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Recent developments in genetic sequencing technology now make it possible to genotype large numbers of
single nucleotide polymorphisms (SNPs) in large samples. Many association studies using SNP data are now
being carried out. Typically, these observational studies establish whether certain haplotypes or individual SNPs
are associated with a health outcome. Few methods exist for finding interaction effects among multiple SNPs or
between SNPs and environmental factors. In this paper, the authors describe logic regression, an exploratory
method with which to identify interactions for further research. They illustrate this method using data from a US
case-control study of myocardial infarction and stroke (1995–1999) carried out among 1,614 persons in Wash-
ington State who were genotyped for 32 SNPs on five genes in the renin-angiotensin system.

epidemiologic methods; epistasis, genetic; models, statistical; polymorphism, single nucleotide; regression
analysis

Abbreviations: ACE, angiotensin-converting enzyme; AGT, angiotensinogen; AGTR, angiotensin II receptor; RAS, renin-
angiotensin system; REN, renin; SNP, single nucleotide polymorphism.

Over the last few years, the number of studies character-
izing associations between single nucleotide polymorphisms
(SNPs) and disease outcomes has increased dramatically.
With the recent developments in genetic sequencing tech-
nology, the number and size of these studies will increase
further. While single SNP association analyses are straight-
forward to carry out, they do not make efficient use of the
genomic structure.

For many SNP association studies, interest will not be
limited to identifying individual SNPs or haplotypes asso-
ciated with a disease outcome but, equally important, will
also involve the identification of interactions between SNPs

within a gene (as in a haplotype effect), between genes, or
between genes and environmental factors such as drugs,
smoking, and alcohol consumption. Few methods exist for
finding interaction effects of multiple SNPs or between SNPs
and environmental factors (1, 2). Reasons for this shortage
of methods may be the large number of potential interac-
tions, which makes it practically impossible to examine
all interaction models, and the requirement of multiple-
comparisons correction for all models that are examined.

In judging methods for identifying interactions, it is use-
ful to differentiate between three types of interactions that
can be of interest.
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Within-gene interactions. Identification of interactions
between SNPswithin the samegene, orwithin the same region
of a chromosome, is an alternative to using reconstructed hap-
lotypes for association studies. An advantage of using haplo-
types is that there are relatively few common ones within
a block, and it is thus an easy way to model interactions.
However, haplotypes depend onwhich tagSNPs, which ‘‘tag’’
the desired haplotype block, are genotyped, and there is no
guarantee that another study will identify the same haplo-
types. If several haplotypes all have increased or decreased
risk, it may not be straightforward to recognize which SNPs
are associated with the disease. Moreover, it is conceivable
that no individual haplotype is significantly associated with
the outcome while a simple combination of fewer SNPs is
significant, since haplotypes may include SNPs that are not
relevant to the disease risk. A within-gene interaction of
the type ‘‘a variant at SNP 1 and a variant at SNP 3’’ could
potentially identify groups of haplotypes that together pro-
duce increased risk.

Between-gene interactions. The term ‘‘epistasis’’ was
coined to describe the effect of masking of the phenotypic
effects of one gene by a second gene. More generally, epis-
tasis is considered an interaction between different genes.
Epistasis is thought to play a significant role in complex dis-
eases (3, 4). The identification of epistasis can be problem-
atic, since if the effect of one locus is masked by the effect
of another locus, the power to detect the first locus is prob-
ably reduced.

Gene-environment interactions. The computational com-
plexity of gene-environment interactions, with respect to the
difficulty of identifying such interactions, falls somewhere
between the complexity of ‘‘within-gene’’ interactions and
‘‘between-gene’’ interactions. For a study with 25,000 SNPs,
there may be approximately 25,0002/2 possible two-SNP
interactions, but there are only 25,000q SNP-environment
interactions, where q is the (usually small) number of envi-
ronmental factors under consideration.

Logic regression (5) is an exploratory regression method
that is designed for analysis with binary predictors when
interest is in possible interactions between predictors. As
such, it is well suited for SNP association studies. In this
paper, we will briefly describe the logic regression method
and apply it to data on 349 myocardial infarction patients,
202 stroke patients, and 1,063 controls for whom 32 SNPs
on five genes in the renin-angiotensin system (RAS) were
genotyped.

MATERIALS AND METHODS

RAS data

The RAS plays a central role in maintenance of vascular
tone and in salt and water homeostasis. Renin (REN) cleaves
angiotensinogen (AGT) to produce angiotensin I, which is
converted by angiotensin-converting enzyme (ACE) to an-
giotensin II, a potent constrictor. Evidence suggests that
the 235T allele of the AGT gene is associated with increased
risk of hypertension and elevated AGT levels; other related
genotypes, such as angiotensin II receptor types 1 and 2

(AGTR1 and AGTR2), have been associated with hyperten-
sion and cardiovascular complications.

We carried out this study to investigate whether the effect
of ACE inhibitors on risk of incident nonfatal myocardial
infarction or stroke differs byACE orAGT genotype. Our anal-
ysis was conducted within a population-based case-control
study of members of the Group Health Cooperative of
Puget Sound (western Washington State) aged 30–79 years
with pharmacologically treated hypertension. The study de-
sign has been described elsewhere (6). Cases were persons
who survived an incident myocardial infarction or stroke
during the period 1995–1999, and controls were eligible
if they did not have a history of myocardial infarction or
stroke. Controls were randomly sampled from the Group
Health Cooperative enrollment files and were frequency-
matched to the myocardial infarction cases on age decade,
sex, and calendar year of identification.

Current use of antihypertensive medications was deter-
mined using computerized pharmacy records. Individual
drugs were grouped into major classes: diuretics, b-blockers,
ACE inhibitors, calcium-channel blockers, and vasodilators.
Diuretics included both loop and thiazide diuretics.

The SNPs for the RAS data were identified in the Seattle-
SNPsVariation Discovery Resource (http://pga.gs.washington.
edu) by genomic resequencing. Patterns of linkage dis-
equilibrium were used to select a subset of SNPs that tagged
major common patterns of variation. Using this method,
three tagSNPs for ACE, eight tagSNPs for AGT, 12 tagSNPs
for AGTR1, three tagSNPs for AGTR2, and six tagSNPs for
REN were genotyped. AGTR2 is located on the X chromo-
some; thus, analyses were conducted separately for men and
women. More details can be found in the paper byMarciante
et al. (7).

The current analysis using logic regression tries to iden-
tify combinations of SNPs and drug classes that are associ-
ated with increased or decreased disease risk. These are
slightly different interactions than the ones for which the
study was designed.

Logic regression

Assuming a link function h of interest, a traditional in-
teraction model is

hfEðYjXÞg¼ b0þb1X1þbX2þb3X1X2;

where Y is the disease phenotype and X1 and X2 are indica-
tors of genotypes at two different loci. The parameter b3
models the interaction. Locus Xi could be a categorical vari-
able with three levels, so the global test for interaction has 4
degrees of freedom. More restrictive tests based on subsets
of the predictors can be used to improve power. In particular,
interaction models that are interpretable without main ef-
fects are potentially more powerful than the traditional in-
teraction model, since they use fewer degrees of freedom.

The logic regression model is

hfEðY jXÞg¼ b0þ
Xm

i¼1

biLiþ
Xp

i¼1

biþpZiþp:
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Here, h(�) is a link function relating the response and the
covariates, such as the identity function for continuous out-
comes or the logit function for binary outcomes. Each of the
logic trees Li is a Boolean combination of binary predictors
Xj, j ¼ 1, . . ., J, such as ((X7 and X

c
13) or X5), where 1 equals

‘‘true,’’ 0 equals ‘‘false,’’ and the superscript c refers to the
complement. The Zi are additional confounders.

Logic regression is an adaptive algorithm which for
a given model selects those Li that minimize the residual
sum of squares or the deviance. Typically the number of
logic trees m selected is small (between 1 and 3), and the
Li can be interpreted as ‘‘risk factors.’’ We say that the logic
tree in the equation above has three leaves. The method is
described in detail by Ruczinski et al. (5), and software is
available from the R Foundation for Statistical Computing
(http://cran.r-project.org) as an R/CRAN package (8).

Optimization of the logic regression model is carried out
using a (stochastic) simulated annealing algorithm employ-
ing an irreducible Markov chain. At any stage of this algo-
rithm, a logic tree gets modified by replacing predictors (like
‘‘X7’’) or operators (like ‘‘and’’) or by changing the form of
the tree (such as adding or deleting another ‘‘or Xi’’). Mod-
ifications are proposed at random; if the proposed model is
an improvement over the current model, then it is accepted
(it replaces the current model), while if the proposed model
is worse than the current model, it is accepted with a prob-
ability that depends on the stage of the algorithm and how
much worse the proposed model is.

Logic regression for SNP data

Each SNP is coded into two binary covariates: Xd
i ¼ 1

if a person has at least one variant allele and Xr
i ¼ 1 if the

person has two variant alleles; both are 0 otherwise. One
can see that Xd

i and Xr
i code the dominant and recessive

effects of SNP i, respectively. Logic regression has been
applied successfully to the simulated SNP data of the 12th
Genetic Analysis Workshop and to a study of heart disease
(9, 10).

Model selection

For adaptive regression methods like logic regression,
model selection is needed, since more complicated models
typically fit data better, even if there is no signal. Model
selection can make use of a simple penalty on the model com-
plexity (size), such as Akaike’s Information Criterion (11), or
it can involve the use of a separate test set, cross-validation, or
permutation tests. Within the logic regression software, three
model selection tools are available.

1. Permutation tests can be used to globally assess whether
any combination of SNPs is associated with the response:
The outcome (e.g., case-control status) is permuted at
random, and the quality of the fit (e.g., deviance) on the
real data is compared with the quality of the fit on the
permuted data.

2. Conditional permutation tests can be used to assess
whether combinations of SNPs that are more complicated
(because they involve either more complicated expres-

sions or more expressions) than a particular model are
more strongly associated with response than the current
model. For these tests, the permutations are carried out
such that we are guaranteed that even on the permuted
data, a particular model can be fitted. Any improvement
of the quality of the fit beyond that model is noise and
can be compared with the quality of the fit on the real
data.

3. Cross-validation can be used to assess which complexity
of the model has the best predictive performance. For
cross-validation, the data are divided into 10 equal parts.
Then, 10 times, one partition is left as a test set, and for each
possiblemodel complexity the bestmodel is selected using
nine out of 10 parts, after which the predicted deviance on
the remaining test set part is computed. For each level of
complexity, the 10 predicted deviances are added, and the
complexity with the smallest overall predicted deviance is
selected.

Typically, the conditional permutation approach will sug-
gest larger models than cross-validation, since the conditional
permutation approach assesses an association between the
predictors and the response, while cross-validation requires
that such an association be strong enough to reduce the pre-
diction error.

Missing data

In our RAS data, only 3 percent of the genotypes were
missing. Forty-four percent of the cases and controls had at
least one missing genotype, and each SNP had at least one
missing genotype. Because any combination of SNPs could
be involved in an interaction, a complete case analysis
would require elimination of 44 percent of the cases and
controls. Since we had several SNPs in each of the genes,
a haplotype reconstruction was possible. Haplotypes were
inferred using a Bayesian population genetic model that
uses coalescent theory (PHASE (12)). A reconstructed hap-
lotype implied a value for a missing genotype. When the
imputed genotypes were ambiguous, we used the estimated
haplotype probabilities as case weights. In some situations,
the haplotype reconstruction was ambiguous, but each of
these haplotypes implied the same genotype, so the missing
genotypes could be imputed unambiguously.

Logic regression for haplotype data

Logic regression selects Boolean combinations of SNPs,
thereby implicitly grouping haplotypes. In some situations,
the expressions generated by logic regression may be hard to
interpret, since even some of the most elementary expres-
sions may involve unrelated SNPs. An alternative is then to
require the most elementary expressions, such as ‘‘X1 or X2’’
or ‘‘X3 and X4,’’ to involve SNPs within the same gene. Here
we ran the publicly available version of logic regression
software on haplotypes. For each haplotype, we created
two binary predictors based on whether the subject had at
least one copy of the haplotype or at least two copies of the
haplotype, as for the SNP data.
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TABLE 1. Results of a logic regression null-model permutation test for the association

between single nucleotide polymorphisms and myocardial infarction or stroke*

Null modely Permutation test

SNPsz SNPs and drugs

Best score§ % smaller{ Best score§ % smaller{

SNPs within gene

Myocardial infarction

ACEz 1,576.295 1,562.428 82.8 1,564.504 56.1

AGTz 1,575.217 1,557.370 3.9 1,554.695 8.0

AGTR1z 1,569.675 1,552.151 23.3 1,550.955 29.3

AGTR2—women 666.411 658.503 20.2 648.606 6.2

AGTR2—men 908.060 906.670 68.0 896.425 40.8

RENz 1,575.359 1,561.800 12.1 1,559.775 65.7

Across all genes
except AGTR2 1,579.185 1,533.631 35.1 1,533.655 45.7

Stroke

ACE 1,109.807 1,100.121 11.7 1,097.308 44.7

AGT 1,108.108 1,100.248 83.1 1,095.293 75.9

AGTR1 1,106.974 1,088.881 16.5 1,078.989 1.3

AGTR2—women 596.789 591.272 47.3 588.157 88.0

AGTR2—men 505.318 503.077 50.9 491.993 20.1

REN 1,109.358 1,095.940 13.4 1,091.296 15.4

Across all genes
except AGTR2 1,111.037 1,053.773 1.9 1,057.859 6.9

Haplotypes Haplotypes and drugs

Best score % smaller Best score % smaller

Haplotypes within gene

Myocardial infarction

ACE 1,567.419 1,564.271 75.6 1,555.808 55.8

AGT 1,572.797 1,556.432 4.3 1,553.558 8.7

AGTR1 1,560.084 1,552.967 70.4 1,544.052 7.9

AGTR2—women 665.999 656.600 15.9 648.520 10.6

AGTR2—men 908.060 906.670 68.0 896.425 46.7

REN 1,572.493 1,562.664 35.6 1,559.775 65.7

Across all genes
except AGTR2 1,579.185 1,531.476 4.3 1,531.476 7.6

Stroke

ACE 1,102.619 1,093.208 6.7 1,089.554 37.5

AGT 1,106.720 1,099.525 79.8 1,091.894 37.1

AGTR1 1,098.847 1,083.309 1.7 1,079.989 1.3

AGTR2—women 596.460 588.570 28.6 586.280 80.6

AGTR2—men 505.318 503.077 45.7 492.437 29.0

REN 1,107.076 1,092.825 7.4 1,085.934 2.4

Across all genes
except AGTR2 1,111.037 1,065.171 5.0 1,062.886 7.8

* For both myocardial infarction and stroke, the table shows results from analyses of all SNPs

on a particular gene, all haplotypes for a particular gene, and either of those in combination with

the various drug classes.

yDeviance for the model with no logic trees (slight differences in the scores between different

genes are due to small probabilities of particular imputed SNPs that were dropped).

z SNP, single nucleotide polymorphism; ACE, angiotensin-converting enzyme; AGT, angio-

tensinogen; AGTR, angiotensin II receptor; REN, renin.

§ Deviance of the fitted model with, at most, one logic tree with four leaves on the actual data.

{ Percentage of the permutations that had a better test score: small percentages are sugges-

tive of an association.
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Processing of the data

Each of the 32 SNPs was replaced by two binary covar-
iates, using the coding described above in the section
‘‘Logic regression for SNP data.’’ Missing genotypes were
inferred using the PHASE haplotype reconstruction. For
analyses of single genes, we used case weights when ge-
notypes were ambiguous, ignoring probabilities that were
smaller than 0.05; the total probability covered by these cases
was smaller than 0.5 percent of the data for every analysis.
For the analysis using all genes, we imputed the most likely
genotype, since using case weights for each SNP in each
gene would lead to a much larger data set when there were
multiple genes. An alternative is to use multiple imputations
for missing genotypes. Because, in the current data, the per-
centage of missing genotypes was small, there was no prac-
tical difference in performance between these approaches,
as we confirmed for selected analyses; when the percentage
of missing genotypes is larger, a multiple-imputations ap-
proach leads to the least biased results (13). For the analysis
using haplotypes, we used those reconstructed by PHASE
and otherwise coded them in the same way as we code SNPs.
We used 29 haplotypes that were estimated to occur at a
frequency of more than 5 percent; thus, the number of haplo-
types was very similar to the number of SNPs in this study.
For the drug-genotype interactions, each of the drug classes
was coded as a binary variable. In our current analysis, we
did not control for other covariates, although they could
be added in the logic regression model in a straightforward
fashion.

The simulated annealing chains had 1,000,000 model
evaluations for the actual model fitting runs and 500,000
model evaluations for the permutation tests and cross-

validation runs. Other options used the defaults, unless in-
dicated otherwise.

RESULTS

Below we describe our analysis of the RAS data using
logic regression. In a haplotype analysis, Marciante et al. (7)
did find an association between AGT haplotypes and myo-
cardial infarction in these data.

Global permutation tests

Table 1 shows the results of global permutation tests. The
tests were carried out with a maximum model size of one
logic tree with four leaves. A small model size allows the
algorithm to do an almost exhaustive search of all models,
yielding permutation p values with little noise.

Most genes and gene-drug interactions appeared not to be
associated with the outcomes. For most permutation tests,
well over 5 percent of the permutations yielded scores (de-
viances) that were smaller than the score of the best model.
The AGT SNPs, and to a lesser extent the AGT haplotypes,
showed some association with myocardial infarction. The
AGTR2 SNPs in combinationwith drugs suggested a possible
association with myocardial infarction in women. The REN
haplotypes, and to a lesser extent the REN SNPs, showed
some association with stroke. The AGTR1 SNPs and haplo-
types together with the drugs showed a possible association
with stroke. Interestingly, all SNPs or haplotypes combined
showed a stronger association with stroke than any of the
associations with individual genes.

In the remaining analysis, we concentrated on the possi-
ble associations of drugs and AGTR2 SNPs with myocardial
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FIGURE 1. Cross-validation results for associations of antihypertensive drugs and angiotensin II receptor type 2 (AGTR2) single nucleotide
polymorphisms with myocardial infarction in women. The plot shows the cross-validation test set deviance (‘‘Test Score’’) for models with a specific
number of logic trees (numbers in squares) and total number of leaves (‘‘Model Size’’). Models with the smallest test set deviance have the best
predictive performance.
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infarction in women, of AGT SNPs with myocardial infarc-
tion, of drugs and AGTR1 haplotypes with stroke, and of a
combination of all SNPs with stroke.

Associations of hypertensive drugs and AGTR2 SNPs
with myocardial infarction in women

In figure 1, the cross-validation results of the analysis of
the AGTR2 SNPs and drugs for myocardial infarction in
women suggest that a model with one or two logic trees
with two leaves in total has the best predictive performance
among the models examined. This agrees with the results of
the conditional permutation tests shown in table 2, since that
table indicates that the best model would be larger than a
model with one logic tree with one leaf but would not be
larger than a model with one logic tree with two leaves or a
model with two logic trees with two leaves. For table 2 and
all further conditional permutation tests, the largest model
size used was two logic trees with eight leaves each. If the
maximum model size was the same as for table 1, the entry
with zero trees and zero leaves in table 2 would be the same
as the entry for drugs and AGTR2 SNPs with myocardial
infarction in women in table 1. For conditional permuta-
tion tests, where we try to determine the size of a model,
we typically use a larger model than that used for the un-
conditional permutation tests. The best model with one logic
tree with two leaves is

logitðPðmyocardial infarctionjAGTR2 SNPs; drug classesÞÞ
¼�0:900�0:720 3 ðð�1A allele at SNP rs17231429Þ
and ðno calcium channel blockersÞÞ:

When analyzed as an explicit model, the t value for the logic
tree is �3.70 and the odds ratio is 0.487. The permutation
and cross-validation approaches implicitly correct for the
number of models examined for this gene, but a p value for
a selected logic regression model and a confidence inter-
val for an odds ratio are not corrected and would thus be of
limited value. Because we examined several genes and out-
comes, the differences in figure 1 are modest, and since the
percentages in table 2 are not much under 5 percent, we con-
sider the results only suggestive of an association.

AGT SNP associations with myocardial infarction

Table 3 shows the results of the permutation tests for
associations of AGT SNPs with myocardial infarction. The
effect of the increased maximum model size compared with
table 1 is that there does not seem to be much association
between AGT SNPs and myocardial infarction. Typically,
the magnitude of the association that is identified is smaller
when the maximum model size is larger, since even in data
where there is no signal, models that are large enough will
show some association. The cross-validation analysis (figure 2)
suggests that a model with three SNPs has some predic-
tive power. This model, a model with one tree and three
leaves, is

logitðPðmyocardial infarctionjAGT SNPsÞÞ
¼�0:953�0:564 3 ½ð�1 T allele for SNP rs2478523Þ

and ðð2G alleles for SNP rs2493132Þ or
ð�1T allele for SNP rs7079ÞÞ�:

TABLE 3. Results from a conditional permutation test for

the association of angiotensinogen (AGT) single nucleotide

polymorphisms with myocardial infarction

No. of
logic trees

Total no.
of leaves
in tree(s)

Initial
score*

Best
scorey

% smallerz

0 0 1,575.217 1,537.941 11.6

1 1 1,570.368 1,537.941 22.8

1 2 1,565.938 1,537.941 43.6

1 3 1,558.675 1,537.941 78.8

1 4 1,557.273 1,537.941 86.0

1 5 1,555.848 1,537.941 90.8

2 2 1,565.938 1,537.941 41.6

2 3 1,558.675 1,537.941 78.4

2 4 1,556.529 1,537.941 86.0

2 5 1,553.279 1,537.941 90.0

* Deviance of the model conditional on which the permutation was

carried out (and beyond which only noise was fitted).

yDeviance of the fitted model with, at most, two logic trees with

eight leaves on the actual data.

zPercentage of the permutations that had a better score than the

best score. A small percentage in this column suggests that a model

larger than the one conditional on which the permutation was carried

out may fit the data better than that one.

TABLE 2. Results from a conditional permutation test for

the interaction of angiotensin II receptor type 2 (AGTR2) single

nucleotide polymorphisms with drugs for myocardial infarction

in women

No. of
logic trees

Total no.
of leaves
in tree(s)

Initial
score*

Best
scorey

% smallerz

0 0 666.411 612.119 2.0

1 1 661.935 612.119 1.6

1 2 652.551 612.119 15.6

1 3 650.369 612.119 20.8

1 4 645.897 612.119 39.6

1 5 642.280 612.119 58.0

2 2 652.551 612.119 13.6

2 3 649.921 612.119 15.6

2 4 647.185 612.119 27.6

2 5 642.152 612.119 48.0

* Deviance of the model conditional on which the permutation was

carried out (and beyond which only noise was fitted).

yDeviance of the fitted model with, at most, two logic trees with

eight leaves on the actual data.

zPercentage of the permutations that had a better score than the

best score. A small percentage in this column suggests that a model

larger than the one conditional on which the permutation was carried

out may fit the data better than that one.
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The three SNPs in this model are consecutive along the ge-
nome in the RAS data. This model has a t value of�3.96 and
an odds ratio of 0.568. There is a limited correspondence
between this model and the haplotype analysis of Marciante
et al. (7). In that analysis, compared with the most common
haplotype, two haplotypes are associated with increased risk

(one statistically significant). For the analysis presented here,
any participant with at least one copy of the most frequently
occurring of these two haplotypes who was at increased risk
would be in the high-risk group defined by logic regression,
but this group also included some of the participants who
were not at increased risk in the haplotype analysis.
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FIGURE 2. Cross-validation results for associations of angiotensinogen (AGT ) single nucleotide polymorphisms with myocardial infarction. The
plot shows the cross-validation test set deviance (‘‘Test Score’’) for models with a specific number of logic trees (numbers in squares) and total
number of leaves (‘‘Model Size’’). Models with the smallest test set deviance have the best predictive performance.
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FIGURE 3. Cross-validation results for the interaction of angiotensin II receptor type 1 (AGTR1) haplotypes with drugs for stroke. The plot shows
the cross-validation test set deviance (‘‘Test Score’’) for models with a specific number of logic trees (numbers in squares) and total number of
leaves (‘‘Model Size’’). Models with the smallest test set deviance have the best predictive performance.
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Drug-haplotype interactions with stroke for the
AGTR1 gene

The cross-validation results of the analysis of the AGTR1
haplotypes and drugs for stroke (figure 3) suggested that
a model with a single logic tree with one or three leaves
had the best predictive performance among the models ex-
amined. This agrees with the results of the conditional per-
mutation tests shown in table 4, since this table indicates
that the best model would be larger than one logic tree with
one leaf and maybe even larger than a model with two leaves,
but would not be larger than a model with three leaves.

The model with three leaves for these data is

logitðPðstrokejAGTR1 haplotypes; drug classesÞÞ
¼�1:734þ1:360 3 ½ð2 copies of AGTR1 haplotypeGÞ
or ðð2 copies of AGTR1 haplotypeDÞ and
ðno b-blockersÞ�Þ:

(The haplotypes are labeled as in the paper by Marciante
et al. (7).) Haplotypes D and G were two of the three high-
risk haplotypes in the haplotype analysis (7). The t statistic
for this model was 4.45, and the corresponding odds ratio
was 3.90. The logic tree for this model identified a group of
only 48 people.

Effect of all SNPs on stroke

Table 5 summarizes the results of the conditional permu-
tation tests for the relation between all SNPs and stroke.
These results suggest that the best model may be of size

zero. This again seems to contradict the global permutation
tests somewhat. Figure 4, showing the cross-validation re-
sults of the analysis of the relation between all SNPs and
stroke, suggests that perhaps models with two or three SNPs
in two logic trees are slightly better than other model sizes;
the figure suggests that these models may have some pre-
dictive power. The best model with three SNPs is of some
interest, as it combines effects of SNPs in three different
genes:

logitðPðstrokejall RASSNPsÞÞ¼�1:537�2:032

3 ½ðð2T alleles forACE SNP rs17230372ÞÞ or
ð�1T allele forAGTR1 SNP rs17237596Þ and
ð�1T allele forREN SNP rs11571078Þ�:

Themarginal t statistic for this model was 3.96, which, given
the large number of models that were being examined, is not
convincing of an association. The corresponding odd ratio
was 0.131. Of the 146 participants for which the logic tree
was true, only four had a stroke, while of the other 1,119, 198
had such an event.ACE SNP rs17230372 is also known as the
ACE insertion-deletion variant. This polymorphism, the
most widely studied polymorphism of the RAS variants,
has been linkedwith cardiovascular disease in several studies
(e.g., see the paper by Agerholm-Larsen et al. (14)).

DISCUSSION

It is widely acknowledged that the analysis of epistasis is
challenging because of the large number of statistical mod-
els to be evaluated and the limited sample sizes if all

TABLE 4. Results from a conditional permutation test for the

interaction of angiotensin II receptor type 1 (AGTR1) haplotypes

with drugs for stroke

No. of
logic trees

Total no.
of leaves
in tree(s)

Initial
score*

Best
scorey

% smallerz

0 0 1,098.847 1,047.702 1.2

1 1 1,090.288 1,047.702 4.4

1 2 1,089.364 1,047.702 9.2

1 3 1,081.336 1,047.702 32.8

1 4 1,078.988 1,047.702 37.6

1 5 1,075.133 1,047.702 53.6

2 2 1,087.104 1,047.702 6.8

2 3 1,081.090 1,047.702 30.8

2 4 1,077.815 1,047.702 27.6

2 5 1,073.955 1,047.702 38.4

* Deviance of the model conditional on which the permutation was

carried out (and beyond which only noise was fitted).

yDeviance of the fitted model with, at most, two logic trees with

eight leaves on the actual data.

zPercentage of the permutations that had a better score than the

best score. A small percentage in this column suggests that a model

larger than the one conditional on which the permutation was carried

out may fit the data better than that one.

TABLE 5. Results from a conditional permutation test for the

association of all single nucleotide polymorphisms with stroke

No. of
logic trees

Total no.
of leaves
in tree(s)

Initial
score*

Best
scorey

% smallerz

0 0 1,111.037 1,024.191 24.8

1 1 1,101.706 1,024.191 49.6

1 2 1,089.323 1,024.191 75.6

1 3 1,081.203 1,024.191 94.0

1 4 1,076.327 1,024.191 94.4

1 5 1,070.502 1,024.191 98.8

2 2 1,089.323 1,024.191 75.6

2 3 1,081.204 1,024.191 89.2

2 4 1,073.049 1,024.191 95.6

2 5 1,066.852 1,024.191 98.8

* Deviance of the model conditional on which the permutation was

carried out (and beyond which only noise was fitted).

yDeviance of the fitted model with, at most, two logic trees with

eight leaves on the actual data.

zPercentage of the permutations that had a better score than the

best score. A small percentage in this column suggests that a model

larger than the one conditional on which the permutation was carried

out may fit the data better than that one.

Logic Regression, RAS Genes, Myocardial Infarction, and Stroke 341

Am J Epidemiol 2007;165:334–343



combinations of (tag)SNPs are considered. Although there
are situations where there may be sufficient power to iden-
tify large gene-gene interactions (15), generally speaking a
search for all combinations in large association studies will
have limited power because of the number of tests being
carried out.

In the next few years, the size of genome association studies
is going to increase dramatically, both in the number of sam-
ples and (especially) in the number of SNPs genotyped.
Researchers will want to find potential gene-gene or gene-
environment interactions, and there is a pressing need for
methods that can potentially identify such interactions. Be-
sides logic regression, very few such methods currently exist
(e.g., see the papers by Ritchie et al. (1) and Foulkes et al. (2)).
Methods that employ adaptive selection of models and use
a limited number of degrees of freedom (parameters) to model
interactions are more likely to successfully identify interac-
tions than methods that are less prudent with study resources.

In this paper, we have illustrated the use of logic regres-
sion, an adaptive regression method that uses a Boolean
model structure well suited for SNP data and adaptive model
selection, on data from a cardiovascular disease case-control
study with 32 SNPs. Since logic regression is a well-defined
procedure, model selection and multiple-comparisons cor-
rections for the significance level are implicit and do not
require further resampling or bootstrapping. Unless a test
data set is available to verify selected logic regression mod-
els immediately, the adaptive model selection makes logic
regression particularly appropriate as an exploratory method
for identifying interactions for further research. Logic re-
gression is intended for binary predictors, such as SNPs. If
one wished to enter continuous predictors in the interactions,
they would have to be dichotomized.

The types of interactions identified by logic regression are
not ‘‘traditional’’ interactions, where one predictor modifies
the effect of another predictor, but rather combinations of
predictors that are associated with increased or decreased
disease risk. With a single logic tree, such logic regression
identifies a single group of persons at increased (decreased)
risk; when the underlying risk profile is more complicated,
additional logic trees may be needed.

As was the case for many of the SNP association studies
that have been carried out, the association between the SNPs
and the RAS data was not very strong. Marciante et al. (7)
reached the same conclusion using a haplotype analysis.
Nevertheless, we feel that these data illustrate how logic
regression can be used to identify local interactions, drug-
gene interactions, or gene-gene interactions in an automated
fashion. In addition to case-control studies, logic regression
can be used for cohort studies, survival analysis, and any
other study design for which the model can be formulated as
a generalized linear model.

Recently, we developed Monte Carlo logic regression
(16). In this variation of logic regression, rather than identify
interactions that have a significant association with a clinical
outcome, the investigators identify larger numbers of poten-
tial interactions using a Markov chain Monte Carlo algo-
rithm. An illustration of this approach on a cardiovascular
disease data set with 779 participants and 89 SNPs can be
found in the paper by Kooperberg and Ruczinski (16).

ACKNOWLEDGMENTS

This research was supported in part by grants CA53996
and CA74841 from the National Cancer Institute; by grants

0 1 2 3 4 5

110.0

112.0

114.0

116.0

118.0

Model Size

T
es

t S
co

re

0
1

1

1

1

1

2
2

2
2

FIGURE 4. Cross-validation results for the association of all single nucleotide polymorphisms with risk of stroke. The plot shows the cross-
validation test set deviance (‘‘Test Score’’) for models with a specific number of logic trees (numbers in squares) and total number of leaves (‘‘Model
Size’’). Models with the smallest test set deviance have the best predictive performance.

342 Kooperberg et al.

Am J Epidemiol 2007;165:334–343



HL43201, HL60739, HL68639, HL68986, and HL74745
from the National Heart, Lung, and Blood Institute; and by
grants 9970178N and 0270054N from the American Heart
Association.

Conflict of interest: none declared.

REFERENCES

1. RitchieMD,HahnLW,RoodiN, et al.Multifactor-dimensionality
reduction reveals high-order interactions among estrogen-
metabolism genes in sporadic breast cancer. Am J Hum
Genet 2001;69:138–47.

2. Foulkes AS, DeGrutola V, Hertogs K. Combining genotype
groups and recursive partitioning: an application to HIV-1
genetics data. Appl Stat 2004;53:311–23.

3. Fijneman RJ, de Vries SS, Jansen RC, et al. Complex inter-
actions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and
Sluc4, that influence the susceptibility to lung cancer in the
mouse. Nat Genet 1996;14:465–7.

4. Frankel WM, Schork NJ. Who’s afraid of epistasis? Nat
Genet 1996;16:371–3.

5. Ruczinski I, Kooperberg C, LeBlanc M. Logic regression.
J Comput Graph Stat 2003;12:475–511.

6. Psaty BM, Smith NL, Heckbert SR, et al. Diuretic therapy, the
a-adducin gene variant, and the risk of myocardial infarction
or stroke in persons with treated hypertension. JAMA 2002;
287:1680–9.

7. Marciante KD, Bis JC, Rieder M, et al. Renin-angiotensin
system gene haplotypes and the risk of myocardial infarction

and stroke in pharmacologically treated hypertensive patients.
(Abstract). Circulation 2005;111(suppl):e323.

8. R Development Core Team. R: a language and environment
for statistical computing. Vienna, Austria: R Foundation for
Statistical Computing, 2005.

9. Kooperberg C, Ruczinski I, LeBlanc ML, et al. Sequence
analysis using logic regression. Genet Epidemiol 2001;
21(suppl 1):S626–31.

10. Ruczinski I, Kooperberg C, LeBlanc M. Exploring interactions
in high-dimensional genomic data—an overview of logic re-
gression, with applications. J Mult Anal 2004;90:178–95.

11. Akaike H. Information theory and an extension of the maxi-
mum likelihood principle. In: Petrov BN, Csaki F, eds. Second
International Symposium on Information Theory. Budapest,
Hungary: Akademiai Kiado, 1973:267–81.

12. Stephens M, Smith M, Donnelly P. A new statistical method
for haplotype reconstruction from population data. Am J Hum
Gen 2001;68:978–89.

13. Dai JY, Ruczinski I, LeBlanc M, et al. Comparison of
haplotype-based and tree-based SNP imputation in association
studies. Genet Epidemiol (in press).

14. Agerholm-Larsen B, Nordestgaard BG, Tybjaerg-Hansen A.
ACE gene polymorphism in cardiovascular disease: meta-
analysis of small and large studies in whites. Arterioscler
Thromb Vasc Biol 2000;20:484–92.

15. Marchini J, Donnelly P, Cardon LR. Genome-wide strategies
for detecting multiple loci that influence complex diseases.
Nat Gen 2005;37:413–17.

16. Kooperberg C, Ruczinski I. Identifying interacting SNPs using
Monte Carlo logic regression. Genet Epidemiol 2005;28:
157–70.

Logic Regression, RAS Genes, Myocardial Infarction, and Stroke 343

Am J Epidemiol 2007;165:334–343


