Speed [3], Smyth [4], and
Cui et al. [5] are four (empirical) Bayesian approaches. Wright and Simon [6] discuss a
closely related frequentist approach.
It is good to realize that permutation tests do not provide an easy way out. For a permu-

tation test with k cases and l controls, without a combination of genes, there are only
(k+l
k

)
possible levels of the P-value, i.e. 20 levels for the 3-versus-3 and 15 levels for the 4-versus-2
hypothetical experiments mentioned in the �rst paragraph. For the analysis of a single gene,
P-values smaller than 0.05 (even before a multiple comparisons correction) are thus impos-
sible. Some proposed permutation procedures (e.g. Reference [1]) combine the permutation
test statistics for all genes. For those procedures we can obtain (somewhat) smaller P-values.
While in this paper we focus on P-values obtained from parametric t and normal distribu-
tions, we brie�y discuss these type of permutation procedures in Section 2.1 and include a
comparison in Section 4.4.
In this paper, we do not control for multiple comparisons. In practice, when one carries

out tests for many thousands of genes simultaneously, a multiple comparisons correction or a
correction of the false discovery (FDR) rate is essential. See Reference [7] for an extensive
overview of multiple comparisons corrections. While several of these proposals use permu-
tation arguments to correct for multiple comparisons, permutation typically either requires a
substantial number of replicates (that are not available in small experiments), or they require
implicit assumptions about genes behaving exchangeable. In either scenario, we believe that
only well-calibrated marginal P-values are going to yield good multiple comparison corrected
P-values.
P-values have the advantage that there are well-established measures such as type I error

and power that can be used to judge the performance of a test. The FDR [8] does not have
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such a simple measure, to check whether estimates of the FDR are accurate on a single sample.
However, just like for multiple comparison procedures, there are procedures to approximate
the FDR from P-values. Thus we hypothesize that for these procedures accurate P-values are
a su�cient condition to get an accurate FDR.

2. METHODS

In this paper we compare several methods to analyse two sample comparisons when several
parallel experiments are available. We focus here on methods that provide P-values for indi-
vidual genes from a known reference distribution. (In Section 2.1, we discuss how permutation
can be used to obtain P-values for some of these methods.) Assume that we have properly
normalized gene expression data xijkl, where i=1; : : : ; n indicates the gene, j=1; : : : ; J in-
dicates the experiment, k=1; 2 are the two experimental conditions (that may be di�erent
between experiments), and l=1; : : : ; Ljk are the number of replicates for condition k in exper-
iment j. We are interested in situations where Ljk ¡ 5 for all j and k. Let �ijk be the ‘true’
mean expression level of gene i in experiment j under condition k. Set �̂ijk =

∑
l xijkl=Ljk and

s2ijk =
∑

l (xijkl − �̂ijk)2.
All of the test statistics that we consider can be written in the form

�̂ij1 − �̂ij2
�̃ij

where �̃ij is some estimate for the variance of �̂ij1 − �̂ij2 under the null hypothesis of no
di�erential expression. The traditional test statistics estimate �̃ij using only the data on gene
i and experiment j. The approaches that in�ate the variance and those that combine genes
also use data on genes i∗, i∗ �= i; implicitly to estimate hyperparameters for the empirical
Bayes approach that in�ates the variance, or explicitly to smooth the estimates for �̃ij for the
estimates that combine genes. Finally the approaches that combine experiments use data on
experiments j∗, j∗ �= j.
We are comparing the following test statistics.
Traditional test statistics. Several traditional test statistics can be applied to microarray

data.
T-statistic. The traditional t-statistic is

tij=
�̂ij1 − �̂ij2
�̂ij

√
1
Lj1
+ 1

Lj2

where �̂2ij=(s
2
ij1 + s

2
ij2)=(Lj1 +Lj2−2), provided Lj1 +Lj2¿2. The reference distribution is the

t-distribution with Lj1 +Lj2 − 2 degrees of freedom, and the main assumption is that for each
gene i and experiment j the xijkl are independent having a normal distribution with variance
�ij, although the t-test is generally considered to be robust against departures from normality.
Welch two sample t-statistic: Welch [9] proposed a two-sample t-statistic when the vari-

ances in both groups are di�erent. This statistic has sometimes been used in microarray
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analyses. This statistic is de�ned as

wij=
�̂ij1 − �̂ij2√

�̂2ij1=Lj1 + �̂
2
ij2=Lj2

where �̂2ijk = s
2
ijk =(Ljk − 1). Set

cij=
1

1 +
Lj1�̂2ij1
Lj2�̂2ij2

The reference distribution is approximately a t-distribution with

1
c2ij=(Lj1 − 1) + (1− c2ij)=(Lj2 − 1)

degrees of freedom. Note that the number of degrees of freedom for the Welch two-sample
test is always smaller than the number of degrees of freedom for the traditional t-statistic.
In�ation of the variance. There exist several methods that in�ate the variance, either ad hoc

(e.g. Reference [1]), using an (empirical) Bayes argument (e.g. References [2–4]), a James–
Stein type estimator [5], or a frequentist approach [6]. We include the Limma approach of
Smyth [4] as a representative in our simulation study. The reason to use Limma is that (i) it
provides explicit P-values (as opposed to, for example, SAM and the approach of Cui et al.
[10, 5] which require permutation) and (ii) it is easily available as part of the R-Bioconductor
project [11]. However, personal communication with authors of some of these approaches
suggest that they believe that they work very similar in practice.
Limma: Smyth [4] generalizes the approach from L�onnstedt and Speed [3]. The main

assumption in Smyth’s model is a prior distribution on the variances �2ij:

1
�2ij

∼ 1
d0js20j

�2d0j

(We include the index j for the parameters of the prior, as they may be di�erent for di�erent
experiments j=1; : : : ; J .) The model also includes priors on the coe�cients for each gene in
a linear regression model, which in the two sample case reduces to the di�erence between the
mean expression for the two groups. Using methods of moments estimators estimates d0j, s20j,
and a few other parameters are obtained. An in�ated variance �̃2ij=(d0js

2
0j+dj�̂

2
ij)=(d0j+dj),

where dj=Lj1+Lj2−2 is used for a ‘moderated t-test’ with d0j+dj degrees of freedom. The
approach of Smyth [4] is available from the Bioconductor package Limma. We used Limma
with the default options.
Methods combining genes. As for many microarray experiments when the number of repli-

cates Ljk is small, the various estimates for the variances are noisy. The e�ect of this is very
few degrees of freedom for the test statistic, which results in reduced power to detect di�er-
entially expressed genes. There have been several proposals in the literature to combine the
estimates of the variance for several genes to obtain better estimates, so that the resulting test
has more degrees of freedom. Typically the assumption that is made is that genes with the
same expression level have approximately the same variance. Under this assumption estimates

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2281–2298



SMALL MICROARRAY EXPERIMENTS 2285

for the variance can be obtained by smoothing the variance as a function of the expression
level. The proposals in the literature di�er primarily in how the smoothing is carried out, and
whether variances are smoothed jointly or separately for both experimental conditions. In our
comparison we include two such proposals.
LPE: Jain et al. [12] describe a method they call ‘Local Pooled Error test’ (LPE). In their

approach, let �̂ijk be the initial variance estimate for gene i, experiment j, and condition k,
as obtained for the regular t-test. They now proceed by regularizing these estimates for each
j and k separately by smoothing the �̂ijk versus �̂ijk . The assumption being made here is that
genes with the same expression level for the same experiment and the same condition have
(approximately) the same variance. As the smoothing spline that is used e�ectively involves
averaging a large number of genes, the authors use a normal reference distribution. In our
study we have used the implementation by the authors, available in the R-package LPE.
Loess: Huang and Pan [13] make several related proposals. The main di�erence between

their approach and the approach by Jain et al. [12] is that they �rst compute �̂ij and smooth
these estimates against �̂ij= �̂ij1 + �̂ij2. Their simulation results show that, not unexpectedly,
for the null-model a normal distribution is appropriate. We reimplemented their approach
using a loess smoother, and then carrying out a two-sample normal test with equal variances
in both groups.
Methods combining experiments. Instead of combining di�erent genes within one exper-

iment, we can also combine expression levels of the same gene between experiments. This
would potentially be useful if we have several smaller experiments, and it is thus reasonable
to assume that for each gene the conditional variance for each group in each experiment is
approximately the same.
Pooled-t: We de�ne the pooled t-test statistic, combining experiments, as

cij=
�̂ij1 − �̂ij2
�̂i

√
1
Lj1
+ 1

Lj2

where �̂2i =
∑

j(s
2
ij1+s

2
ij2)=L and L=

∑
j(Lj1+Lj2−2), provided L¿0. The reference distribution

is the t-distribution with L degrees of freedom, and the main assumption is that the xijkl are
independent having a normal distribution with mean �ijk and variance �i. Note that, in theory,
we would even be able to carry out tests when for a particular experiment j the sample sizes
Lj1 and Lj2 are 1, provided that L¿0 for all experiments combined.
Pooled-loess: We can combine the approach to combine experiments and the approach to

combine genes. The possible advantage of such an approach is that we can obtain a more
stable estimate of � combining far fewer genes than what is needed for LPE and the loess
approach.

2.1. Permutation P-values

Permutation of the arrays in an experiment can be an alternative to using a parametric reference
distribution for a test statistic. Assume that we have a single L1-versus-L2 experiment (J =1),
and that the test statistic for the ith gene is Ti. To compute the signi�cance of Ti we also
compute the test statistics for all genes for each of the m=1; : : : ;

(
L1+L2
L1

)
permutations of

the L1 + L2 arrays. (One of these permutations will be the original design.) Let Tim be the
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test statistic for the ith gene for the mth permutation. We can use

n∑
i∗=1

(
L1+L2
L1

)
∑
m=1

I(Ti¡Ti∗m)
/(

L1 + L2
L1

)

as an estimate of the P-value corresponding to Ti.
These estimates will be unbiased if (i) each Ti has the same distribution under the null-

hypothesis, and (ii) no genes are di�erentially expressed. The �rst assumption is not as severe
as it appears. When a parametric distribution is used the stronger assumption, that the distribu-
tions of each Ti under the null-hypothesis are the same as a particular parametric distribution,
is made. The second assumption is much more severe, and it will likely lead to conservative
P-values when in fact there are a substantial number of di�erentially expressed genes [14].
For two of the test statistics which we propose (Welch and Limma) we know that the

�rst assumption is false, as the number of degrees of freedom di�ers for each test statistic
(Welch) or for each di�erent rearrangement of experiments (Limma). For the Pooled-t and
Pooled-loess we would have to permute each experiment separately. We will compare this
procedure to obtain P-values for the three other approaches to testing that we consider: t-test,
LPE, and Loess. Note that for two approaches which we brie�y mentioned but not included
in our experiments [1, 5] there is no explicit reference distribution, and permutation is required
to obtain P-values.

3. EXPERIMENTAL DATA

As experimental data we use a�ymetrix Mu 11K-A microarrays generated for a series of
experiments on Huntington’s Disease mouse models. The results of these experiments were
reported as a series of related papers [15–17]. For each of these experiments a particular type
of mouse with a form of the Huntington’s gene inserted was compared to the same type of
mouse without the gene mutation at a particular age. At that time mice were sacri�ced and
gene expression in certain regions of brain tissue were analysed. All comparisons reported in
References [15–17] showed some di�erentially expressed genes, although the amount of dif-
ferentiation di�ered considerably between the experiments. For each of the experiments both
groups had between 2 and 5 mice. Thus, all our repeats use di�erent samples (sometimes re-
ferred to as ‘biological repeats’) and are not repeat arrays using the same samples (sometimes
refereed to as ‘technical repeats’), that could be expected to vary less. There are 6595 probe
sets (genes) on each array.
For the current paper we reorganize the experiments into groups where we know that there

are no systematic di�erences between both experimental groups and some experiments where
we know that both experimental groups di�er. The experimental line up is shown in Table I.
Thus, the experiments Sc1, Sc2, Sc3, Sc4, Ss1, Ss2, and Ss3 are intended to establish that
the tests have the right size type I error, and the experiments Dc1, Dc2, Dc3, Ds1, Ds2, and
Ds3 are intended to establish the power of the tests.
In our experiment we will analyse these experiments using the analysis methods described in

Section 2: for the experiments for which Lj1¿1 and Lj2¿1 we will compare seven approaches,
for the methods for which Lj1 =Lj2 = 1 we will compare two methods as well as the ‘o�cial’
a�ymetrix P-values. For the methods which combine experiments we compare the more similar
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Table I. Organization of the data for our analysis.

Exp. Tissue Mouse Group 1 Group 2 Lj1 Lj2 Di�erent

Sc1 Cerebellum DRPLA 26Q HD HD 2 2 No
Sc2 Cerebellum DRPLA 26Q WT WT 2 2 No
Sc3 Cerebellum YAC HD HD 3 2 No
Sc4 Cerebellum YAC WT WT 3 2 No
Dc1 Cerebellum DRPLA 65Q HD WT 4 4 Yes
Dc2 Cerebellum R6=2 12 weeks HD WT 2 2 Yes
Dc3 Cerebellum N171 HD WT 4 4 Yes
Ss1 Striatum R6=2 4 weeks HD WT 2 2 No
Ss2 Striatum R6=2 2 weeks HD HD 1 1 No
Ss3 Striatum R6=2 2 weeks WT WT 1 1 No
Ds1 Striatum R6=2 12 weeks HD WT 2 2 Yes
Ds2 Striatum R6=2 6 weeks HD WT 1 1 Yes
Ds3 Striatum R6=2 6 weeks HD WT 1 1 Yes

HD: Huntington’s Disease mouse, WT: wildtype mouse. Experiments whose code start with a D are expected
to have di�erences between both groups, while those starting with an S are repeats; the second letter of the
code refers to the tissue: c stands for cerebellum and s stands for striatum.

experiments within the same tissue. In addition, for the striatum experiments we also look at
pooled variances that are obtained by combining the striatum and cerebellum experiments. As
the cerebellum experiments have many more degrees of freedom than the striatum experiments
(24 versus 4) combining the striatum experiments with the cerebellum experiments had no
e�ect on the cerebellum experiments (results not shown). For all methods we analysed gene
expressions that were normalized by two popular methods: the logarithm of the MAS5 average
di�erence summary and the RMA algorithm of Irizarry et al. [18]. As all our results were
e�ectively the same for both normalizations, we only report the results on the RMA normalized
data. For RMA we normalized all 54 arrays simultaneously; however when we analysed
each of the 13 experiments separately, the results were again essentially the same. This is
a testament to the robustness of the RMA normalization method. In general, normalization
methods had no e�ect on the results which we present.

4. RESULTS

We are displaying our results as probability–probability plots on a logit-scale (see Figure 1).
That is, for a particular method and a particular array let pi be the two-sided (sometimes
called signed) P-values. That is, if pi is close to 0 there is evidence of under-expression and
if pi is close to 1 there is evidence of over-expression of group one relative to group two.
Let p(i) be the sorted pi. We plot these p(i) (horizontal) against (1; : : : ; n)=(n + 1), where
n=6595, the number of genes on the arrays. We use two criteria for comparing the methods.
First, for experiments where both groups are in fact repeats (Sc1, Sc2, Sc3, Sc4, Ss1, Ss2,
and Ss3) we would like these plots to follow the identity line. Curves that �atten out are
particularly worrisome, as they suggest signi�cantly di�erentially expressed genes that are in
fact false positives. Curves that are more vertical than the identity line suggest statistics that
are too conservative: something that is not a concern when there is in fact no di�erence,
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Figure 1. Hypothetical performance of four methods on two data sets. We would
prefer the method labelled ‘unbiased-1’.

but would likely hurt us when we use the same method to analyse data where some genes
are di�erentially expressed. Second, for experiments where there is a di�erence between both
groups we want the most horizontal curves, among the methods that did not generate a
substantial number of false positives for the repeat experiments.
In Figure 1 we show some hypothetical curves. The methods labelled ‘unbiased-1’ and

‘unbiased-2’ give good results for the hypothetical replicate data, and among these two
‘unbiased-1’ performs better on the hypothetical di�erential data. The ‘conservative’ method
performs acceptable on the hypothetical randomized data, but the conservatism causes the
method to call far fewer genes di�erentially expressed than the two unbiased methods. The
‘too liberal’ method gives unacceptable results on the replicate data, and its good looking per-
formance on the di�erentially expressed data would thus be discounted as they likely include
many false positives.

4.1. Bandwidth selection

For three of the approaches that we include in our comparison a bandwidth or smoothness
parameter needs to be set. In particular, the Loess and Pooled-loess approaches require the
choice of a bandwidth (called span in the R implementation) and the LPE approach requires
the choice of the number of degrees of freedom and a binning parameter. All three of these
methods turn out to be extremely insensitive for the choice of these parameters. In Figure 2 we
show a comparison of the P-value graphs for one di�erential and one replicate experiment for
the Loess approach with a wide range of spans. As can be seen, the graphs for di�erent spans
are indistinguishable. This is our experience for all three methods that require a bandwidth to
be chosen, and for all experiments. Probably this insensitivity should be no surprise, as even
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Figure 2. Dependence of the Loess approach on the span for two of the data sets.

for the smallest bandwidth these methods still average over a substantial number of genes. As
the choice of this parameter is irrelevant, we use a span of 0.1 for the Loess and Pooled-loess
approaches and the default (10 degrees of freedom and 100 bins) for LPE.

4.2. Small experiments

In Figure 3 we show the results for four of the �ve experiments with more than one array for
the experiments where both groups are in fact repeats of each other (we omitted experiment
Sc4 in this �gure to save space). As noted before, these experiments are intended to establish
whether these tests all have the right type 1 error. We note from these �gures that the three
approaches that average variances over genes, Loess, Pooled-Loess, and LPE, are all too
liberal. All three methods give approximately 10 times more signi�cant results than appropriate
for experiments Sc1, Sc2, and Ss1. For experiments Sc3 and Sc4 (not shown) the Loess,
and Pooled-Loess, method give even worse results, while for these two experiments the
LPE method performs more reasonably. All other methods give for these experiments either
fairly unbiased or sometimes slightly conservative results. The only exception is the Pooled-t
approach for experiment Sc3, where this approach indicates slightly too many genes that are
over-expressed in group one versus group two. We further examined this experiment, and
for the genes that are indicated by the Pooled-t approach for Sc3 there appears to be a fair
amount of di�erence between both groups. Most of these genes are ‘almost’ signi�cant for
other approaches, and we believe that the variation for the Pooled-t approach for Sc3 is
random variation.
In Figure 4 we show the results for the four experiments with more than one array for

the experiments where both groups are di�erent. We note that the three approaches that
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Figure 3. Performance of the various approaches for experiments Sc1, Sc2, Sc3, and
SS1. These experiments compare repeat arrays, and there should be no signi�cant

number of di�erentially expressed genes.

yielded biased estimated when the groups are repeats, Loess, Pooled-Loess, and LPE, yield
the largest number of positives. However, we know from the repeat experiments that many of
these will be false positives. Among the other four methods, the t-test and Welch approaches,
both classical test-statistics, appear to have no power to detect di�erential expression. The
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Figure 4. Performance of the various approaches for experiments Dc1, Dc2,
Dc3, and Ds1. These experiments compare di�erent mouse lines; thus we prefer

methods that indicate many di�erentially expressed genes.

Pooled-t and Limma approaches do better. In fact over these experiments Pooled-t slightly
outperforms Limma. For the Pooled-t approach for the striatum experiments with di�erential
expression (Ds1) the power seems to be improved when all arrays, including those that involve
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cerebellum, are used over those that only pool the striatum experiments, without biasing the
results for the repeat experiment (Ss1).

4.3. One-versus-one experiments

Traditionally we would not consider carrying out tests when there are no repeat observations.
There is no redundancy in the measurements, and as such, there is no robustness in the
experiment: we could not determine whether a single measurement is an outlier, and we have
no possibility to check whether any of the underlying assumptions hold. After all, we have no
degrees of freedom to estimate the residual variance �2. However, using the two approaches
that combine di�erent experiments technically allows us to compare two experimental groups
without repeats, as long as we can borrow degrees of freedom from other experiments. We
compare these methods to the A�ymetrix MAS5 estimate of the probability of di�erential
expression, which is provided for single array comparisons.
In Figures 5 and 6 we display the results for the experiments without repeats. We note

roughly the same pattern as for the slightly larger experiments: Pooled-Loess yields biased
results, while the Pooled-t yields fairly unbiased results. The power of the Pooled-t method is
slightly better when all arrays (cerebellum and striatum) are used then when only the striatum
arrays are used. The power is very low though, con�rming that one-versus-one experiments
are not a good idea. The A�ymetrix P-values do not appear to behave like true P-values,
and they suggest very many di�erentially expressed genes, even when the arrays are repeats.
These P-values are the worst among those studied.
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Figure 5. Performance of the various approaches for the experiments Ss2 and
Ss3 with one array each. This experiment compares repeat arrays, and there

should be no signi�cant number of di�erentially expressed genes.
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Figure 6. Performance of the various approaches for the experiments Ds2 and Ds3 with
one array each. These experiments compare di�erent mouse lines; thus we prefer methods

that indicate many di�erentially expressed genes.

4.4. Permutation P-values

As detailed in Section 2.1, an alternative approach to obtaining P-values is a permutation
approach in which the test statistics for all genes are combined. In Figures 7 and 8 we
compare this approach for three of the methods with the (parametric) Pooled-t approach.
The results for the four experiments displayed in these two �gures are similar to those
for the other experiments. We notice that the permutation approach for computing P-values
yields approximately unbiased results, but, as expected, the permutation approach reduces
power: the Pooled-t approach is consistently more powerful than any of the approaches using
permutation.

4.5. Summary of the results

In Table II we summarize the results on the mouse data. For each of the seven approaches
to computing test statistics compared in Section 4.2 and the three permutation approaches
compared in Section 4.4 we counted what fraction of the genes would be signi�cant at (two-
sided) signi�cance levels of �=1 and 0:01 per cent. We averaged over the experiments with
at least two repeats in each group, separately for the experiments where the two groups are
in fact repeats (Sc1, Sc2, Sc3, Sc4, and Ss1) and the experiments where the two groups are
di�erent (Dc1, Dc2, Dc3, and Ds1).
Table II con�rms our earlier analysis: the Loess and Pooled-loess approach call very many

false positives; LPE calls too many false positives at �=0:01 per cent. The remaining meth-
ods maintain correct type I error rates. Among these the Pooled-t and especially Limma
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Figure 7. Performance of the permutation approaches and Pooled-t for the experi-
ments Sc1 and Ss1. This experiment compares repeat arrays, and there should be no

signi�cant number of di�erentially expressed genes.
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Figure 8. Performance of the permutation approaches and Pooled-t for the experiments
Dc1 and Ds1. These experiments compare di�erent mouse lines; thus we prefer methods

that indicate many di�erentially expressed genes.
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Table II. Percentage of genes that are called signi�cant at di�erent nominal � levels for the mouse data.

Experimental groups Experimental groups
are in fact repeats are di�erent

Nominal � 1 per cent 0.01 per cent 1 per cent 0.01 per cent

t-test 0.66 0.006 1.90 0.061
Pooled-t 1.06 0.018 2.80 0.254
Welch 0.31 0.006 1.03 0.042
Loess 2.70 0.576 7.29 2.866
Pooled-loess 2.75 0.886 6.35 2.415
LPE 0.73 0.136 4.32 1.467
Limma 0.29 0.006 3.72 0.754
t-test permuted 0.69 0.003 1.95 0.068
Loess permuted 0.46 0.000 2.33 0.027
LPE permuted 0.41 0.003 2.41 0.064

approaches are the most powerful. In particular the permutation approaches do correct the
type I error rates, but reduce the power considerably.

5. SIMULATION

To con�rm that our results were not dependent on our data set, we conducted a simulation
study consisting of four experiments: a four-versus-four experiment and a two-versus-two
experiment where there is no di�erential expression, and a four-versus-four experiment and
a two-versus-two experiment where some genes are di�erentially expressed. All experiments
had 10 000 genes. Thus, Li1k =Li3k =4 and Li2k =Li4k =2, for i=1; : : : ; 10 000, and k=1; 2.
The data was generated as follows. Let xij1l1 =�i + Zij1l1 and xij2l2 =�i + �ij2 + Zij2l2 for

i=1; : : : ; 10 000, j=1; : : : ; 4, l1 = 1; : : : Lij1, and l1 = 1; : : : Lij2. and �i ∼Unif [0; 10] for all i.
The di�erential expression �ij2 = 0 if j=1; 2 or i=1; : : : ; 6000 and �ij2 = 1

5(2Bij −1)Gij other-
wise, where Bij ∼Bernoulli(0:5) and Gij ∼Gamma(5). Thus for experiments 3 and 4, 4000 of
the genes have some di�erential expression, the amount of di�erential expression varies from
very small to substantial.
In the �rst part of the simulation, we take the variation Zijkl ∼ �N(0; �2i ), where �i=(0:3 −

0:02�i)G′
i and G

′
i ∼Gamma(5). Thus, the amount of variation depends on the mean �i and

genes with smaller expression have a larger variance, as is often seen for real gene expression
data after a log-transform. However, some of the genes with low �i will have a small variance,
and some of the genes with a large �i will have a large variance.
We generated 10 data sets and averaged the fraction of the genes that was signi�cant at

�=1 and 0:01 per cent. The results, shown in Table III, lead to similar conclusions as the
mouse data: the Loess, Pooled-loess, and LPE approaches have an increased type I error, and
of the other methods the Pooled-t and Limma approaches are most powerful. Experiment 3
at �=0:01 per cent shows that when there is a substantial percentage of di�erential expressed
genes the permutation approaches can be less powerful than a regular t-test.
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Table III. Percentage of genes that are called signi�cant at di�erent nominal � levels for the simulated
data.

Tests with no di�erence Tests with di�erence

Li1k =4 Li2k =2 Li3k =4 Li4k =2

1 per 0.01 per 1 per 0.01 per 1 per 0.01 per 1 per 0.01 per
Nominal � cent cent cent cent cent cent cent cent

t-test 1.0 0.011 1.0 0.007 9.8 2.114 2.9 0.036
Pooled t-test 1.0 0.011 1.0 0.009 11.7 5.239 8.4 2.792
Welch 0.7 0.007 0.3 0.001 8.5 1.282 1.0 0.008
Loess 3.9 0.702 5.0 1.054 14.9 7.532 12.8 5.093
Pooled loess 3.6 0.640 3.5 0.648 14.2 6.806 10.3 3.536
LPE 1.4 0.163 2.4 0.380 8.8 3.267 8.3 2.580
Limma 1.1 0.016 1.0 0.000 11.2 2.487 4.8 0.004
t-test permuted 1.0 0.011 1.0 0.008 9.3 0.345 2.0 0.020
Loess permuted 1.0 0.010 1.1 0.011 8.0 0.339 2.7 0.030
LPE permuted 1.0 0.011 1.1 0.011 5.0 0.244 2.7 0.030

Table IV. Percentage of genes that are called signi�cant by the Pooled-t approach at di�erent nominal
� levels for the simulated data where the variances di�er between experiments.

Tests with no di�erence Tests with di�erence

Li1k =4 Li2k =2 Li3k =4 Li4k =2

1 per 0.01 per 1 per 0.01 per 1 per 0.01 per 1 per 0.01 per
Nominal � cent cent cent cent cent cent cent cent

a=0, r=1:0 1.0 0.011 1.0 0.009 11.7 5.239 8.4 2.792
a=0:091, r=1:2 1.1 0.011 1.0 0.015 11.7 5.240 8.4 2.814
a=0:2, r=1:5 1.1 0.012 1.2 0.022 11.8 5.277 8.5 2.832
a=0:33, r=2:0 1.2 0.013 1.5 0.031 11.8 5.216 8.7 2.931
a=0:5, r=3:0 1.4 0.033 2.0 0.088 11.8 5.233 9.1 2.956
a=0:6, r=4:0 1.6 0.042 2.3 0.136 12.0 5.322 9.4 3.059

When judging Table III we need to keep in mind that in fact for this simulation all four
experiments had the same variance for the same gene. Thus the assumptions behind the
Pooled-t approach are exactly correct. To examine what happens when this assumption is
violated we generated additional data for which the set-up is identical as above, except that
Zijkl ∼ �N (0; �2ij), where �ij=�iUij, �i is as in the �rst part of the simulation, and Uij ∼Unif
[1− a; 1 + a], where a is chosen such to make the maximum possible ratio between �ij and
�ij′ equal to r. We again generated 10 data sets and averaged the fraction of the genes that
was signi�cant at �=1 and 0:01 per cent. From the results shown in Table IV we note that
when r61:5 the increase in type I error is small, and that even when r=4 the Pooled-t
approach still has a smaller type I error than the LPE approach.
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6. DISCUSSION

Which signi�cance test is carried out when the number of repeats is small in microarray
experiments can dramatically in�uence the results. We set up our experiments so that we could
both judge which approaches yield approximately unbiased P-values when the experimental
conditions are identical, and which approaches are most powerful when both conditions di�er.
We focused on P-values, rather than for example the FDR, as we believe that a ‘good’ P-value
will yield a ‘good’ multiple comparisons correction, and a multiple comparisons adjustment
by itself cannot save a procedure that yields too liberal P-values.
Our results are striking. As expected, the t-statistic and the Welch statistic, arguably the

most commonly used statistics, have almost no power when the sample size is small. Alter-
native methods that combine experiments or genes can have vastly di�erent e�ects. In our
experiments approaches that combine genes using a smoothing of the variance against the ex-
pression level yielded large number of false positives. An empirical Bayes approach as well
as an approach that pooled related experiments yielded much better results.
Why does combining genes in a smoothing sense lead to false positives? Our explanation

is that in fact the variance may depend on the expression level, but that the actual variance
for each gene is ‘random’. Let us make an assumption similar to that made in the empirical
Bayes approach (possibly with a dependence on expression level). If we replace (locally) all
variance estimates with an average estimate, as the LPE and Loess method are e�ectively
doing, the variance will be too large for some genes and too small for other genes. Having
some variances too large yields conservatism for those genes, but having too small variances
yields false positives for other genes. Thus, the false positives for methods like LPE and
Loess are likely found for genes that have larger variances. The empirical Bayes approaches,
such as Limma are more subtle, and keep the estimated variances much more like the original
variance.
Another conclusion is that borrowing degrees of freedom from other experiments helps.

Unfortunately we know of no easy statistical way to judge whether two experiments can be
combined within such small experiments. Retrospective analyses of larger experiments may
provide insight in which experiments can be combined. We suspect that many experimental
conditions are quite robust, and that in fact combining experiments is a much weaker as-
sumption than combining genes. In fact, it is often more the behavior of the gene than of
the experiment that determines the variance. It is also useful to realize that most microarray
summary measures, such as RMA, are approximately proportional to logarithms of expres-
sion levels. Thus, as approximately var(log(Y ))∝ var(Y )=E(Y ), the assumption of constant
variance on a log-scale is really an assumption of a constant coe�cient of variation on the
original scale.
We also investigated an approach that extends Limma to pool variance estimates between

experiments. It turns out that this approach performs almost identical to the Pooled-t, as for
the pooled data the prior number of degrees of freedom do is small compared to the number
of degrees of freedom of the experiment.
As we have shown, simple permutation procedures can reduce the bias, but they also reduce

power, and these procedures are thus no simple way out. Our experiments were all carried
out on A�ymetrix arrays. We found out that the actual normalization (RMA or MAS5) had
no e�ect on the results. We hypothesize that most of our results remain valid for two-colour
arrays as well.
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Our experiments focused exclusively on two-sample comparisons, but as the various tests
which we compared primarily di�er in their estimates of the residual variance, generalizations
to multiple samples via F-tests, or to more complicated modelling situations via linear models,
are straightforward for most approaches (LPE and Welch’s tests may be the exceptions): all
test-statistics which we consider are of the form (�̂ij1 − �̂ij2)=�̃ij, which translates directly

in �̂=�̃ for speci�c contrasts in multiple sample problems and linear regression. In fact, the
Limma approach [4] has already been implemented for those situations.
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