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Significance testing for small
microarray experiments

Charles Kooperberg, Aaron Aragaki, Charles C. Carey, and Suzannah Rutherford

8.1 Introduction

When a study has many degrees of freedom it is sometimes less critical which signif-

icance test is carried out, as most analyses will give approximately the same result.

However, when there are few degrees of freedom the choice of which significance

test to use can have a strong effect on the results of an analysis. Unfortunately, this

small degrees of freedom situation is often the case for microarray experiments, as

many research laboratories perform such experiments with only a few repeats. Rea-

sons for the small number of repeats include specimen availability and economics.

Kooperberg et al. (2005) compare several approaches to significance testing for ex-

periments with a small number of oligonucleotide arrays (a one-color technology;

see Section 1.4). This chapter summarizes results from that analysis and describes

a similar comparison for methods of carrying out significance testing for two-color

arrays (e.g., cDNA arrays).

The large variability that even the most precise microarray platforms have makes

small-sample comparisons unattractive. A standard t-test for an experiment with six

two-color arrays has, depending on whether other variables are controlled for, at

most five degrees of freedom. The resulting two-sided test, with α = 0.05 and a

Bonferroni correction for 10,000 genes requires a t-statistic value of at least 20.6 for

significance. The lack of degrees of freedom drives the extremely large significance

threshold for t-statistics: the same α and Bonferroni correction for 20 arrays requires

a t-statistic of 6.3 while a normal distribution only requires a Z-statistic of 4.6. On

the other hand, reducing the number of genes of interest on the original array from

10,000 to 500 only reduces the required t-statistic to 11.3.

Nonparametric (Wilcoxon) or permutation tests do not provide a simple solution to

the significance problem. For example, for an experiment with n two-color arrays,

a p-value for a permutation test can be no smaller than 2−n; a two-sided test with

α = 0.05 and a Bonferroni correction for 10,000 genes requires n to be at least 19.
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114 SIGNIFICANCE FOR SMALL MICROARRAY EXPERIMENTS

Reducing the number of genes to 500 reduces the minimum n to only 15. Similarly,

for a one-color array the p-value for a permutation test with n cases and n controls

cannot be smaller than
(
2n
n

)
n; so for a two-sided test with α = 0.05 and a Bonferroni

correction for 10,000 genes, at least 2n = 22 arrays are needed. Reducing the number

of genes to 500 reduces the minimum number of arrays to 18.

There is thus a need for a better estimate of the residual variance to overcome the

lack of repeats. Combining information can be helpful in this regards. There are two

obvious choices available: combine different genes in the same experiment or com-

bine different experiments, if similar experiments were carried out. For combining

genes, we can choose either to combine those genes for which the general expression

level is similar (see e.g., Huang and Pan (2002) and Jain et al. (2003)) or to combine

all genes. Alternative approaches to obtain more power with small experiments are

to add a stabilizing constant to the estimate of the variance for each gene or to use

a (Bayesian) model for the expression levels. Significance Analysis of Microarrays

(SAM; Tusher et al., 2001) is a methodology that adds a constant to the estimate

of the SD. The approaches by Baldi and Long (2001), Lönnstedt and Speed (2002),

Smyth (2004) and Cui et al. (2005) are four related (empirical) Bayesian approaches.

Wright and Simon (2003) discuss a closely related frequentist approach.

In practice, when carrying out tests for many thousands of genes simultaneously, a

multiple testing correction is essential (Section 7.2.3; see Dudoit et al. (2003) for

an extensive overview). However, the focus here is on obtaining a well-calibrated

marginal p-value, so we do not control for multiple comparisons.

8.2 Methods

Most of the methods that we compare here can be used either for one-color arrays

or for two-color (spotted) arrays. We assume that the arrays have been properly nor-

malized; see Section 8.6 for preprocessing details for the experiments we analyze

here.

8.2.1 Notation

Two-color arrays. For each gene and each two-color array, the value xM
ijl summa-

rizes the (log2-)expression ratio (M -value; see Section 1.4.1) between experimental

conditions k = 1 and k = 2 (these may be different between experiments) for gene

i = 1, . . . , g in experiment j = 1, . . . J on replicate array l = 1, . . . , Lj . For each

gene on each array there is also an estimate of the overall expression level xA
ijl, typ-

ically this will be the average of the normalized log2 expression for both channels

of the array. Unless there is confusion we write xijl instead of xM
ijl for the log2-

expression ratios.

Let µij be the “true” (mean) log2-expression ratio of gene i in experiment j for

condition 1 relative to condition 2. Set µ̂ij =
∑

l xijl/Lj , s2
ij =

∑
l(xijl − µ̂ij)

2,

and xA
ij =

∑
l x

A
ijl/Lj .
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One-color arrays. Similarly, for each gene and each one-color array let xijkl be

the (log2-)expression value for experimental condition k = 1 or k = 2, for gene

i = 1, . . . , g in experiment j = 1, . . . J on replicate array l = 1, . . . , Ljk.

Let µijk be the “true” mean (log2-)expression level of gene i in experiment j under

condition k. Set µ̂ijk =
∑

l xijkl/Ljk and s2
ijk =

∑
l(xijkl − µ̂ijk)2.

8.2.2 Significance tests

All significance tests that we consider can be written in the form

µ̂ij

σ̃ij/
√

Lj

for two-color arrays and
µ̂ij1 − µ̂ij2

σ̃ij

√
1

Lj1
+ 1

Lj2

for one-color arrays; σ̃2
ij is an estimate of the variance of xijl, so σ̃ij estimates the

standard deviation (SD). The methods discussed here differ primarily in how the

estimate σ̃ij is obtained. The traditional test statistics estimate σ̃ij based only on the

data on gene i in experiment j. Approaches that inflate the variance or that combine

genes also use data on genes i∗, i∗ 6= i, either implicitly, to estimate hyperparameters

for the empirical Bayes approach that inflates the variance, or explicitly, to smooth

the estimates for σ̃2
ij . Finally, the approaches that combine experiments use data on

experiments j∗, j∗ 6= j. Most of the methods below have a defined reference (null)

distribution, but alternatively significance levels can be obtained using permutations

(see Section 8.2.3); in fact, some authors recommend permutations as the method to

obtain p-values.

Below we describe the test statistics included in the comparison. We provide de-

tails for the two-color arrays; modifications for one-color arrays are indicated. All

these approaches are either already implemented in R packages available from Bio-

Conductor (http://www.bioconductor.org) or CRAN (http://cran.

r-project.org), or are easily programmed in R code.

Traditional single gene within-experiment method

t-statistic. The traditional t-statistic is

tij =
µ̂ij

σ̂ij/
√

Lj

,

where σ̂2
ij = s2

ij/(Lj − 1), provided Lj > 1. The reference distribution is the

t-distribution with Lj − 1 degrees of freedom, and the main assumption is that

for each gene i and experiment j the xijkl are independent having a normal distri-

bution with variance σij , although the t-test is generally considered to be robust

against departures from normality.
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116 SIGNIFICANCE FOR SMALL MICROARRAY EXPERIMENTS

The two-sample t-statistic is the equivalent test for one-color arrays. Use of this

statistic assumes that the variance for both experimental conditions is the same.

An alternative is the Welch (1938) two-sample t-statistic that does not make that

assumption. This approach has almost no power for small sample sizes (Kooper-

berg et al., 2005), and should probably be avoided for small microarray experi-

ments.

Methods combining genes: smoothing the variance

There have been several proposals in the literature to combine the estimates of the

variance for several genes to obtain better estimates, so that the resulting test has

more degrees of freedom. Typically the assumption that is made is that genes with the

same expression level have approximately the same variance. Under this assumption

estimates for the variance can be obtained by smoothing the variance as a function of

the expression level. For one-color arrays there are methods which smooth the vari-

ances jointly and methods which smooth variances separately for both experimental

conditions.

LPE. Jain et al. (2003) describe the Local Pooled Error test method (LPE), appli-

cable to one-color arrays where both experimental conditions are measured sep-

arately. This method is outlined here and described in detail by Lee, Cho, and

O’Connell (Chapter 7 of this volume). In this approach, let σ̂2
ijk be the the sam-

ple variance of the xijkl, for l = 1, . . . , Ljk. LPE regularizes these estimates

for each j and k separately by smoothing the σ̂2
ijk versus µ̂ijk. The assumption

being made here is that genes with the same expression level for the same ex-

periment and the same condition have (approximately) the same variance. Since

the smoothing spline that is used effectively involves averaging a large number of

genes, the authors use a normal reference distribution.

Loess. Huang and Pan (2002) make several related proposals. The main difference

between their approach and LPE is that they first compute σ̂2
ij and smooth these

estimates against µ̂ij = µ̂ij1 + µ̂ij2 for one-color experiments and against xA
ij for

two-color experiments. Their simulation results show that, not unexpectedly, for

the null-model a normal reference distribution is appropriate.

Methods combining genes: (empirical) Bayesian model for σ Rather than smooth-

ing the variance explicitly as a function of the expression level, we can include infor-

mation from other genes for the analysis of a particular gene by making assumptions

about the distribution of the variance for all genes. The information about the other

genes then allows us to estimate (hyper)parameters that can be used to stabilize the

variance estimate. There are several such methods, based on different motivations:

ad hoc (Tusher et al., 2001), (empirical) Bayes argument (Baldi and Long, 2001;

Lönnstedt and Speed, 2002; Smyth, 2004), James-Stein-type estimation (Cui et al.,

2005), or a frequentist approach (Wright and Simon, 2003).

Some approaches combine the sample variance σ̂2
ij with another estimate σ2

0ij that
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has dij degrees of freedom, yielding a variance estimate

σ̃2
ij =

dijσ
2
0ij + (Lj − 1)σ̂2

ij

dij + Lj − 1
, (8.1)

that can be used in a t-test with dij +Lj−1 degrees of freedom. The methods Cyber-

T and Limma use this approach; they differ primarily in the methods to obtain σ2
0ij

and dij .

Cyber-T. The Cyber-T approach of Baldi and Long (2001) is motivated as a fully

Bayesian procedure. However as implemented in practice (Baldi and Long, 2001,

Section 5) the test is carried out using a t-test on (for two-color arrays) ν0+Lj−1
degrees of freedom, and an variance estimate (compare Equation 8.1)

σ̃2
ij =

ν0σ
2
0ij + (Lj − 1)σ̂2

ij

ν0 + Lj − 1
, (8.2)

where σ2
0ij is an estimate of the “prior variance” that is obtained as a running

average of the variance estimates of the genes in a “window” of size w of similar

xA
ij . Thus, the Cyber-T approach uses the average of a smoothed variance (like

LPE and Loess, just using a different smoother) with the regular variance of the

t-statistic. A non-Bayesian interpretation of Cyber-T is thus that it combines a

smoothed estimate (as in Loess and LPE) with a traditional estimate from the

t-test.

We use the default values ν0 = 10 and window width w = 101 in the R software

available at http://cybert.microarray.ics.uci.edu. (Note that in

Baldi and Long (2001) a different default value of ν0 = 10− Lj is mentioned.)

Limma. Smyth (2004) generalizes the approach of Lönnstedt and Speed (2002). The

main assumption in Smyth’s model is a prior distribution on the variances σ2
ij :

1

σ2
ij

∼ 1

d0js2
0j

χ2
d0j

.

The model also includes priors on the coefficients for each gene in a linear regres-

sion model, which in the two-sample case reduces to the difference between the

mean expression for the two groups. By the method of moments, estimates of d0j ,

s2
0j , and other parameters are obtained. An inflated variance

σ̃2
ij =

d0js
2
0j + (Lj − 1)σ̂2

ij

Lj + d0j − 1
(8.3)

(compare Equation 8.2) is used for a “moderated t-test” with d0j + Lj − 1 de-

grees of freedom. Thus, a main difference between the Limma approach of Smyth

(2004) and the Cyber-T approach of Baldi and Long (2001) is that Limma uses

one single estimate for the prior variance (s2
0j) for all genes and estimates the prior

degrees of freedom d0j based on the data, while Cyber-T uses a smooth estimate

for the prior variance σ2
0ij , but it uses a fixed number of prior degrees of freedom

ν0. The approach of Smyth (2004) is implemented in the BioConductor package

limma (Smyth, 2005).
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Shrinking. Cui and Churchill (2003) and Cui et al. (2005) develop a James-Stein

shrinkage estimate σ̃2
ij . After appropriate transformations this estimator “shrinks”

the t-test estimate σ̂2
ij toward the mean variance

∑n
i=1 σ2

ij/In, where the exact

amount of shrinkage differs from gene to gene, and depends on the variability

for that gene. Easy to implement formulas are given in Cui et al. (2005). The

authors of this method recommend a permutation approach (see Section 8.2.3) to

obtaining p-values. We include this approach without permutations using a normal

reference distribution, as well as with the permutation p-values.

Methods combining experiments

Instead of simply combining different genes within one experiment, we can also

combine expression levels of the same gene between experiments carried out using

the same microarray platform. This would potentially be useful if there are several

smaller experiments for which it is reasonable to assume that for each gene the vari-

ance in each experiment is approximately the same.

Pooled-t. We define the pooled t-test statistic, combining experiments, as

cij =
µ̂ij

σ̂i

√
1

Lj

,

where σ̂2
i =

∑
j s2

ij/L and L =
∑

j(Lj − 1), provided L > 0. The reference dis-

tribution is the t-distribution with L degrees of freedom, and the main assumption

is that the xM
ijl are independent for each j and l, having a normal distribution with

mean µij and variance σ2
i .

It is in principle also possible for the other methods discussed above to pool different

experiments in obtaining a single variance estimates. Since these methods already

regularize the estimates for σ2 in some way, pooling typically has little or no effect,

and the corresponding combined method behaves similarly to the “parent” method

(Kooperberg et al., 2005).

8.2.3 Permutation p-values

Permutation of the arrays in an experiment can be an alternative to using a para-

metric reference distribution for a test statistic. Assume that we have a two-color

experiment with L arrays, and that the test statistic for the ith gene is Ti. To compute

the significance of Ti we also compute the test statistics for all genes for each of the

m = 1, . . . , 2L experiments that are obtained by “flipping” the signs of the xm
il for

some of the l. (We omit the index of experiment j.) Note that one of these permuta-

tions will be the original design. Let Tm
i be the test statistic for the ith gene for the

mth permutation. We estimate the p-value corresponding to Ti as

n∑

i∗=1

2L∑

m=1

I(Ti < Tm
i∗ )/n2L,
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where I(·) is the indicator function. If L is larger than, say, eight, it may be preferred

to sample permutations (rather than computing all possible permutations) to save

computing time.

These estimates will be unbiased if (i) each Ti has the same distribution under the

null-hypothesis, and (ii) no genes are differentially expressed. The first assumption is

not as severe as it might appear, since no particular parametric form for the common

distribution is assumed. The second assumption is much more severe, and it will lead

to conservative p-values when in fact a substantial number of genes are differentially

expressed (Storey and Tibshirani, 2003b).

For one-color arrays, we randomly rearrange the L1 arrays with the first experimental

condition and the L2 arrays with the second experimental condition, and proceed in

a similar manner.

8.3 Data

We analyze two sets of data. One comes from an unpublished study of Drosophila,

and the other comes from a one-color experiment that is analyzed in Kooperberg

et al. (2005).

Table 8.1 Organization of the two-color data. Experiments whose code starts with a D (dif-

ferent) are expected to have differences between both groups, while those starting with an

S (same) are repeats; the digit “2” refers to a two-color array. The arrays for experiments

D2.3 and D2.4 and those for D2.5 and D2.6 are different; experiment S2.1 are arrays from a

cell-line not used for the other experiments.

Exp. Sample 1 Sample 2 Lj Different

S2.1 KC cell KC cell 4 no

S2.2 SAM SAM 2 no

S2.3 SAM SAM 2 no

S2.4 SAM SAM 4 no

D2.1 SAM D-recomb 304 2 yes

D2.2 SAM D-recomb 220 2 yes

D2.3 SAM D-pure 2 yes

D2.4 SAM D-pure 4 yes

D2.5 SAM E-pure 4 yes

D2.6 SAM E-pure 4 yes

D2.7 SAM F-pure 6 yes

The two-color experimental data come from a series of spotted microarrays (13,440

spots) of Drosophila melanogaster that were grown in Suzannah Rutherford’s lab at

the Fred Hutchinson Cancer Research Center. All experiments are “dye-swapped”:

i.e., half of the arrays have sample one on the red channel (and therefore sample two
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in green), the other half have sample two on the red channel (with sample one in

green). The arrays that we compare here include some experiments that are self-self

hybridizations, and some experiments where both samples are genetically different

(see Table 8.1). In a self-self hybridization the two labeled samples are from the same

source, so no genes are in fact differentially expressed and those identified as such

are false positives. Thus, the experiments S2.1, S2.2, S2.3, and S2.4 are intended to

establish that the tests have the right size Type I error, and the experiments D2.1,

D2.2, D2.3, D2.4, D2.5, D2.6, and D2.7 are intended to establish power properties

of the tests.

One-color experimental data was obtained using Affymetrix Mu 11K-A microar-

rays (6,595 probe sets) generated for a series of experiments on Huntington’s dis-

ease (HD) mouse models. The results of these experiments are reported in a series

of related papers (Chan et al., 2002; Luthi-Carter et al., 2002a,b). For this analy-

sis we compare cerebellar gene expression in similarly aged mice carrying either a

wild type or mutant form of the HD gene. Every comparison reported in Chan et al.

(2002), Luthi-Carter et al. (2002a) and Luthi-Carter et al. (2002b) shows some dif-

ferentially expressed genes, although the amounts of differential expression differ

considerably between the experiments. For each of the experiments both groups had

between two and five mice. Thus, all the repeats use different samples (sometimes

referred to as “biological replicates”) and are not repeat arrays using the same sam-

ples (sometimes referred to as “technical replicates”). The one-color experiments are

listed in Table 8.2. Again, test size is examined with the S experiments and power

with the D experiments.

Table 8.2 Organization of the one-color (Affymetrix) data. HD: Huntington’s disease mouse,

WT: wild type mouse. Experiments whose code starts with a D are expected to have differences

between both groups, while those starting with an S are repeats; the digit “1” refers to a one-

color (Affymetrix) array.

Exp. Tissue Mouse Group 1 Group 2 Lj1 Lj2 Different

S1.1 cerebellum DRPLA 26Q HD HD 2 2 no

S1.2 cerebellum DRPLA 26Q WT WT 2 2 no

S1.3 cerebellum YAC HD HD 3 2 no

S1.4 cerebellum YAC WT WT 3 2 no

D1.1 cerebellum DRPLA 65Q HD WT 4 4 yes

D1.2 cerebellum R6/2 12 weeks HD WT 2 2 yes

D1.3 cerebellum N171 HD WT 4 4 yes
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8.4 Results

We analyze the experiments listed in Section 8.3 using the methods described in Sec-

tion 8.2.2. For the experiments where both groups are different (D2.x and D1.x) we

prefer methods with the largest percentage of significant genes (the largest power),

provided that the method does have the correct percentage of significant genes in the

experiments where both groups are the same (S2.x and S1.x): i.e., at most α% sig-

nificant genes when tested at significance level α%. This power comparison is fair

when the Type I error rate is controlled at the same level α.

We show results for α = 1% and α = 0.01%. For the two-color arrays there are

approximately 11,000 genes after removal of spots (genes) whose intensities are too

close to the background level (see Section 8.6). Assuming independence of genes,

a 95% confidence interval for the percentage of significance genes based upon the

binomial distribution is between 0.8 and 1.2% at α = 1% and between 0 and 0.03%

at α = 0.01%. For the one-color arrays there are 6,595 genes, thus these confidence

intervals are slightly larger (0.75 through 1.25% at α = 1% and 0 and 0.045% at α =
0.01%). When we average four experiments and (incorrectly) assume independence,

we expect between about 0.9 and 1.1% significant genes at α = 1% and between 0

and 0.025% at α = 0.01% for both array types.

8.4.1 Bandwidth selection for smoothers

The methods Cyber-T, LPE, and Loess require the choice of a bandwidth or smooth-

ing parameter. For LPE and Loess this determines over how many genes the variance

is “averaged”. For Cyber-T the averaged variance is combined with the variance for

the individual genes.

Table 8.3 summarizes the results for the two-color experiment for the Loess ap-

proach. The parameter span for the loess function in R (Ihaka and Gentleman,

1996) is approximately linear in the bandwidth for a local linear smoother. Table 8.3

shows that the bandwidth has very little influence on the results. The explanation for

this is that even for the smallest bandwidth the variances of several dozen genes are

effectively averaged. Smaller values of span are not useful, as they lead to numerical

problems in regions with little data.

For all four choices of span and for all S2.x experiments at α = 0.01% and for two

of the four of these experiments at α = 1%, the percentage of genes called significant

is much too large. This was concluded by Kooperberg et al. (2005) for the one-color

arrays.

For the remainder of the comparisons we use a span of 0.1, which yields the lowest

average number of significant results for both α = 1% and α = 0.01% for the

four S2.x experiments. As the influence of the bandwidth appears minimal, we use

Cyber-T and LPE with their default values.
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Table 8.3 Performance of the Loess approach with varying bandwidth (span) for the two-

color experiments. We report the percentage of genes called differentially expressed at levels

α = 1% and α = 0.01%. Ideally the four S2.x experiments would have α differentially

expressed genes, while the seven D2.x would have many such genes.

α = 1% α = 0.01%
span 10 1 0.1 0.01 10 1 0.1 0.01

S2.1 1.1 1.1 0.7 0.7 0.340 0.306 0.198 0.159

S2.2 7.8 7.0 5.8 6.6 2.884 2.507 1.528 1.915

S2.3 2.2 2.1 2.0 2.0 0.984 0.922 0.982 0.942

S2.4 0.7 0.6 0.6 0.6 0.262 0.262 0.230 0.212

S2-ave 3.0 2.7 2.3 2.5 1.118 0.999 0.735 0.807

D2.1 25.8 25.9 26.8 27.1 11.941 11.994 12.698 12.827

D2.2 31.7 31.8 32.3 32.9 16.817 17.000 17.682 18.300

D2.3 53.5 53.6 53.8 53.8 38.170 38.354 38.368 38.457

D2.4 54.3 54.4 54.4 54.7 37.709 37.858 37.774 38.043

D2.5 43.3 43.5 43.5 44.2 28.006 28.190 28.225 28.574

D2.6 73.0 73.2 76.5 76.6 62.230 62.431 66.313 66.501

D2.7 62.1 62.3 64.3 64.3 47.863 48.003 50.124 50.471

D2-ave 49.1 49.2 50.2 50.5 34.677 34.833 35.883 36.168

8.4.2 Comparison of methods

Tables 8.4 and 8.5 show the results of the methods described in Section 8.2.2 when

applied to the data described in Section 8.3 (results for the LPE method are not

available for the two-color data). Cui et al. (2005) recommend permutations to obtain

p-values for the Shrinking approach. In Tables 8.4 and 8.5 and Figures 8.1 and 8.2

we use a normal reference distribution. Tables 8.6 and 8.7 and Figures 8.3 and 8.4

use the permutation approach. The choice of distribution has a substantial impact on

the results.

Figure 8.1 gives a graphical display of how well these methods adhere to the nominal

significance levels, Figure 8.2 displays power results. These figures are probability-

probability plots on a logit-scale. For a given method and a particular experiment let

pi be the two-sided (sometimes called signed) p-values; that is, if pi is close to 0

there is evidence of under-expression and if pi is close to 1 there is evidence of over-

expression of group one relative to group two. We now combine all pi for a group of

experiments and sort them. Assume that there are N p-values. The sorted p-values

are plotted on the horizontal axis, with (1, . . . , n)/(N +1) on the vertical axis. For a

self-self experiment, these plots should ideally follow the identity line, as that implies

that the significance levels are “unbiased.” Curves that flatten out are particularly

worrisome, as they suggest significantly differentially expressed genes that are in fact
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false positives. Curves that are more vertical than the identity line suggest statistics

that are too conservative: something that is not a concern when there is in fact no

difference, but would likely be harmful when using the same method to analyze data

where some genes are in fact differentially expressed. For the D experiments, where

there is a difference between the two sample types, the ideal curve is more horizontal,

as long as the method does not generate a substantial number of false positives in the

S experiments.

Figure 8.1 shows that the Loess and LPE approaches identify substantially more dif-

ferentially expressed genes than the nominal levels for the S experiments. The Cyber-

T approach shows a mild number of increases, and none of the other approaches

shows serious bias. For both groups of experiments, the Shrinking approach with a

normal reference distribution appears too conservative.

Table 8.4 elaborates these observations. Although most methods appear to be rather

conservative, at a significance level of α = 1% the Loess method shows a substan-

tial anticonservative bias, in five out of eight data sets. For microarray experiments,

the more stringent level α = 0.01% is very relevant, as multiple testing corrections

generally imply selecting genes at low significance levels. Again, the Loess shows

substantial bias. The LPE approach also indicates ten times more significant genes

than the nominal value; this bias is present for three of the four data sets. At this sig-

nificance level, the Cyber-T method shows a modest bias overall, being substantial

for only one dataset (two-color experiment S2.2). The excess percentage of signifi-

cant genes for the Pooled-t approach is minimal, and could be due to chance.

In Figure 8.2 it is seen that for all methods far more genes are identified as differ-

entially expressed by the two-color experiments than by the one-color experiments,

as the curves for the two-color experiments are much more horizontal than those for

the one-color experiments. This is largely an effect of the particular data used, as

the two-color Drosophila experiments involved substantially altered flies, while the

differences between the mice involved in the one-color Huntington’s disease experi-

ments are much more subtle. This figure does indicate though that the ordering of the

methods is largely unchanged, suggesting that since the conclusions remain the same

for two dramatically different experiments (different technologies, different amounts

of differential genes) they appear to be fairly robust and may well generalize to many

other situations.

In both the two-color and the one-color experiments the Loess approach produces

the most genes identified as differentially expressed. This is not a surprise, since the

method does not maintain the correct significance levels in the self-self (S) experi-

ments. Similarly, it is not surprising that the LPE method identifies more differential

expression for the one-color experiments, since it also does not adequately control

test size here. Among the remaining methods, which tend to maintain significant

levels rather conservatively, the Pooled-t approach performs best for the two-color

experiments, followed by Cyber-T and Limma, while for the one-color experiments

Cyber-T and Limma approach seem slightly more powerful than Pooled-t (Table 8.5).

Interestingly for the D2.x (two-color) experiments, Pooled-t seems more powerful in

© 2010 by Taylor and Francis Group, LLC



124 SIGNIFICANCE FOR SMALL MICROARRAY EXPERIMENTS

two−sided p−value

e
x
p
e
c
te

d
 p

−
v
a
lu

e

.0001

.0
0

0
1

0.01

0
.0

1

0.1

0
.1

0.5

0
.5

0.9

0
.9

0.99

0
.9

9

0.9999

0
.9

9
9

9

t−test

Limma

Shrinking

Cyber−T

Loess

Pooled−t

Two−color experiments

two−sided p−value

.0001 0.01 0.1 0.5 0.9 0.99 0.9999

t−test

Limma

Shrinking

Cyber−T

Loess

LPE

Pooled−t

One−color experiments
Self−self comparisons

Figure 8.1 Method performance using a defined null reference distribution in self-self (S)

experiments. For unbiased methods the curves should follow the identity line.
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respond to more powerful methods.
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those experiments with two arrays (D2.1, D2.2, and D2.3). Maybe this is not sur-

prising: borrowing degrees of freedom between experiments, as Pooled-t does, is

particularly useful when the number of degrees of freedom is small.

8.4.3 Permutation p-values

As detailed in Section 8.2.3, an alternative to obtaining p-values is a permutation

approach in which the test statistics for all genes are combined. Figure 8.3 gives a

graphical display of how well each method adheres to the significance levels when

p-values are determined using such an approach. Figure 8.4 displays curves related

to power for these situations. We do not show permutation results for Pooled-t: since

this procedure combines arrays from different experiments a permutation procedure

is less standard, and in any case the results using a t-distribution are already satisfac-

tory.

The permutation approach for computing p-values yields approximately unbiased, if

somewhat conservative, results for all approaches since all curves in Figure 8.3 fol-

low the diagonal. However, as expected, the permutation approach is associated with

a reduction in the number of genes called differentially expressed. Figure 8.4 shows

that the procedures based on permutation produce considerably fewer differentially

expressed genes than the procedures that do not use permutation (Figure 8.2). In

fact, the curves in Figure 8.4 all stay within a “band” of the diagonal. This result is a

consequence of using the permutation approach with a small number of repeats: irre-

spective of the actual number of differentially expressed genes, there is a maximum

number of genes that can be identified as differentially expressed at any particular

significance level due to the experimental design. A detailed explanation is given

below in the discussion of Table 8.7.

Tables 8.6 and 8.7 summarize results for the permutation-based procedures. Al-

though the permutation approach does control the significance level α appropri-

ately, there is correspondingly less differential expression identified for these data

and methods. The part of Table 8.7 for the D2.x experiments clearly illustrates an

artifact of the permutation approach. As already seen above, the D2.x experiments

have very many genes identified as differentially expressed (see Table 8.5). But in

Table 8.7 there seems to be a cap: at a significance level of α = 1% for experiments

D2.1, D2.2, and D2.3 all methods suggest at most 2% differentially expressed genes,

for experiments D2.4, D2.5, and D2.6 all methods suggest at most 8% differentially

expressed genes, and for experiments D2.7 all methods suggest at most 32% differ-

entially expressed genes. We focus on experiment D2.4, which uses 4 arrays. There

thus result at most 24 = 16 permutations from “flipping” the arrays. Since each

permutation arises twice (when all arrays are flipped relative to the first analysis),

only 8 of these permutations are unique. Assume that for this experiment 40% of the

genes are differentially expressed (as Table 8.5 suggests), and therefore that these

40% of the genes have very large test statistics. With about 10,000 genes on these

arrays, there are thus about 4,000 large test statistics, say larger than a value A. Now

© 2010 by Taylor and Francis Group, LLC



126 SIGNIFICANCE FOR SMALL MICROARRAY EXPERIMENTS

Table 8.4 Percentage of differentially expressed genes in self-self (S) experiments identified

using a defined null reference distribution at significance levels α = 1% and α = 0.01%. For

unbiased methods the percentage of differentially expressed genes should be close to α.

α = 1% t-test Limma Shrinking Cyber-T Loess LPE Pooled-t

S2.1 0.2 0.1 0.0 0.1 0.7 NA 0.3

S2.2 1.1 0.1 0.0 2.3 5.8 NA 0.3

S2.3 0.6 0.2 0.0 0.3 2.0 NA 0.4

S2.4 0.2 0.1 0.0 0.0 0.6 NA 0.1

S2-ave 0.5 0.1 0.0 0.7 2.3 NA 0.3

S1.1 0.4 0.2 0.0 0.4 0.7 0.4 0.0

S1.2 0.6 0.3 0.0 1.4 2.7 1.1 0.2

S1.3 0.8 0.1 0.0 0.3 3.9 0.3 3.2

S1.4 0.3 0.0 0.0 0.1 2.6 0.1 1.3

S1-ave 0.5 0.2 0.0 0.6 2.5 0.5 1.2

α = 0.01% t-test Limma Shrinking Cyber-T Loess LPE Pooled-t

S2.1 0.000 0.000 0.000 0.000 0.198 NA 0.017

S2.2 0.009 0.000 0.000 0.277 1.528 NA 0.061

S2.3 0.018 0.000 0.000 0.000 0.982 NA 0.009

S2.4 0.000 0.000 0.000 0.000 0.230 NA 0.009

S2-ave 0.007 0.000 0.000 0.069 0.735 NA 0.024

S1.1 0.015 0.030 0.000 0.061 0.197 0.106 0.000

S1.2 0.000 0.000 0.000 0.045 0.697 0.243 0.000

S1.3 0.000 0.000 0.000 0.015 0.500 0.061 0.091

S1.4 0.000 0.000 0.000 0.000 0.728 0.000 0.000

S1-ave 0.004 0.008 0.000 0.030 0.531 0.102 0.023
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Table 8.5 Percentage of differentially expressed genes in difference (D) experiments identified

using a defined null reference distribution at significance levels α = 1% and α = 0.01%. If

there is appropriate Type I error control, a larger percentage of differentially expressed genes

corresponds to a more powerful method.

α = 1% t-test Limma Shrinking Cyber-T Loess LPE Pooled-t

D2.1 1.9 12.1 0.0 15.8 26.8 NA 30.9

D2.2 2.3 16.0 0.0 21.9 32.3 NA 28.9

D2.3 4.0 34.8 0.0 43.6 53.8 NA 48.2

D2.4 31.0 44.8 22.6 45.5 54.4 NA 62.7

D2.5 20.9 31.6 13.1 35.1 43.5 NA 52.4

D2.6 53.6 66.5 46.3 66.9 76.5 NA 58.6

D2.7 51.8 57.6 46.9 55.9 64.3 NA 56.3

D2-ave 23.7 37.6 18.4 40.7 50.2 NA 48.3

D1.1 2.6 3.4 2.0 4.0 6.4 2.7 3.3

D1.2 1.2 5.3 0.1 5.6 6.7 5.0 1.5

D1.3 1.6 1.6 1.0 1.6 3.0 0.9 0.8

D1-ave 1.8 3.4 1.1 3.7 5.4 2.9 1.9

α = 0.01% t-test Limma Shrinking Cyber-T Loess LPE Pooled-t

D2.1 0.009 0.864 0.000 2.148 12.698 NA 10.835

D2.2 0.026 1.219 0.000 5.051 17.682 NA 11.928

D2.3 0.027 7.699 0.000 19.441 38.368 NA 26.722

D2.4 1.994 15.378 0.296 21.732 37.774 NA 44.632

D2.5 1.083 4.752 0.201 10.856 28.225 NA 31.806

D2.6 7.729 39.769 2.858 47.705 66.313 NA 40.295

D2.7 17.023 29.986 11.971 34.357 50.124 NA 38.347

D2-ave 3.984 14.238 2.189 20.184 35.883 NA 29.224

D1.1 0.121 0.349 0.030 1.046 2.593 0.788 0.516

D1.2 0.000 2.153 0.000 1.668 2.835 2.092 0.243

D1.3 0.106 0.243 0.061 0.379 1.410 0.288 0.182

D1-ave 0.076 0.915 0.030 1.031 2.280 1.056 0.313
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Figure 8.3 Method performance using a permutation reference distribution in self-self exper-

iments. For unbiased methods the curves should follow the identity line.
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Figure 8.4 Method performance using a permutation reference distribution in difference ex-

periments. Curves that are more horizontal correspond to more powerful methods.
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Table 8.6 Percentage of differentially expressed genes in self-self (S) experiments identified

using a permutation distribution at significance levels α = 1% and α = 0.01%. For unbiased

methods the percentage of differentially expressed genes should be close to α.

α = 1% t-test Limma Shrinking Cyber-T Loess LPE

permuted permuted permuted permuted permuted permuted

S2.1 0.1 0.0 0.0 0.0 0.0 NA

S2.2 1.0 0.0 0.2 0.4 0.6 NA

S2.3 0.6 0.1 0.1 0.0 0.4 NA

S2.4 0.2 0.1 0.1 0.0 0.2 NA

S2-ave 0.5 0.1 0.1 0.1 0.3 NA

S1.1 0.3 0.1 0.1 0.1 0.1 0.1

S1.2 0.6 0.4 0.4 0.3 0.4 0.4

S1.3 1.1 0.5 0.4 0.2 0.5 0.5

S1.4 0.3 0.1 0.1 0.1 0.4 0.2

S1-ave 0.6 0.2 0.2 0.1 0.4 0.3

α = 0.01% t-test Limma Shrinking Cyber-T Loess LPE

permuted permuted permuted permuted permuted permuted

S2.1 0.000 0.000 0.000 0.000 0.000 NA

S2.2 0.000 0.000 0.000 0.000 0.000 NA

S2.3 0.017 0.000 0.000 0.000 0.000 NA

S2.4 0.000 0.000 0.008 0.000 0.000 NA

S2-ave 0.004 0.000 0.002 0.000 0.000 NA

S1.1 0.000 0.000 0.000 0.000 0.000 0.000

S1.2 0.000 0.000 0.000 0.000 0.000 0.000

S1.3 0.000 0.000 0.000 0.015 0.000 0.015

S1.4 0.000 0.000 0.000 0.000 0.000 0.000

S1-ave 0.000 0.000 0.000 0.004 0.000 0.004

assume that among the 7 other permutations none of the test statistics is larger than

A. Then out of 8 × 10, 000 = 80, 000 test statistics, there are 4,000 larger than A.

However, at the α = 1% level at most 0.01 × 80, 000 = 800 can be called signif-
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Table 8.7 Percentage of differentially expressed genes in difference (D) experiments identified

using a permutation distribution at significance levels α = 1% and α = 0.01%. If there is

appropriate Type I error control, a larger percentage of differentially expressed genes corre-

sponds to a more powerful method.

α = 1% t-test Limma Shrinking Cyber-T Loess LPE

permuted permuted permuted permuted permuted permuted

D2.1 1.6 2.0 1.8 2.0 2.0 NA

D2.2 1.5 2.0 2.0 2.0 2.0 NA

D2.3 1.9 2.0 2.0 2.0 2.0 NA

D2.4 7.7 8.0 8.0 8.0 8.0 NA

D2.5 7.4 8.0 8.0 7.9 7.5 NA

D2.6 8.0 8.0 8.0 8.0 0.0 NA

D2.7 30.5 31.8 30.5 31.8 24.8 NA

D2-ave 8.4 8.8 8.6 8.8 7.8

D1.1 2.8 3.8 3.8 3.6 2.8 2.8

D1.2 1.2 3.0 2.6 2.7 2.7 2.7

D1.3 1.9 1.8 1.8 1.4 1.3 1.0

D1-ave 2.0 2.9 2.7 2.6 2.3 2.1

α = 0.01% t-test Limma Shrinking Cyber-T Loess LPE

permuted permuted permuted permuted permuted permuted

D2.1 0.008 0.008 0.008 0.008 0.017 NA

D2.2 0.017 0.017 0.017 0.017 0.026 NA

D2.3 0.009 0.008 0.000 0.009 0.018 NA

D2.4 0.068 0.076 0.076 0.068 0.079 NA

D2.5 0.075 0.083 0.059 0.084 0.079 NA

D2.6 0.075 0.075 0.075 0.025 0.068 NA

D2.7 0.308 0.315 0.283 0.308 0.314 NA

D2-ave 0.080 0.083 0.074 0.074 0.086 NA

D1.1 0.121 0.258 0.212 0.243 0.106 0.030

D1.2 0.000 0.000 0.015 0.015 0.015 0.015

D1.3 0.136 0.243 0.258 0.212 0.121 0.045

D1-ave 0.086 0.167 0.162 0.157 0.081 0.030
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icant (at α = 1%) from the permutation distribution. This makes 8%, rather than

the 40% that are differentially expressed, of all the genes on the array. (In fact the

percentage called differentially expressed is slightly lower as a few rare permuted

genes also have large statistics.) We cannot ignore the original permutation to obtain

percentiles of the permutation distribution, since doing so violates the assumption of

exchangeability under the null hypothesis of no differential expression. This artifact

disappears when the number of differentially expressed genes is much smaller or

when the number of arrays increases, since then more permutations can be created.

8.4.4 Relation between average signal and variance

The local smoothing approaches generally assume that genes with the same ex-

pression level have approximately the same variance, then estimate the variance by

smoothing as a function of the expression level. We examine this relationship here.

Figure 8.5(a) contains an MA plot for an individual two-color array, showing the re-

lation between the difference between the logs of the two signals (i.e., the log-ratio,

or M -value) and the average of the logs of the signals. For one of the two-color ex-

periments (Figure 8.5) and one of the one-color experiments (Figure 8.6), the relation

between the variance and the average signal is shown. As can be seen, the relation

between average signal and variance is minimal. In fact, the correlation between the

variance from one experiment to the next experiment for the same gene is much

larger than the correlations in these figures (data not shown).

8.5 Discussion

We have seen here that the choice of significance test in microarray experiments with

low replication can dramatically influence the results. We focus on p-values, rather

than for example the false discovery rate (FDR), as we believe that an appropriately

obtained p-value will yield a more reliable multiple testing correction, and that the

multiple testing adjustment cannot by itself save a procedure that yields badly cali-

brated p-values.

The two groups of experiments analyzed here differ in another important aspect be-

sides technology: the one-color experiments have a modest number of differentially

expressed genes, while the two-color experiments have many such genes. Given this

difference between the experiments, the similarity in results is striking.

The main conclusions are:

1. The t-test has almost no power when the sample size is small. When there

are fewer than, say, six to eight repeat arrays some of the alternative solutions

are much more powerful. Kooperberg et al. (2005) conclude that the lack of

power is even more extreme for the Welch statistic, which suffers at least in

part because the variance estimate is not pooled.
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Figure 8.5 (a) Relation between log expression ratio and average log expression for one nor-

malized two-color array, and (b) SD of log expression ratios vs. average log expression ratio

for all arrays from the experment (D2.6).
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2. A permutation approach to obtaining p-values also severely reduces the num-

ber of genes that are identified as differentially expressed for small experi-

ments with a lot of differential expression. This limits our conclusions about

the Shrinking approach (Cui et al., 2005), since for this approach it is the

only suggested method to obtain p-values.

3. Combining an estimate of the overall variance with an estimate of the in-

dividual variance, such as is done for Limma (Smyth, 2004) and Cyber-T

(Baldi and Long, 2001), appears to be very effective. Apparently such a reg-

ularization reduces the noise in the variance estimates in an effective man-

ner. Because of the similarity of the results for these two approaches, and

the much worse results for the smoothing approaches, it appears that for the

Cyber-T approach the running average estimate of σ2
0ij is in effect estimating

an overall variance, rather than a local variance. In the analyses here, Limma

performs slightly better than Cyber-T.

4. The Pooled-t approach proposed by Kooperberg et al. (2005), which borrows

degrees of freedom from other experiments, performs equally well as Limma

and Cyber-T. In fact, when the sample size is minimal (n = 2) it seems to

perform slightly better. An obvious question concerns which experiments to

combine. A small simulation study carried out by Kooperberg et al. (2005)

suggests that there can be a fair degree of experiment-to-experiment varia-

tion without seriously inflating the Type I error. The fact that we were able

to combine here information on experiments carried out on such diverse ma-

terial as cell-lines and RNA harvested from fruit flies lends support to this

conclusion.

5. The approaches to combining information here do not all perform equiva-

lently. Methods which use only a (locally) smoothed estimate of the vari-

ance, such as LPE (Jain et al., 2003) and Loess (Huang and Pan, 2002), can

give severely biased results by inflating the percentage of significant genes

well beyond a pre-specified level α when in fact there are no differences be-

tween the two samples. For Loess this is evident at α = 1% and α = 0.01%,

for LPE it is only evident at α = 0.01%. However, due to multiple testing

in microarray experiments very small significance levels are generally used,

so it would seem better to avoid methods relying solely on smoothing. One

reason for this bias might be that with the improved normalization methods

now available, the relation between variance and expression level has been

considerably reduced (see Section 8.4.4). Thus, locally averaging the vari-

ances will sometimes yield variances that are too large and sometimes yield

variances that are too small. When the variance is too small there is a sub-

stantial chance of incorrectly identifying a gene as differentially expressed.

Another, more fundamental reason is due to the experimental design itself.

The LPE approach is more appropriate for technical replicates, for which

the error distributions are closer to Gaussian. The error distribution for bi-

ological replicates, such as those we analyze here, will confound technical

variability with heterogeneous biological variability, leading to the observed
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bias. Lee, Cho, and O’Connell (Chapter 7 in this volume) provide additional

detail along with methods to address these issues.

8.6 Appendix: Array preprocessing

For all arrays we carried out a graphical quality assessment, which indicated that all

arrays were of good quality.

Two-color arrays. For the two-color arrays we first exclude all spots with a log2-

expression ratio of less than 5 and spots whose background level was higher than the

foreground level for either channel. This excludes about 11.5% of the spots, primarily

those that do not hybridize well. In particular, of the 13,440 spots on the arrays, 1,296

are excluded on all 36 arrays: of the remaining spots only about 2% are excluded.

We then subtract the background and use a print-tip loess correction (Yang et al.,

2002), carried out using the limma function normalizeWithinArrays() with

defaults. Any spot that had at least two estimates for a particular experiment was

included in the analysis.

One-color arrays. Gene expression is quantified using RMA (Irizarry et al., 2003b)

on all arrays simultaneously. We also carried out the analyses using log2 of the MAS

5.0 summary (Affymetrix, 2002; see also Section 1.4) and again using RMA sep-

arately within each experiment. In both cases, the results are very similar to those

reported in this chapter.
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