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Adaptively Weighted Association Statistics
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We investigate methods for testing gene-disease outcome associations in situations where the genetic relationship
potentially varies among subjects with differing environmental or clinical attributes. We propose a strategy which modestly
increases multiple testing by evaluating weighted test statistics which focus (or enrich) association tests within subgroups
and use a Monte-Carlo method, based on simulating from the approximate large sample distribution of the statistics, to
control type 1 error. We also introduce a stage-wise calculated test statistic which allows more complex weighting on
multiple environmental variables. Results from simulation studies confirm improved power of the proposed approaches
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INTRODUCTION

Assessing the association of genomic attributes with
disease outcomes is an important and ongoing area of
applied research. Commonly, many univariate marginal
tests are calculated for a large number of genomic features.
For instance, in human genetic association studies with
single nucleotide polymorphisms (SNPs) thousands of
SNPs are tested for association with disease outcomes.
However, given the typical focus on univariate or marginal
testing, there are concerns that more complex relation-
ships, such as multiple genes acting in concert or
gene-environment (or gene-treatment) interactions, could
attenuate the marginal effect size and reduce the power to
detect true associations. For instance, the association of the
gene with survival may be present only in smokers or
prior smokers, or in patients taking a specific treatment.

One strategy is to exhaustively test gene-environment
interactions in addition to testing marginal gene associa-
tions with outcome. However, interaction testing with
many genes is often more difficult due to limited power
and can lead to conducting a very large number of tests.
Alternatively, if there is reason to suspect that the genetic
association is stronger within a subgroup of subjects with
specific treatment or set of clinical/environmental attri-
butes, other more powerful test statistics can be con-
structed. We propose computationally simple test statistics
that can exploit such subgroup associations if they exist.
The goal is to modestly increase the search by weighting
the association tests within subgroups of subjects. We note
that constructing tests based on ordered overlapping
subgroups of subjects has been previously investigated
for linkage analysis [Hauser et al., 2004]. In that case,
partial sums of lod scores were calculated for families
ranked on a covariate interest. We also introduce a natural
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extension of the subgroup statistics motivated by statistical
“boosting” to define weights.

A subgroup weighted test can be more powerful than
a marginal test of association under some gene-environ-
ment interaction models. We limit the complexity of the
statistical exploration to control the variability of the
search. Other authors have studied methods for modeling
gene-gene and gene-environment interactions that
increase the power of finding marginal associations
[Chatterjee et al., 2006; Marchini et al., 2005]. Our proposal
directly focuses on weighted score test statistics rather
than full modeling. When there are truly gene-environ-
ment interactions, power for detecting genetic associations
with outcome can be substantially increased by appro-
priate, yet parsimonious, weighting. The presentation of
the proposed statistics is general and we expect the
weighted gene association tests to have application in
both SNP and gene expression association studies.

METHODS

MOTIVATION FOR EFFICIENCY OF SUBGROUP
WEIGHTING

Our strategy is to focus on enriched subgroups of
subjects to test for genetic association. Figure 1 suggests
that if one could identify the appropriate environmental
subgroup, stronger associations between the genetic
variable and subject outcome could be seen: as the
difference in shading becomes more intense it indicates a
greater difference in disease probabilities.

Some motivation for the potential statistical power of
considering subgroup tests can be based on testing main
effects and subgroups within a simple multiplicative
interaction model. Let Z denote an environment or
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Fig. 1. Enriching the environmentally defined subgroup. Let Z
denote an environment or treatment variable and G a genetic
factor. Intensity of shading represents the probability of disease.

treatment variable and G a genetic factor and assume that
the association may depend on the level of factor Z.
Assume a regression model is indexed by a mean function

N =B+ PG+ BrZ + B3GZ,

where G and Z are independent and binary. Also
assume that P(G=1)=p, and P(Z =1) = p,. Assume a
continuous phenotype with constant variance; then stan-
dard linear model testing leads to easy calculation of the
power and relative efficiency of the subgroup test,
marginal test and interaction test. The ratios of the
square of the mean to variance, the non-centrality
parameters, are (1) for the marginal test (using only the
univariate model including G) &, = (B; + p:B3)*pe(1 — pg),
(2) for the subgroup test for the Z=1 group
8? =B+ B3)2(1 — Pg)Pzpg, and (3) for the interaction test
87 = P3pzpg(1 — p2)(1 = py).

Therefore, in the simple setting in which there is
only a genetic association with outcome in the subgroup
(Z=1) it is clear that using the subgroup test
can yield significantly better power than a marginal test.
The ratio of the non-centrality parameters 32 to &2, for
B; =0is

1

p=’
so the gain can be substantial depending on the fraction of
individuals in the subgroup. For instance, relative
to the marginal test the impact on non-centrality
is largest in the case where p, is small. While this case
induces an interaction, the power to specifically test the
interaction will be lower: the ratio of the subgroup to
interaction 8% to &7 for By = 0 is

1

1-p,

Of course, there is reduced power for testing the ;
subgroup relative to the marginal test if the interaction
effect B3 is small and the main effect B; # 0. We note that
the non-centrality parameter formulas above show that
even for the case B; #0, the ratios of the subgroup
non-centrality parameters of & to &2, and of 52 to &7
do not depend on the gene/allele probability, p, (of course,
the absolute power would depend on this). Our
proposal to consider the adaptive test statistic based on
the maximum of the marginal and subgroup test
statistics can also be motivated in this simple regression
example. In large samples one can utilize the
analytic forms for mean and variance of the maximum of
bivariate normals. Then in this case the expected
value of the maximum of the marginal and subgroup

tests is

A= 6171(1)(_"{) + 85(1)('\{) + ad)(Y)s (1)

where @ and ¢ are the normal distribution and density
functions, respectively [Clark, 1961]. The term ®(y) is the
probability that the subgroup test statistic is larger than the
marginal test statistic. For this case, a = 2(1 — p), where p is
the correlation between the test statistics and
v = (8m —9)/a, so the expected value (1) is a linear
combination weighted by the power properties of the
marginal and the subgroup test. The last term in the
expectation, ad(y) represents the additional impact of
adaptive selection. Therefore, we expect that data adaptive
selection will lead to a more powerful test on a wider
range of underlying disease models.

We provide plots of the non-centrality parameters under
different values for the main effect and interaction
parameters for the marginal, subgroup, interaction, max-
imum of marginal and subgroup, and a global (“full”) 2
degree of freedom test for the case p, = p, = 0.5. Under
the case of no interaction, the marginal test is preferred
over all other options (Fig. 2, upper left panel); in the case
of both a marginal and subgroup effect in the same
direction (Fig. 2, upper right panel) the subgroup test is the
most powerful; the full 2 degree of freedom test loses
power due to the extra degree of freedom, and the
maximum test is the second best. In the case of a negative
main effect and positive interaction (Fig. 2, lower left
panel), the marginal test can have very poor power, the
interaction test performs best for large values of B3, and the
maximum and full 2 degree of freedom tests can provide
reasonable compromises over a range of interaction
values. However, one would anticipate that as the
complexity (and degrees of freedom) the global (full) test
increases in real applications (14+ number of effect
modifier terms) the power of the test would be signifi-
cantly and negatively impacted.

These simple calculations indicate that the adaptive
selection of maximal select test subgroup statistics or
subgroup weighting may provide a simple yet powerful
mechanism for testing. In the context of data analysis, one
would expect to evaluate two or more subgroup test
statistics. These more complex tests of multiple subgroups,
and their type I error control and power are explored in
other sections of the article.

SUBGROUP WEIGHTED SCORE
STATISTIC

Since many useful association tests are score type
statistics, we consider weighted versions of such tests.
Let Z denote an environment or treatment variable and G;
a genetic factor. A standardized univariate score test of the
association of G; with patient outcome can be expressed as

where U; = >, U; and Uj; is the score component for
individual i and 7 is the total sample size. Here, the index j
corresponds to gene G;, and the denominator V; is the
estimated variance of U;. For example, in the case of binary
outcome data (in the setting of a case-control study), with
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Fig. 2. Non-centrality parameters for various testing strategies under an additive regression model.

yi =1 or 0 for case or control, Gj; the gene j value and Z;
for environmental factor k for individual i, the score

component would be
e‘7+ﬂzla

We note that score components for other models for other
outcomes such as time-to-event with the proportional
hazards model are easily constructed.

We construct weighted marginal test statistics indexed
by a parameter 0,

Uw(Z,Gj;8) = > h(Z;, 0)Uj.
i=1

The parameter 6 can describe a subgroup based on Z, or it
could more generally parameterize a subgroup weighting
function. As above, U; represents the score component of
Gj. A simple empirical estimate of the variance of
Uw(Z,Gj; 0) is

Vw(Z.Gi:0) = > I(Zi,0)V;.
i=1

The standardized statistic is Tw(Z,G;;0) = Uw(Z, G]';G)2 /
Vw(Z, Gj; 0). A subgroup weighting function, often called a
basis function in adaptive regression methodology [e.g.
Hastie et al., 2001], is h(Z; 0) = I{Z > 6} which can be used
if the genetic association was thought to be stronger with
larger values of the environmental factor Z. Another
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popular basis function is the truncated linear spline
function h(Z;0) =H{Z>06}(Z —0) or the smooth logit
function

h(Z;0) = exp(a + bZ)/(1 + exp(a + bZ)).

Thus, in our setting, the basis functions are just transfor-
mations of the environmental factors. In the case of
multiple environmental factors, one could envision
smooth additive combinations of the environmental
predictors or subgroup rules based on Boolean combina-
tions. However, computationally efficient algorithms
would need to be derived for powerful weighting
functions. Even in the case of a single environmental
factor, it will not be known a priori if the association would
be stronger as a marginal effect or within a subgroup
defined by environmental or clinical factor Z. For instance,
Z could measure body mass index or some ordered
measure of smoking history. With respect to subgroup
weighting functions, a small number of 0 values (say cut-
points ¢, or logit weighting functions)

h(Zw 60)3 ey h(Z; ek)

would allow investigation of subgroup effects where one
can assume h(Z; 0p) represents the overall marginal effect,
hZ;0p) = 1.

Therefore, panels of correlated weighted test statistics
T(Z,Gj; 8),...,T(Z,Gj; 0) for each genej =1,...,p can be
constructed and the maximal statistic, max{T(Z, Gj; 6p), ...,
T(Z, Gj; 0x)} for each genetic factor G; can be calculated. It is
hoped that this strategy of using the maximum of the
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marginal and subgroup tests could lead to improved
power over marginal testing.
INFERENCE
The numerators of subgroup weighted test statistics
Uyj, ..., Uy) = U(Z,Gj; 01), ..., U(Z,Gj; 6p)
tend to be correlated and hence, the standardized versions
T(Z,Gj;01),...,T(Z,Gj; 6)

for a specific gene will also be substantially correlated.
Therefore, overall multiple testing control using a Bonfer-
roni correction will be very conservative. If all the Kp
statistics

j=1,....p k=1,...,K

. upK)i,

are considered as a vector, in large samples they have an
approximately multivariate normal distribution with
covariance

v=> uuy. )

To acknowledge the correlation, we propose resampling
or permutation methods to control for multiple testing.
Given, the simple additive form of the subgroup weighted
test statistics, a Monte Carlo method can be used [e.g. Lin,
2005]. We construct modulated (or simulated) versions of
the test statistics

Uw(Z,Gj:0) =Y h(Zi, O)U;Qs,
1

where Q; are standard normal random variables, and
Tw(Z,Gj; 0) = Uw(Z, G]-;G)Z/VW(Z, Gj;0) as the standar-
dized statistic. Therefore, denoting each element by ajk =
fIw(Z, Gj;0x), conditional on the data, then I:I,- =
(lln,...,ulK,..., Upl,...,UpK)i, j:l,...,p, k:l,...,K,
are multivariate normal with the same covariance given
in equation (2).

Then the simulated standardized test statistic is
Tw(Z,Gj;0) = Uw(Z, G/;O)Z/VW(Z, Gj;0). Based on a large
number of random realizations one can calibrate the
observed test statistics, for instance, by the family-wise
error rate. Note that in instances where the individual
genes are not substantially correlated, one could calibrate
the type I error for the subgroup tests for each gene, and
then use the Bonferroni method to adjust across the
multiple genes.

STAGE-WISE WEIGHTED ASSOCIATION
TESTS

Just as boosting regression models can be used to
improve prediction error [e.g. Friedman et al., 2000], we
believe that boosting can motivate a strategy to enhance
the strength of the association testing by repeated
adjustment of the weighting function. In particular, it can
be used to construct a smoothly weighted test statistic or a
statistic weighted by several environmental factors. For
instance, suppose the current weighting function is g(Z)
then one could choose a new cut-point function 1(Z,0) to

maximize the standardized version of

Uwgy(Z, Gj; 0) = Z(g(Z) + Mi(Z,0)U;.
P

As above, Uj; represents the score component on G;. The
goal is to find the new weight that maximizes the
correlation with the score vector. A simple empirical
estimate of the variance of Uw)(Z, Gj; 0) is

Vwin(Z,Gi:0) = > (9(Z) + Mi(Z, 0)1V.
i=1

Consider small steps of magnitude A. Each boosting
step would select the basis function that maximizes
the standardized statistic Twey(Z,Gj;0) =
Uwy(Z, G]-;O)2 /Vwoy(Z,Gj; 0). Finally, the resampled ver-
sion

Uwoy(Z, Gj;0) = > ((2) + Mu(Z, 0)U;iQ;i
i=1

can be used to construct a null distribution for boosted
statistics after any number of boosting steps. Note that
there is reasonable computational efficiency since the
score components do not need to be updated, yet
computation is linear in the number of genes x number
of boosting steps, which makes it prohibitive for large
numbers of genes. In addition, for this implementation one
would need to determine the total number boosting steps
to be used to yield good power characteristics. Too
many boosting steps would lead to increased variance
and reduced power; this is analogous to overfitting
with smoother error functions [e.g. Friedman et al,
2000].

However, rather than using simple boosting, we focus
on increased computational speed by utilizing efficient
regression algorithms to construct the weighted score
statistics. For instance, one can construct a regression basis
X = HG; using a matrix of potential basis weights H =
[(Z;6p), ...,h(Z; 6;)] multiplied by the genetic variable of
interest G;, then use a computationally efficient stage-wise
regression such as least angle regression (LAR) [Efron
et al., 2003] with a mean centered outcome. Typically, we
propose basis weights or basis functions that are piece-
wise constant functions h(Z;0) = I[{Z>0} of an environ-
mental variable Z.

We briefly outline the components of the LAR algorithm
below. For regression, where there are n independent
observations (y;, Xi1, . . ., Xjx) of the response and k predictor
variables it can be viewed as a continuous and fast
implementation of stage-wise regression methods. An
outline of the algorithm is given below:

LAR

1. Start with r=y,B,B, - P =0. Assume the x, are
standardized to have variance equal to 1.

2. Find the predictor x,, most correlated with r.

3. Increase B, in the direction of sign(cor(r.x,)) until
another predictor x; has equal correlation to r as x.. Put r
in set of active predictors, S.

Genet. Epidemiol.
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4. Move (B, : m € S) in the joint least squares direction for
(x,, : m € S) until another predictor has equal correla-
tion with the current residual.

5. Repeat step 4 until cor(r,x,,) =0 for all m.

So in our case, (xi,...,xix) = ((Z;00),...,h(Z;;0))G;
and the response is the adjusted score component, y; = Uj;.
The LAR algorithm generates a vector curve denoting the
solution for each step of the algorithm and value of the L;
norm of the parameter vector. The algorithm is similar to
forward step-wise regression, but instead of adding
variables at each step, the estimated parameters are
increased in a smoothly equiangular fashion to each one’s
correlations with the residual.

There is a strong connection to the LAR algorithm and
LASSO [Tibshirani, 1996] which uses an L'-penalty on the
regression coefficients and leads to both shrinkage and
variable selection. The LASSO estimate § = (El, cee, EM)T is
defined as the minimizer of

n 2
sB=> <%‘ -> kaik> 0 > 1B
X

i=1

where A; is a non-negative penalty parameter. Often the
response and predictors are standardized so that >, y; =0
and > ;xx =0 and Y ;x% = 1. One motivation for LAR
was an efficient algorithm for LASSO type estimates. LAR
gives answers that are often close to LASSO, and are
identical if the predictors are orthogonal.

We use the LAR strategy for estimating weights in the
simulations given below and call the statistic a stage-wise
weighted test statisticc A separate model selection,
potentially using the residual error for the LAR fit, for
every possible genomic factor would likely not be
computationally feasible. Therefore, we propose to use a
single tuning parameter set across all genes. We choose a
tuning parameter relating to the number of non-zero
weights (LAR steps), going between (1 and k+1) where
there are k+1 basis functions for weighting the score test
statistics; k+1 would correspond to the full unconstrained
least squares weights. Non-integer values of the tuning
parameters, between k" and k’+1 correspond to the relative
L; norm between those two steps. Using tuning para-
meters between 2 and 4 corresponds to 2—4 parameter
weights and would add some flexibility over the maximal
test statistic but without adding too much additional
variance.

To construct the null distribution of the stage-wise
statistics, we calculate resampled versions of the score
components, y; = U;Q;; and use them in the LAR
algorithm to construct weights and statistics at the sample
tuning parameter as the observed data. Alternatively, one
could permute the adjusted score statistics across the basis
weight matrix HG;. We note that the tests must use weights
that are recalculated on each random sample, not just
those from original data, to appropriately construct the
null distribution and control type I error.

RESULTS

MYELOMA EXAMPLE

We first present the weighted testing strategy on data
from patients diagnosed with multiple myeloma, a cancer
of the plasma cells found in the bone marrow. The data
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were obtained from three consecutive clinical trials
evaluating aggressive chemotherapy regimens in conjunc-
tion with autologous transplantation conducted at the
Myeloma Institute for Research and Therapy, University of
Arkansas for Medical Sciences [Barlogie et al., 2006]. The
outcome for patients with myeloma is known to be
variable and is associated with clinical and laboratory
measures [Greipp et al.,, 2005]. In this data set, potential
predictors include age, gender, several laboratory vari-
ables measured at the baseline and 348 SNPs for candidate
genes representing functionally relevant polymorphisms
playing a role in normal and abnormal cellular functions,
inflammation and immunity, as well as for some genes
thought to be associated with differential clinical outcome
response to chemotherapy. Data on a total of 818 patients
were available for analysis. The primary endpoint was
early failure of treatment, defined as death, disease
progression or fatal toxicity within 18 months of registra-
tion. The available SNPs included either individual or
small numbers of tag SNPs on genes of interest. We coded
each of the SNPs as two binary predictors corresponding
to a dominant and a recessive effect rather than
investigating additive genetic effects. We imputed missing
SNPs based on marginal frequencies. The power of any
association analysis with this number of subjects and
events is limited, so we consider the analysis here only as
illustrative of what can be conducted using weighted
association tests.

For weighting, we considered two laboratory variables:
serum B2 microglobulin and serum creatinine, which are
both associated with extent of disease and renal function.
None of the marginal test statistics were significant after
either Bonferroni or permutation adjustment of the test
statistics to deal with the multiple SNP comparisons. To
construct adaptive subgroup weighted statistics we con-
structed the following basis functions for Z equal to serum
B2 microglobulin and Z equal to serum creatinine:
{(Z<cas} {Z = cos}, {Z<cs50},{Z = cs0}, {(Z<c75),{Z = c75},
where ¢, is the gth quantille of the covariate distribution.
While we used step-function or subgroup type basis
functions on continuous variables, the method allows
other more smooth basis functions and/or binary clinical
factors if they had been of interest.

Figure 3, panel 1, shows the increased values of maximal
subgroup test statistics compared to marginal test statistics
for each SNP. While the maximum subgroup SNP test
statistic is increased from 3.29 to 4.27, a permutation test
based on 1,000 simulations does not indicate promise of
this simple maximal score statistic (p =0.339). The
permutation test considered all possible test statistics
based on the recessive and dominant coding and the
maximum statistic was calculated across all SNPs; hence,
the P-values we present address the multiple comparisons
with respect to SNPs. Panel 2 shows a pairwise scatter plot
of stage-wise statistics involving both variables serum 2
microglobulin and creatinine (using a fixed tuning para-
meter of 2.5) versus maximal subgroup statistics. Here one
SNP (rs4809960) test statistic is increased to 4.76 and the
corresponding permutation P-value is p = 0.013. Figure 4
gives another representation of the increased magnitude of
the different weighted association test statics. Yellow
indicates the magnitude of the marginal statistics, green
indicates the increase in magnitude of using the maximal
test statistics, and blue is the further increase using stage-
wise weighting.
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Fig. 4. SNP test statistics. Lightest gray (yellow in the online
version) indicates the magnitude of the marginal statistic,
medium gray (green online) indicates the increase in magnitude
of using the maximal test, and darkest gray (blue online) is the
further increase using stage-wise method.

As shown in the panels, more complex statistics must be
at least as large as the less adaptive statistics. For instance,
for the stage-wise methods restricted to a single parameter
the test statistic will be equivalent to the maximal
subgroup statisticc. We have shown that resampling
techniques are needed to evaluate relative performance
of this more flexible testing.

SIMULATIONS

To evaluate the performance of adaptively weighed test
statistics more generally, we simulated hypothetical SNP
association case-control studies. While typically hundreds
or thousands of SNPs would be evaluated in Genome
Wide Association Studies (GWAS), the key components
impacting the performance of the method relate to the
outcome probability model linking the SNP and environ-
mental factor to outcome, the allele frequency and the
potential correlation of the observed SNP to causal SNP.
The performance of the methods is evaluated in the
presence of one or more continuous environmental
variables potentially modifying the association between
causal SNP and disease status.

The following logistic model was used to generate the
binary phenotype,

log (%) = Bo + B1G + B1(2) + B:Gh(2),

where h(Z) is a function of one or more environmental or
clinical factors. We assume binary SNPs with allele
frequency 0.1 and 0.2; the modifying variable is assumed
to be continuous but is linked to outcome by a subset
function {Z<c}. We consider two cases: (A) the single
environmental variable is associated with the outcome
variable and (B) multiple (five) observed environmental
variables are observed and linked to the causal association
through two of the variables. In the first case the
single continuous variable is transformed into basis func-
tions (1,{Z1<cas},{Z1<cs50},{Z1<c75}) and the linking
function is h(Z) = {Z1 <cs0}. The second model uses five
variables and corresponding basis functions
(1, {Z] <cCp5}, {Z] <cs0}, {Z] <c7s)), ] =1,...,5, and the link-
ing function depends on the linear combination of two
variables h(Z) = {Z1<cs0} — {Z2<cs50}. Given that the
second model is a linear combination, we expect a method
that allows multiple environmental factors, such as the
stage-wise test statistic, to perform better than themarginal,
subgroup, or maximal test statistics. We evaluated four test
statistics, the marginal, maximal, stage-wise, and a global
(full) test statistic which uses least squares to estimate the
weights for all basis functions in the score test statistic. Type
I error was controlled by the Lin [2005] method applied to
the weighted scores using 4,000 samples. The 4,000
simulations were used to calculate the mean and variance
the null distribution of the test statistics. For each scenario,
1,000 simulations were used to calculate the alternative
mean and variance of the test statistics and the power was
calculated based on the assumption of large sample
normality. This provides an approximate method to
calculate power when using low type I error rates
without conducting a huge number of simulations. Clearly,
much larger numbers of simulations would be needed to
calculate type I error rates for o 0.001 and 0.00001 using
simple empirical counting. Figures 5 and 7 show estimates
for a type I error of 0.001. The analyses were repeated for a
type I error of 0.00001 and results are shown in Figures 6
and 8. For Figures 5-8 the true null cases only correspond to
the interaction parameter B; = 0 on the left side of the each
of top row of panels. Note, for other panels, even if f; =0,
power will in general deviate from type I error rates due to
the impact of the non-zero main effects.

For Model A (Fig. 5) involving a single association
modifier, one can observe that the marginal test statistic
performs at least as well as the other test statistics if the
subgroup effect small relative to the main effect (plots
given in second row of the panel). However, for a wide
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marginal and subgroups), marginal (marginal test), stage-wise (stage-wise weighted test), full (unconstrained weighted test) with

o = 0.001.

range of values away from the additive model, the
maximum test statistic performs as well or better than
the marginal test statistic. The case of negative main
effect but positive subgroup effect leads to the worst
performance for the marginal test statisticc. While the
power is enhanced for the maximal statistic, the global test
using all four basis functions and the stage-wise method
lead to improvements over the maximal statistic, with
respect to power for this more complex interaction. The
analyses for a type I error of 0.00001 in are given in
Figure 6.

For model B, as shown in Figure 7, the marginal statistic
performs best when there is a main effect model. However,
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as we move toward more complex interaction models, it
has very limited power (right sides of rows 2 and 3). The
maximal statistic can recover some of the power in a
number of cases; however, given that the statistic depends
at most only on a single environmental covariate, it too has
limitations. The full model weighting (here depending on
all five variables—corresponding to 16 basis functions)
suffers from increased variance. The stage-wise estimated
test statistic is the overall winner in the range of models.
The analyses for a type I error of 0.00001 in are given in
Figure 8.

Given that it is difficult to view the low type I error rates
in given in the upper row of panels (at B; = 0) for each of
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Fig. 6. Model A: single modifier. Power for testing using 2,000 cases and controls. The four statistics include: maximum (maximum of
marginal and subgroups), marginal (marginal test), stage-wise (stage-wise weighted test), full (unconstrained weighted test) with

o = 0.00001.

the plots, we have presented them in Table I. Note, while
the specified low type I error rates based on our simulation
based estimates using the normal approximation show
some variability in Table I, the alternative of using strictly
empirical counting would require 100s of times more
simulations.

Only the simple case with a stage-wise model
selection with a tuning parameter equal to 2.5 was
presented (although using other tuning parameters
such as 3.5 lead to similar conclusions). One could also
evaluate several tuning parameters, in the range 2-5.
While the effect modification was determined by two of
the five analyzed variables, we believe more generally
that only a small number of effect modifiers should

be considered in the score test weighting to control
variance.

Additional simulations where the causal SNP was only
correlated with the observed SNP and where the environ-
mental factor h(Z) was hidden by a small amount of
independent error were conducted and yielded similar
shaped power profiles, albeit with reduced power.
Furthermore, our simulations above only considered
categorical SNP coding. One could also investigate
additive coding in number of copies of a minor allele
versus categorical coding of the three genotypes. While the
absolute power will depend on true genetic association,
since the choice of coding represents the genetic effect in
the hypothetical gene-environmental interaction model,

Genet. Epidemiol.
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Fig. 7. Model B: two variable modifier. Power for testing 2,000 cases and 2,000 controls. The four statistics include: maximum (maximum
of marginal and subgroups), marginal (marginal test), stage-wise (stage-wise weighted test), full (unconstrained weighted test) with

o = 0.001.

not the nature of the interaction, we would anticipate the
results to parallel those which we have presented.

DISCUSSION

In this article we have developed an adaptive selection
or weighting strategy to improve the power of testing the
association of genetic factors with disease outcome. The
goal is not to specifically address the question of whether
or not there is an interaction between some measured
clinical or environmental factor, but rather to modestly
expand the association search space to better identify
associations with outcome. The new method is based on
the often plausible assumption that genetic associations

Genet. Epidemiol.

may be stronger within specific subgroups of subjects in
clinical or epidemiologic studies. Simulation results sup-
port that the strategy can lead to substantially improved
power in situations where stronger genetic associations
exist in subgroups of subjects.

Our approach constructs statistics using only the
marginal scores on the genetic factors. While our interest
was primarily in SNP association studies, such a strategy
may also be of use in studying gene expression to
outcome. Given the construction works on marginal
scores, either approximate permutation sampling or
resampling methods applied to the scores, such as Lin
[2005], can be used to calibrate inference for the multiple
testing and control the type I error. A natural extension
to adaptively choosing the maximal statistic is a stage-wise
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Fig. 8. Model B: two variable modifier. Power for testing 2,000 cases and 2,000 controls. The four statistics include: maximum (maximum
of marginal and subgroups), marginal (marginal test), stage-wise (stage-wise weighted test), full (unconstrained weighted test) with

o = 0.00001.

method which maximizes the test statistic analogous
to stage-wise boosting of regression models. The
adaptive stage-wise statistic appears to perform well in a
range of true underlying gene-environment interaction
models.

We considered a set of predefined binary basis functions
as the environmental terms in the weighted test statistic;
however, they could more generally be either the
originally coded or some transformed version of the
environmental variables. In our simulation studies we
used subgroup basis functions representing at least 25% of
the sample size. Subgroups or binary environmental
variables with lower frequencies could be considered,
but very small frequencies could lead to increased
variance and reduced power. While a rule is difficult to

state in general, we anticipate lower bounds of 5-10%
frequency for binary factors or subgroups would be
appropriate for reasonably sized association studies.

In addition, in some settings one could use tree-based
partitioning of the environmental variables to determine
basis functions to be used in the test statistic weighting.
In the case where the basis functions are not predefined, the
original boosting version of the weighted test statistic may
have to be used rather than the computationally efficient
LAR weighting. However, with a large number of genetic
variables, this strategy would not typically be feasible.

If the goal is to directly detect interactions in high
dimensional settings, other approaches are useful. An
important strategy is to control the search of possible
interaction models by utilizing a well-defined filtering

Genet. Epidemiol.
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TABLE 1. Estimated type 1 errors for full null models A
and B

target a=10" =107 =107 oa=10""°
Model A
Method Allele Freq (0.1) Allele Freq (0.2)
Maximum 0.00204 2.13e—05  0.00212  1.02e—05
Marginal 0.00191 5.52e—05  0.00248  1.20e—05
Stage-wise 0.00288 1.93e—05  0.00084  5.00e—06
Full 0.00220 1.93e—05  0.00147  1.91e—05
Model B target a=10" =10 «a=10" o=10"°
Method Allele Freq (0.1) Allele Freq (0.2)
Maximum 0.00060 2.80e—06  0.00115  1.20e—05
Marginal 0.00089 5.70e—06  0.00089  1.31e—05
Stage-wise 0.00074 7.60e—06  0.00158  2.12e—05
Full 0.00142 1.38e—05  0.00083  6.70e—06

procedure on marginal effects [for instance see Kooper-
berg and LeBlanc, 2008]. In addition, in randomized trials
an assumption of independence of the environmental and
genetic factors can lead to greater efficiency when used as
part of the testing procedure [for instance see Chatterjee
and Carroll, 2005]. Multistage sampling and independence
assumptions for testing for interactions were also con-
sidered by Dai et al. [2008].

We also note that subgroup weighting has potential use
in testing treatment efficacy in randomized clinical trials.
Suppose the treatment is more efficacious in tumors with
differing gene expression levels. Given that the primary
question involves treatment effect, the testing could be
adaptively weighted based on single or multiple gene
expression factors.
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