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Genome-wide Association Studies
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In this paper we investigate the power to identify gene� gene interactions in genome-wide association studies. In our
analysis we focus on two-stage analyses: analyses in which we only test for interactions between single nucleotide
polymorphisms that show some marginal effect. We give two algorithms to compute significance levels for such an
analyses. One involves a Bonferoni correction on the number of interactions that are actually tested, and one is a resampling
procedure similar to the one proposed by [Lin (2006) Am. J. Hum. Genet. 78:505–509]. We also give an algorithm to carry out
approximate power calculations for studies that plan to use a two-stage analysis. We find that for most plausible interaction
effects a two-stage analysis can dramatically increase the power to identify interactions compared to a single-stage analysis
based on simulation studies using known genetic models and data from existing genome-wide association studies.
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INTRODUCTION

Genome-wide association studies (GWAs), which
genotype hundreds of thousands of Single nucleotide
polymorphisms (SNPs) on thousands of participants
are, fueled by decreasing prices of genotyping, now
carried out. Some initial successes have been
reported [e.g. Tomlinson et al., 2007; Scott et al.,
2007; Easton et al., 2007; WTCCC 2007]. Although the
primary interest in GWAs is typically the identifica-
tion of SNPs that are marginally associated with a
disease, it is typically also of interest to identify SNPs
that jointly have an epistatic (interaction) effect on
the disease of interest. Such interactions may shed
light on potential disease-associated pathways, and
they may identify people who are at extreme high
risks [e.g. Manolio and Collins, 2007].

It is easy to see that the potential number of
interaction to be tested is enormous. When 500,000
SNPs are genotyped, there are 500;000

2

� �
� 1011 two

SNP combinations and 500;000
3

� �
� 1016 three SNP

combinations. This creates both computational and
multiple comparisons problems: it is virtually im-
possible to evaluate each possible model, and, as a
multiple comparisons correction needs to be made for
many possible tests, there is limited power for the
identification of any of the interactions that are tested.

In this paper we investigate strategies to improve
the power in genome-wide association studies,

while reducing the computational expense consider-
ably. Our main tool is a two-stage analysis: we only
investigate interactions between SNPs that show
some (modest) marginal effect. Initially two-stage
strategies were proposed as study designs to reduce
the expense of a GWA, without a substantial
reduction in the power to identify the (marginal)
effect of SNPs on a disease [e.g. Lin, 2006; Skol et al.,
2006, 2007; Thomas et al., 2004]. More recently, there
have been proposals to use two-stage analysis
strategies to possibly improve the power of identify-
ing interaction effects in GWAs [Evans et al., 2006;
Macgregor and Kahn, 2006]. A thorough discussion
on how power and type 1 error are influenced by
such a two-stage design is missing, however.

Marchini et al. [2005] and Evans et al. [2006]
investigated whether a two-stage analysis was a
viable approach to improve the power to identify
SNPs that are marginally associated with a disease.
They found, that, possibly because they carried out a
multiple comparisons correction for all possible
associations, their two-stage analysis did not im-
prove the power for identifying SNPs that jointly
have an epistatic effect in GWAs. One of the main
goals of this paper is to better correct for multiple
comparisons in two-stage analyses. Macgregor and
Khan [2006] argued that one only needs to correct
the number of interactions tested for. Their paper,
however, gives neither a justification nor a simula-
tion study validating this assertion. In this paper we
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attempt to give a more solid foundation for two-
stage analyses and provide extensive simulation
studies to back up our results. We also provide
an analytic algorithm to approximate power for
the detection of interactions using a two-stage
analysis.

The goal in this paper is to develop methods to
identify interacting SNPs in (genome-wide) associa-
tion studies. Several authors [Chapman and Clayton,
2007; Chatterjee et al., 2006; Marchini et al., 2005]
recently have proposed methods that make use of
interactions in developing powerful tests to deter-
mine whether SNPs are marginally associated with a
disease outcome, which is a slightly different objective
from ours. For example, in the situation where there is
in fact no interaction, we would hope that these
procedures would still identify SNPs that are asso-
ciated with the disease, whereas our procedure would
not be expected to identify such combinations. On the
other hand, when there is an interaction, the bar is
higher for the procedure that we proposing, as we
want to identify the SNPs in combination.

METHODS

AN ELEMENTARY INDEPENDENCE RESULT

Let Yi, i ¼ 1; . . . ; n be independent identically
distributed (iid) random variables, and let x1i and
x2i, i ¼ 1; . . . ;n be predictor variables. Consider the
three linear regression models

Yi ¼ g10 þ g11x1i þ e1
i ð1Þ

Yi ¼ g20 þ g21x2i þ e2
i ð2Þ

and

Yi ¼ b0 þ b1x1i þ b2x2i þ b3x1ix2i þ ei: ð3Þ

Let bg10, bg11, bg20, bg21, bb0, bb1, bb2, and bb3 be the ordinary
least squares estimates of the parameters in (1), (2),
and (3). Then bb3?bg11 and bb3?bg21.

Proof: Note that ordinary least square estimates are
linear in the response. Let bgj1 ¼

P
i ajiYi, andbb1 ¼

P
i biYi. Expressions for the ai and bi can be

found in any elementary linear regression text.
Because the Yi are iid, covðbgj1;bb1Þ ¼

P
i ajibivarðYiÞ

¼ varðY1Þ
P

i ajibi. Algebra yields that for models (1)
and (3)

P
i ajibi ¼ 0; thus, covðbgj1;bb3Þ ¼ 0.

The implication of this result is that for a cohort
study with a continuous outcome we can carry out a
hypothesis test for interactions in a two-stage
approach:

* test only interactions between those predictors
(SNPs) that are marginally significant at a pre-
specified level a1; and

* control the global (family-wise) type 1 error by
controlling for the number of interactions that are
actually being tested for (for example, in a

Bonferoni fashion), rather than the one that could
have been tested for.

CASE-CONTROL SAMPLING

Most genome-wide association studies employ a
case-control study design. Unlike for cohort studies
with a continuous outcome the samples are not iid,
and it is likely that the study will be analyzed using
logistic, rather than linear regression. In particular,
we would now estimate using the models

logitðPðYi ¼ 1jx1i; x2iÞÞ ¼ g10 þ g11x1i ð4Þ

logitðPðYi ¼ 1jx1i; x2iÞÞ ¼ g20 þ g21x2i ð5Þ
and

logitðPðYi ¼ 1jx1i; x2iÞÞ ¼ b0 þ b1x1i þ b2x2i þ b3x1ix2i:

ð6Þ

We believe that in general, in models (4)–(6) the
maximum likelihood estimate bb3 is not independent
of the estimates bg11 and bg21. However, in simulation
studies, including those reported below, we have
found that this dependence is sufficiently small that
an inference using a Bonferoni approach on the
number of tested interactions is still valid. Alter-
natively, inference can be carried out using a
permutation approach described below.

SCORE STATISTICS BASED ‘‘PERMUTATION’’
TESTS

A common approach to controlling the type 1 error
in situations where the exact distribution of the test
statistic is not known is a permutation test. However,
permutation tests for interactions are generally not
possible, as permutations do not just remove the
interaction effect, but they also remove the main
effect [Pesarin, 2001]. Inference on an interaction
should be conditional on the main effect, but in fact
a straightforward permutation test tests for a
combination of main effects and interactions. For
linear models, for a given permutation, it is possible
to permute the residuals or the fitted interaction
component (similar to the parametric bootstrap
[Efron and Tibshirani, 1993]). For logistic regression,
the usual regression model employed for case-
control studies, such an approach does not work.

Lin [2006] proposes an approach to obtaining test
statistics in two-stage genome-wide association
studies that can be adapted to the testing for
interaction effects. In our situation the null-hypoth-
esis to be tested is that there is no interaction,
although there may be main effects. First, consider
the logistic regression model

logitðPðYi ¼ 1jXji;XkiÞÞ

¼ b0 þ b1Xji þ b2Xki þ b3XjiXki:
ð7Þ
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Set Zijk ¼ XijXik. Then the efficient score for b3 is

Ujk ¼
Xn

i¼1

Uijk ¼
Xn

i¼1

ðYi � pijkÞðXijXik � mijkÞ;

where pijk is the fitted probability for the ith subject
from the logistic regression model that includes Xij

and Xik, but not Zijk, and mijk is the fitted value for the
ith subject from the linear regression model
Zijk ¼ r0 þ r1Xij þ r2Xik. Under the null-hypothesis
of no interaction effect, Ujk has approximately a
normal distribution with mean 0 and variance
Vjk ¼

Pn
i¼1 U2

ijk. Set Tjk ¼ U2
jk=Vjk. Let G1; . . . ;Gn be

independent normal random variables. SeteUjk ¼
P

i UijkGi. Then the eUjk have mean 0 and
approximately the same covariance matrix as the Ujk.

Set eTjk ¼ eU2
jk=Vjk. Thus, a strategy to get a sample

from the Tjk under the null-hypothesis of no
association is to generate repeated samples of

G1; . . . ;Gn and compute the eTjk. Note that this
approach of controlling the type 1 error does not
assume independence of the stage one and two tests,
as the Bonferoni approach does, but rather the
‘‘permutations’’ for stage two are carried out
conditional on the results of stage one, as the
permutations are only carried out for the selected
SNPs (j and k) and the pijk depend on the marginal
models.

A STRATEGY TO IDENTIFY INTERACTIONS
IN GWAS

Our strategy to test for the presence of an
interaction is as follows:

1. Fix the first-stage significance level a1.
2. Test every SNP marginally at level a1 using a

logistic regression model. Say that n� SNPs were
significant at level a1.

3. Test the interactions between all SNPs that pass
Step 2, using the logistic model (7).

4. Bonferoni: Correct the P-value from Step 3 using a
Bonferoni correction for n�

2

� �
tests; or

5. Score: Compute Tjk for each of the tests from
Step 3. Let T� ¼ max1�j;k�n� Tjk. Also generate L

independent sets of eTl
jk, l ¼ 1; . . . ;L, and seteT�l ¼ max 1�j;k�n�

eTl
jk. Compare T� to the eT�l.

Generalizations of this procedure that use the false
discovery rate, or that can identify more than one
interactions are straightforward.

APPROXIMATIONS FOR POWER
CALCULATIONS

When the data are generated from model (7) the
logistic regression estimate of bb3 has approximately

a normal distribution with mean b3 and varianceX
l1l2l32f0;1g

1

nl1l2l3

;

where nl1l2l3 is the number of observations for which
Yi ¼ l1, Xij ¼ l2, and Xik ¼ l3. This can be used to
compute a useful approximation to the power of
identifying an interaction, under the assumption
that all SNPs and all interactions between SNPs are
independent. Details are given in Appendix A.

RESULTS

SIMULATION SETUP

We generate 10,000 binary SNPs X1; . . . ;X10;000 as a
first-order Markov chain such that corðXi;Xiþ1Þ ¼ r.
We generate a response Y according to

logitðPðY ¼ 1jXÞÞ

¼ b0 þ b1X2;500 þ b2X7;500 þ b3X2;500X7;500:

The minor allele frequency PðXi ¼ 1Þ ¼ p is taken
constant for all SNPs i. Note that a minor allele
frequency p for this binary SNP model corresponds
to a minor allele frequency of q ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� p

p
for a

dominant genetic model with bi-allelic SNPs.
We generate data until we have c cases (Y 5 1) and

controls (Y 5 0). For computational reasons we take
c 5 500 and relatively large effect sizes. For the
power analysis approximations below we consider
larger sample sizes and smaller effect sizes. In all
our simulations we took b0 5�2, generating out-
comes for a moderately rare outcome, and b1 5 b2,
identical main effects for both SNPs.

In our analysis we consider selection on the
marginal effects using a1 5 0.002, 0.005, 0.01, 0.02,
and 1.0. We compute the power when significant
SNP� SNP interactions are identified using the
modified approach of Lin [2006] described above
with 1,000 permutations, using a Bonferoni correc-
tion for the number of interactions that are actually
tested, and the analytic approximation. Note that for
the analytic approximation the correlation between
SNPs is ignored. For a1 5 1 we do not compute the
power using the approach of Lin [2006]; as comput-
ing 1,000 permutations for 10000

2

� �
� 5� 107 interac-

tions for a single simulation is not well feasible. We
control the overall type 1 error at a global (family-
wise) level a5 0.05 using the Bonferoni method.

SIMULATION RESULTS

In Figure 1 we show the results for b3 5 0, p 5 0.3
(q 5 0.173), r5 0.7, b2 5 b1 various values of a1 as a
function of the main effect b1 5 b2. In this situation
there are no interactions, and we would want any
procedure to yield the designed type 1 error. On the
basis of 1,000 simulations (so that the standard error
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of the power estimates is about 0.007), it appears that
the type 1 error is well controlled by both the
Bonferoni and the Lin approach, and that the type 1
error is not inflated by using a two-stage testing
procedure for interactions. The power approxima-
tion yields exactly a type 1 error of 0.05 in this
situation. The Bonferoni correction on all interac-
tions (a1 5 1) appears somewhat conservative, and
the Lin approach is well within the range what
would be expected based on the standard error. We
repeated these simulations for various other para-
meter settings and consistently obtained the same
results.

In the remaining simulations we include interac-
tions, and thus prefer approaches in which the
power to identify interactions is large. In particular,
in Figure 2 we show the results for b1 5 b2 5 0,
b3 5 0, 1, 1.5, and 2, a1 5 0.005, and p 5 0.3 (q 5 0.173)
as a function of the correlation r between SNPs. We
note that all three methods to compute the power
provide similar results with the power computed
using the Lin [2006] approach to suggest slightly
larger power. We also note that the power is slightly
larger when the correlation is 0.9 than when the
correlation is smaller but that the difference is very
small. Because of this small effect of the correlation
we show further results only for r5 0.7.

In Figures 3 and 4 we show the results for
b1 5 b2 5 0, r5 0.7, p 5 0.3 (q 5 0.173; Fig. 3), and
p 5 0.4 (q 5 0.235; Fig. 4) for a variety of choices of a1

as a function of the interaction effect b3. We note that

the power to identify an interaction is substantially
larger when we first filter on main effects, even
though there is in fact no main effect when
b1 5 b2 5 0. The power gain of filtering in the first
stage over a global Bonferoni correction can be as
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Fig. 1. Type 1 error for identifying an interaction when there is

in fact no interaction effect, but there is a dominant main effect

for two single nucleotide polymorphisms each with minor allele

frequency 0.173 for various levels of two-stage testing (a1o1)
and one-stage testing (a1 5 1). [Color figure can be viewed

in the online edition which is available at www.interscience.

wiley.com]
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Fig. 2. Power for identifying an interaction when there is no

main effect, for various interaction effects between two single
nucleotide polymorphisms each with minor allele frequency

0.173 for two-stage testing at a1 5 0.05 for various correlations

between the SNPs. [Color figure can be viewed in the online
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Fig. 3. Power for identifying an interaction when there is no

main effect, for various interaction effects between two single
nucleotide polymorphisms each with minor allele frequency

0.173 for various levels of two-stage testing (a1o1) and one-stage

testing (a1 5 1). [Color figure can be viewed in the online edition
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much as 40%. These power gains are universal and
were observed in many other situations. In Figure 4,
where the minor allele frequency was larger it
appears that most power is gained when taking the
first stage a1 small. The difference in power between
the various choices of a1 is small compared to the
difference between two-stage selection and overall
testing with a1 5 1.

The only situation that we identified where a two-
stage selection does not help is when the main effect
goes in the opposite direction of the interaction
effect. In Figure 5 we show the results for
b1 5 b2 5�1, r5 0.7, and p 5 0.4 (q 5 0.235). For
some values of b3, testing all interactions now yields
more power than two-stage testing. This corre-
sponds to the situation where the magnitude of the
interaction leads to approximately canceling out the
marginal association of the two genes to the out-
come. Therefore, the non-monotonic shape of the
power curves can be explained by low power to
detect the interaction at the second stage for b3 small,
increasing as the interaction effect increases, but
decreasing as b3-2, as the chance that the relevant
genes are selected at the first stage is dramatically
reduced as the marginal association is weakened.

Clearly some more unusual interaction patterns
similar to those in Marchini et al. [2005] may also
yield more power for overall testing. The main
question that a researcher will have to ask before
testing is what she/he thinks to be more likely: if an
epistatic effect where one SNP enhances the effect of

another gene is more likely than a more complicated
interaction effect, a two-stage testing procedure
should be employed.

SIMULATIONS USING REAL GWA DATA

From Illumina iControlDB (http://www.illumina.
com) we retrieved 610 arrays of human array 317 K
data. The Illumina iControlDB contains user sub-
mitted data of Illumina array data that were
submitted to be used as ‘‘controls in case-control
association studies, in which risk factors of indivi-
duals with a certain disease (cases) are compared to
individuals without the disease (controls)’’, as well
as methodological studies like the current one. From
this data we removed SNPs with a minor allele
frequency of under 10% and selected the remaining
10,321 SNPs on chromosome 13 for further simula-
tions. We phased these 610 arrays using fastPhase
[Scheet and Stephens, 2006] to obtain 1,220 haploid
copies of chromosome 13. We then generated a huge
population by randomly pairing two of these
haploid copies and generated disease status using
the model

logitðPðY ¼ 1jSNPsÞÞ

¼ b0 þ b1U1 þ b2U2 þ b3U1U2;

where U1 5 1 is at least one of the haploids for
rs1751871 was a copy of the minor allele and U2 5 1
is at least one of the haploids for rs9523716 was a
copy of the minor allele. These two SNPs are not in
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main effect, for various interaction effects between two single

nucleotide polymorphisms each with minor allele frequency
0.235 for various levels of two-stage testing (a1o1) and one-stage
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which is available at www.interscience.wiley.com]
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LD (r2 5 0.01); the minor allele frequencies are 0.13
(rs1751871) and 0.25 (rs9523716).

In Figure 6 we show the results for 1,000
simulations with b0 5�2, b3 5 0, and b2 5 b1, for
various values of a1. The results in this figure
suggest that for the data from actual GWAs, just as
for the simulated data, the type 1 error is well
controlled. In Figure 7 we show the results for 1,000
simulations with b0 5�2, b1 5 b2 5 0, for various
values of b3 and a1. The results in this figure suggest
that the two-stage procedure indeed improves the
power to identify the interactions dramatically
compared to a one-stage procedure, and that the
score approach yields almost the same results as the
(cheaper) Bonferoni correction.

APPROXIMATE POWER CALCULATIONS

Using the algorithm in Appendix A we can
approximate the power of identifying interactions
in genome-wide association studies. For example, in
Table I we give the power for identifying the specific
interaction, associated with the parameter b3 in
model (7) where both involved SNPs have at least
one variant allele for 40% of the samples (corre-
sponding to a minor allele frequency of 0.225) or
20% of the samples (corresponding to a minor allele
frequency of 0.106) for a case-control study with
2,000 cases and 2,000 controls, measuring 500,000
SNPs, for a variety of two-stage procedures, allow-
ing three false positives under independence.

We note from this table that a two-stage procedure
can considerably increase the power of identifying
an interaction. In particular, the optimal fraction of
SNPs to consider for testing for interactions appears
to be about 0.001 for the higher minor allele
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Fig. 6. Type 1 error for identifying an interaction when there is

in fact no interaction effect, but there is a dominant main effect
for two single nucleotide polymorphisms in data generated

from Illumina HapMap 317 K arrays, for various levels of two-

stage testing (a1o1) and one-stage testing (a1 5 1). [Color figure

can be viewed in the online edition which is available at
www.interscience.wiley.com]
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Fig. 7. Power for identifying an interaction when there is no

main effect, for various interaction effects between two single

nucleotide polymorphisms for two single nucleotide poly-
morphisms in data generated from Illumina HapMap 317 K

arrays for various levels of two-stage testing (a1o1) and one-

stage testing (a1 5 1). [Color figure can be viewed in the online
edition which is available at www.interscience.wiley.com]

TABLE I. Power of identifying a specific interaction,
associated with the parameter b3 in model (7) where both
involved SNPs have at least one variant allele for 40 or
20% of the samples (corresponding to a minor allele
frequency of 0.225 and 0.106, respectively) for a case-
control study with 2,000 cases and 2,000 controls,
measuring 500,000 SNPs, for a variety of two-stage
procedures, allowing three false positives

First stage significance level a1

b3 Odds ratio 0.0001 0.001 0.002 0.005 0.01 0.02 0.05 1

P(SNP40) 5 0.4)minor allele frequency 0.225
0.5 1.65 0.09 0.11 0.10 0.08 0.06 0.04 0.02 0.00
0.6 1.82 0.37 0.44 0.40 0.32 0.26 0.19 0.12 0.02
0.7 2.01 0.75 0.80 0.75 0.66 0.56 0.47 0.35 0.10
0.8 2.23 0.95 0.96 0.94 0.88 0.82 0.75 0.64 0.31
0.9 2.46 0.99 0.99 0.99 0.97 0.95 0.92 0.87 0.60
1.0 2.72 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.84

P(SNP40) 5 0.2)minor allele frequency 0.106
1.0 2.72 0.09 0.24 0.29 0.34 0.35 0.34 0.29 0.09
1.1 3.00 0.21 0.45 0.52 0.58 0.59 0.58 0.51 0.21
1.2 3.32 0.39 0.66 0.73 0.79 0.80 0.78 0.72 0.38
1.3 3.67 0.60 0.83 0.88 0.91 0.92 0.91 0.87 0.58
1.4 4.06 0.78 0.93 0.95 0.97 0.98 0.97 0.95 0.76

SNP, single nucleotide polymorphism.
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frequency and 0.01 for the lower minor allele
frequency in this example. If the sample size is
increased to 5,000 pairs of cases and controls, there is
even some power to identify interactions associated
with odds ratios of 1.5 (Table II). It appears that the
minor allele frequency is the dominant factor in
determining what the ‘‘optimal’’ value of a1 is,
whereas in particular the odds ratio does not have
much influence. On the basis of a more extensive set of
simulations, we feel that values in the order of
a1�0.005 are usually fairly close to the optimal value.
Power calculations can be carried out in a straightfor-
ward fashion to optimize a1 for any design and
hypothesized effect size using our code, available from
http://bear.fhcrc.org/�clk/soft.html.

DISCUSSION

In this paper we investigate the power for identifying
interactions using a two-stage analysis. We found that
the power of identifying interactions can be greatly
improved using such an analysis. The significance for
such an analysis can be controlled using a Bonferoni
correction on the number of interactions actually tested
or a resampling approach similar to the one proposed
by Lin [2006]. Approximate power calculations for
such an analysis can be computed explicitly.

Our results are somewhat contradictory to those of
Marchini et al. [2005] and Evans et al. [2006]. In these
papers a two-stage analysis is used to marginally
identify SNPs that may have epistatic effects on a
disease outcome. In their analysis they find that a
two-stage analysis does not improve the power to

identify SNPs marginally. Besides that the goal in
our analysis is slightly different from that in these
two papers; we believe that there are two reasons
why we do reach the conclusion that a two-stage
analysis is useful.

The main reason is that we focused on what we feel
are plausible interactions, interactions where the effects
are monotone in the number of minor alleles of both
SNPs that are involved. We believe that it is often
reasonable to make such an assumption about the
type of interaction. Clearly, some assumption is
necessary; without such an assumption the number
of possible interactions is enormous, and the power to
identify them is substantially reduced. In presenta-
tions we have sometimes compared this with a cake; if
we want to divide the ‘‘power’’ over all possible
interactions, nobody will get more than a crumb, and
no-one will taste how good the cake is; we are better
off dividing the cake among those people we believe
to enjoy it. We believe that not all possible interactions
are likely, in contrast Evans et al. [2006] consider all
sorts of interactions (some of which they themselves
label as ‘‘exotic’’; see their Fig. 4).

The second reason is that it is critical that in a two-
stage procedure we control the type 1 error for our
testing strategy. Correcting for all possible tests in a
Bonferoni manner in a two-stage procedure is un-
necessarily conservative. In our two-stage procedure,
where the first and second stage testings are (virtually)
independent, this can be done with a Bonferoni
correction on the number of tests actually carried out
or with a permutation based score approach. This later
approach could potentially be adapted to situations
where the two stages are not independent.

In this paper we show that a two-stage procedure,
which takes those issues into account, dramatically
increases the power to identify interactions over a
one-stage approach. The power to identify them is
still limited, but with the increased size of some of
the planned GWAs finding interactions is no longer
out of the question. It remains an open question
whether a two-stage analysis that take these issues
into account would improve the power over a one-
stage analysis for identifying SNPs that are asso-
ciated with a disease.
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APPENDIX A: ALGORITHM FOR A
POWER CALCULATION FOR

TWO-STAGE TESTING OF
INTERACTIONS

Assume model (7), assume that there are nca cases
and nco controls.

1. Given model (7) compute PðY ¼ 1jXj ¼ 1Þ and
PðY ¼ 1jXk ¼ 1Þ.

2. Compute the power zj (zk) that Xj (Xk) is margin-
ally significant in a case–control study with
nca cases and nco controls at the significance
level a1.

3. Compute q(m) 5 P(Z 5 m), where Z has a bino-
mial distribution with n the number of SNPs
minus 2, and p 5 a1. Thus, q(m) is the probability
distribution of the number of other SNPs that
are significant at level a1, and that thus go on to
stage 2.

4. Compute the expected variance of bb3, and then
the probability p(r) that bb3 is significant at the
level r using a normal approximation.

5. Let a2ðmÞ ¼ a mþ2
2

� �
, the Bonferoni corrected

significance level for the second stage of the
analysis when the two SNPs involved with the
interaction and m other SNPs are significant at
level a1.

6. We approximate the power of identifying an
interaction at a global significance level a by

zkzl

X
m

qðmÞpða2ðmÞÞ

þ zkzl

X
m

qðmÞð1� pða2ðmÞÞa2ðmÞ

mþ 2

2

� �
� 1

� �
þ ð1� zkzlÞa:

ð8Þ

The first term in (8) is the power of identifying
the XkXl interaction (where we sum over the
number of other SNPs that go to the second
stage). The second term in (8) is the power of
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identifying another interaction if the XkXl inter-
action is not identified, but both Xk and Xl were
marginally significant at level a1, again summing
over the number of other SNPs that go to the
second stage, also noting that one of the mþ2

2

� �
is

XkXl and is already taken care of in the first term.
The third term is the power of identifying an
interaction if either Xk or Xl was not marginally
significant at level a1.

7. Similarly, we can approximate the power of
identifying an interaction between Xk and Xl

(ignoring other interactions that may be identi-
fied) by

zkzl

X
m

qðmÞpða2ðmÞÞ: ð9Þ

The scenario where we allow for, say, F false
positives can be approximated by using a2ðmÞ ¼
F= mþ2

2

� �
in (9), so that when mþ2

2

� �
interactions are

tested F of them are significant just by chance.

The results of Equation (8) are shown in the
figures; those of Equation (9) are shown in the tables.
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