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Although the importance of chromosome organization during
mitosis is clear, it remains to be determined whether the nucleus
assumes other functionally relevant chromosomal topologies. We
have previously shown that homologous chromosomes have a
tendency to associate during hematopoiesis according to their
distribution of coregulated genes, suggesting cell-specific nuclear
organization. Here, using the mathematical approaches of distance
matrices and coupled oscillators, we model the dynamic relation-
ship between gene expression and chromosomal associations
during the differentiation of a multipotential hematopoietic pro-
genitor. Our analysis reveals dramatic changes in total genomic
order: Commitment of the progenitor results in an initial increase
in entropy at both the level of gene coregulation and chromo-
somal organization, which we suggest represents a phase tran-
sition, followed by a progressive decline in entropy during
differentiation. The stabilization of a highly ordered state in the
differentiated cell types results in lineage-specific chromosomal
topologies and is related to the emergence of coherence—or
self-organization—between chromosomal associations and co-
ordinate gene regulation. We discuss how these observations
may be generally relevant to cell fate decisions encountered by
progenitor/stem cells.

cellular differentiation | chromosomal organization |
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he convergence of biological questions and mathematical

approaches has encouraged the characterization of complex
cellular processes. Our understanding of the regulation of gene
activity, for example, has been aided by in silico modeling—
exploring genetic associations from the standpoint of Boolean
networks or cellular automata (1, 2). Similarly, more recent
developments in graph theory—particularly the description of
small-world and scale-free networks—have uncovered a scarcity
of randomness in biological systems (3). The shared insight from
these different approaches is that biological processes are in-
clined to self-organize, in which a network of localized interac-
tions yields an emergent structure that subsequently feeds back
on and strengthens the original network (4). With this concep-
tual framework, cellular organelles can be viewed as the spatial
organization of dynamic cellular tasks. Therefore, it is not
surprising that perturbing the function of an organelle—such as
the Golgi apparatus’ processing of polypeptides—results in the
loss of its 4-dimensional form (5, 6).

Current evidence indicates that genes and chromosomes are
nonrandomly localized within the nucleus. For example, several
gene loci have been shown to be positioned at the periphery
when inactive and then relocalized to the nuclear center upon
their developmentally regulated activation (7, 8). Also, various
chromosomal attributes, including gene density, size (base pair
length), and coregulated gene activity, have been indicated in
their organization in mammalian nuclei (9-11). Given the
growing evidence for deterministic nuclear organization, iden-
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tifying its origin and structure has become increasingly impor-
tant. We have previously shown that during the in vitro differ-
entiation of a murine hematopoietic progenitor to derived
erythroid and neutrophil cell types, there is a correlation be-
tween the nonrandom organization of the genome and coordi-
nate gene regulation (11). We observed that genes that are
coregulated during differentiation have a significant tendency to
be proximally distributed along chromosomes. In turn, we found
that the frequency at which homologous chromosomes associate
is related to the number of coregulated genes they possess. We
have therefore suggested that coordinate gene regulation during
cellular differentiation may yield lineage-specific nuclear topol-
ogies that facilitate gene coregulation (7). Moreover, we have
hypothesized that the process of self-organization is responsible
for the emergence of these topologies (12).

Here, we directly test our idea that chromosomes self-organize
during differentiation according to coordinate gene regulation.
To do so, we first made the assumption that a full understanding
of nuclear organization necessitates the view that it is a dynam-
ical system. For example, capturing a snapshot of genomic gene
expression at any one point in time during differentiation reveals
a static regulatory network; however, a genetic network actually
evolves over time, with groups of genes coupling or decoupling
their expression to the overall coregulated gene set. Further-
more, based on our previous analysis, we propose that this
evolving regulatory network is manifested spatially at the level
of chromosomal organization, with all chromosomes—both
homologs and heterologs—associating according to their overall
coregulation. Our analysis focuses on determining the collective
similarity between gene regulatory and chromosomal association
networks by expressing them as matrices. To construct the
matrices, we measure the relative entropy—or “distance”—
among nodes within networks as well as between networks
during differentiation, allowing us to assay shared global prop-
erties and the emergence of lineage-specific relationships. In
addition, using the theoretical concept of coupled oscillators, we
can determine whether the evolving nature of these relationships
is reflected in an increase in coherence, i.e., self-organization.
Our analysis demonstrates that the networks of coregulated gene
expression and chromosomal association are indeed mutually
related during differentiation, resulting in the self-organization
of lineage-specific chromosomal topologies.

Results

To test our hypothesis of dynamical genome organization, we
first analyzed how coordinate gene expression evolves along a
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Fig. 1. The order of coregulated gene expression networks increases during
differentiation. (A) Potential differences between the expression patterns of
2 genes over time. (B) Pick any 2 genes (x and y) and measure the pairwise
distance (relative entropy) during differentiation. (C) Example of a portion of
the N X N distance matrix consisting of all pairwise comparisons at one time
point. (D) Order is the fraction of genes at any given time point (0, 4, 8, 16, 24,
48, and 72 h) that are coregulated, thereby residing in a GC that reflects their
hierarchical clustering. As genes entrain with or diverge from the expression
pattern of the GC during the course of differentiation, the change in order as
the system evolves can be determined. In the progenitor state (time 0), the GC
corresponds to 84% of coregulated genes, is reduced to as low as 70% at 4 h,
and reaches a maximum of 91% in the fully differentiated state. Red and black
lines represent erythroid and neutrophil lineages, respectively.

previously reported time course of differentiation from a he-
matopoietic progenitor (FDCPmixA) to derived erythroid and
neutrophil cell types (7 time points, 0, 4, 8, 16, 24, 48, and 72 h)
(11, 13). We expressed these individual coregulated gene ex-
pression networks as matrices whose cells represent nodes that
are linked together with relative strengths (refer to Dynamics of
Networks in Methods for an elaboration on the concept of a
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network). Changes among nodes over time can occur in many
fashions, including differences in periodicities and amplitudes
that are the same or inverted (Fig. 14, a and c¢). We consider
these 2 examples as the basic forms of coregulation in our
analysis of dynamical gene expression, representing activation
and silencing, respectively. To describe the overall evolution of
coregulated gene expression networks during the differentiation
of the progenitor to erythroid and neutrophil cell types, we
constructed a N X N distance matrix of the total coregulated
gene set for each lineage (N = 1,720 for erythroid, 2,113 for
neutrophil, and 3,833—their sum—for the progenitor) and for
each time point using the raw expression score with each gene
compared with all others. The distance (relative entropy) be-
tween gene profiles was established by using symmetrized
Kullback-Leibler distances (SKL) (Fig. 1 B and C) (14-16):

1 ) (i) 1 . (i)
SKL(x, y) = 5 ( E x(i)log ;(i)) + 7 ( 2 }’(l)logi:(;)>

i

where x(i) and y(i) are the expression levels of genes x and y at
time i. Next, we used hierarchical clustering (17) to find the
similarity or dissimilarity for every gene-by-gene comparison,
thereby capturing the total organization of the distance matrix.
A dendogram of the gene expression at the starting time
point—the progenitor state—reveals that there is a very large set
of genes that are expressed similarly, creating a giant component
(GC). A GCis the core of a network, the connected set of nodes
that characterizes its overall behavior or direction. At a given
time point, order can therefore be defined as the fraction of
genes residing in the GC relative to the total gene set. By
following the genes that dynamically entrain with or diverge from
the expression pattern represented in the GC, we can determine
the change in order as the system evolves, i.e., differentiation
occurs. Surprisingly, our analysis indicates that the degree of
order represented in the progenitor state decreases as the
differentiation program initiates, indicating a phase transition
from a defined cell type into one that is amenable to subsequent
reorganization (Fig. 1D). As the disordered progenitor eventu-
ally commits to either the erythroid or neutrophil lineage, there
is a concomitant increase in order, eventually stabilizing at a
level greater than that of the original multipotent progenitor
(Fig. 1D). Therefore, we argue that during the differentiation of
a progenitor to derived cell types, cellular potential decreases as
gene regulatory order increases.

As indicated above, we have previously demonstrated that
coregulated gene expression is correlated with the increased
proximity of homologous chromosomes, determined in pairwise
analysis between chromosomes and the total association of all
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Coregulated gene expression and chromosomal association networks are related. (A) Example of an erythroid rosette with each chromosome identified

by using spectral karyotyping (SKY). (B) The chromosomal association network represented as a 19 X 19 frequency matrix counting all possible chromosome
associations. (C) The larger coregulated gene expression network compressed to a 19 X 19 chromosomal association matrix, using the mean of coregulated genes

found on each chromosome.
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Table 1. Distances between chromosomal association and
coregulated gene expression matrices

Comparison Distance (AB—1) P

Ap:Bp 0.064 0.0015
Ag: Be 0.025 0.0024
An:Bn 0.036 0.0052
Ap:Be 0.316 0.3425
Ap:By 0.294 0.2115
Ae:Bp 0.338 0.2463
An:Bp 0.341 0.2725
Ag:By 0.271 0.2061
An:Be 0.294 0.2134

A and B denote rosette and expression matrices, and subscripts P, N, and E
indicate progenitor, neutrophil, and erythroid lineages. We compute the
distance between matrix A and B~', where B~'is the inverse of the 19 X 19
transformed coregulated gene expression network. The closer a value is to
zero, the greater the shared mutual information. The first 3 rows depict the
results for comparisons between matrices derived from the same lineage
(intra), whereas the last 6 rows make interlineage comparisons. The P values
are the result of a permutation test described in the text.

chromosomes depicted in prometaphase rosettes (Fig. 24; see
Methods for a description of our measurement of chromosomal
associations) (11). By expressing the frequency of chromosome
associations in rosettes as a 19 X 19 symmetric matrix (sex
chromosomes are not included in our analysis), denoted A
(Methods) (Fig. 2B), we can now analyze the chromosomal
association network in its entirety, looking at the relationship
among all homologs and heterologs. To make the comparison
between chromosomal associations and gene expression among
the progenitor, erythroid, and neutrophil cell types, we must first
convert each of the larger coregulated gene expression matrices
to a comparable 19 X 19 matrix, denoted B, by mapping the
coregulated genes onto their respective chromosomes (Fig. 2C).
We define an element (by) in B where k,/ represent any 2 of the
19 autosomal chromosomes as follows:

by, = mean (SKL(x, y))

Xy

where (x,y) ranges over all gene pairs. If k£ # [, gene x is on
chromosome k and gene y is on chromosome /, whereas if k =
[, gene x and gene y are on the same chromosome. If gene
coregulation is related to the overall proximity of chromosomes,
then the 2 types of matrices should be inversely related: The
rosette data are an actual frequency count with a larger number
indicating greater overall physical proximity; the expression data
are a measure of the distance between genes’ expression profiles,
with smaller values revealing less distance and therefore indi-
cating coregulation. To test this relationship we computed the
symmetrized Stein distance (SSD) (Methods) (15) between A
and the inverse of B as follows:

SSD(A, B 1) = trace(AB) + trace(A 'B™!) — 2d
where d = 19 is the size of the matrices (Methods).
SSD(A,B~1) =0

implies that A and B~! are identical, having maximum mutual
information. For the comparison in each lineage, the distance
between matrices is close to zero, indicating that gene coregu-
lation is in fact manifested in overall chromosomal organization
(Table 1). In support of the lineage specificity of these relation-
ships, comparing the chromosomal matrix (A) from one cell type
to the gene expression (B) of another yields SSD values closer
to 1 (Table 1). To determine the statistical significance of these

Rajapakse et al.

=
S

=
LX)

Relative entropy I>
= =
— [

DO DI D2 D3 D4 D5 D6 0 4 8 16 24 48 72
Time (hrs) Time (hrs)
1 S
0.9 "
0.8 ;
X
< 0.7
15 :
10 48 72
5 s 16 24 5 06
0 hrs Chromosome 4 Time (hrs) 72 hrs

Fig. 3. The organization of chromosomal associations increases during
differentiation. (A) Graph of the relative entropy of chromosomal associations
as computed from the SSDs for the progenitor against successive time points.
(B) The general entropy (15) for each time point in the differentiation,
normalized between 0 and 1. (C) Strength of chromosomal contribution to the
chromosomal association network during differentiation. (Left) The front
elevation at 0 h (the progenitor). (Right) The elevation from 72 h (erythroid).
(Center) The total chromosomal contributions over time. Representative chro-
mosomes 1, 6, 11, and 17 are indicated as green, blue, red, and dark blue,
respectively.

results, we performed a permutation test, keeping the chromo-
somal association matrix constant and permuting the rows and
columns of the coregulated gene expression matrix elements
while maintaining their symmetry. After each permutation of
the coregulated gene expression matrix (10,000X) we computed
the SSD(A,B™!). We then compared the observed value of
SSD(A,B™1) to this permutation distribution to obtain a P value
for its significance. Each of the 3 lineages demonstrates a
significant difference from the permutation, whereas the inter-
lineage comparisons do not (Table 1). Therefore, the overall
organization of chromosomes at the onset and conclusion of
differentiation is a reflection of the unique expression pattern of
each cell type.

Having demonstrated that the coregulated gene expression
data can be visualized as rosette-based chromosomal association
matrices, we next asked how overall chromosomal organization
evolves during differentiation. To do this, we used the coregu-
lated gene expression matrices from the remaining 5 time points
(Fig. 1) and converted each to a 19 X 19 matrix (B), as we did
for the progenitor and derived cell types above, and then
transformed these matrices to a corresponding chromosomal
association matrix (A) (where A = B~1). With these distance
matrices based on gene regulation, we determined the change in
relative entropy (SSD) among chromosomes, comparing the
matrix of the progenitor to each successive time point (e.g., D6
is the difference in entropy between the progenitor and the
differentiated cell types) (Methods) (Fig. 34). This analysis
reveals that there is decreased entropy in chromosomal organi-
zation at defined stages of differentiation to the erythroid and
neutrophil lineages (Fig. 34). Importantly, the initial decrease in
entropy coincides with the increasing reordering of gene expres-
sion (compare with Fig. 1D). We also determined the overall
entropy (15) at each time point, which supports the observation
that cellular commitment leads to decreased entropy (Fig. 3B).
In both types of analysis, the overall order of chromosomes is
greater in the differentiated cell types than the progenitor.
Therefore, chromosomes can be viewed as reorganizing accord-
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ing to differential gene expression, creating a new higher-order
state or attractor than that in the progenitor.

To determine the evolving role of each individual chromo-
some to the overall organization of the network during differ-
entiation, we computed a centrality measure for each chromo-
some at each time point with the vertex strength s; defined as

a,»j

f
YR

J

(18), where aj; is the ijth entry of the matrix A. This quantity
measures the importance of vertices (i.e., chromosomes) in terms
of the total weight of their connections, and it is therefore a
natural measure of the importance or centrality of a given
chromosome i in the network. Our analysis demonstrates that
chromosomes contribute differently over the time course of
differentiation (Fig. 3C). In Fig. 3C Center, we have depicted the
relative strengths for each chromosome during the differentia-
tion, arbitrarily highlighting 4 chromosomes (1, 6, 11, and 17) for
elucidation. In the Fig. 3C Left and Right sides of the total time
course, we focus on the progenitor and erythroid lineages,
respectively, illustrating the change in contribution of the 4
chromosomes from the beginning and end states. The erythroid
state also reveals that many of the chromosomes (indicated by x)
have collapsed onto each other in terms of their relative
strengths, representing increased coherence. Moreover, because
the centrality measure of all chromosomes is greater at the end
than the beginning, the overall organization of chromosomes
increases during differentiation. Therefore, paralleling our re-
sults with gene expression, cellular potential is lost as chromo-
somal order is gained.

The analysis above suggests that coregulated gene expression
and chromosome association networks are mutually related
during cellular differentiation. Genomic organization proceeds
from an unstable ordered to a disordered state during the
commitment of the progenitor and ultimately reaches a highly
ordered state in the differentiated cell types. This evolving
nature of genomic order prompted us to use a mathematical
framework to model the interrelated behaviors of gene regula-
tion and chromosome association as a dynamical system. The
cooperative phenomenon of mutual entrainment is well de-
scribed by the classical Kuramoto model (4, 19-21), in which a
collection of globally coupled phase oscillators exhibit a transi-
tion from incoherence to a coherent state as the coupling
strength increases past a critical threshold. Therefore, the
Kuramoto framework is an ideal mathematical model with which
to demonstrate the organized behavior of the complex dynamical
reorganization of the genome during differentiation. A gener-
alized form of this mathematical model can be written as

d(o,)
dt

N
=w;+ | X Ay(0sin(6, — 0) |, i,j=1,2,...,N.
j=1

Here, 6; and o; denote, respectively, the phase and intrinsic
frequency of oscillator i and N is the number of oscillators (19).
The matrix 4;(¢) is the time-dependent network architecture of
oscillators, assumed to be symmetric. To characterize the degree
of self-organization in the network, we used a global order
parameter (R) that ranges between 0 and 1, with 0 meaning
uniform incoherence and 1 meaning complete self-organization
(19, 22). To apply this framework to the dynamic mutual
relationship between chromosomal organization and coregu-
lated gene expression during differentiation, we rendered each
of the 19 chromosomes as an oscillator by first mapping the
coregulated gene set onto their respective chromosomal posi-
tions. Therefore, we will be measuring how each chromosome
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Fig. 4. Chromosomes self-organize according to coordinate gene regula-
tion. (A) Geometric interpretation of the chromosomal network, where the
phases of 6; are plotted on the unit circle. Three snapshots during differenti-
ation are represented, where R1 is the distribution of the network represent-
ing the progenitor state, R2 the phase transition, and R3 the erythroid
differentiated cell type. (B) Schematicillustration of the evolution of the order
parameter (R) seen in numerical simulations of the chromosomal oscillator
model for a specific coupling strength equation (19). (C) Schematicillustration
for the mechanics of self-organization, with local interactions (gene coregu-
lation) leading to chromosomal associations that emerge cooperatively in a
cell-specific organization of the nucleus, which in turn feeds back to
strengthen the local associations.

associates with all other chromosomes (i.e., oscillates) in the
rosettes as a function of its share of the coregulated gene set. The
initial conditions for parameters 6; and w; of the oscillators were
obtained from s; as previously defined for the progenitor state
(see Fig. 1), and A;(0) is derived from the progenitor state
chromosomal association matrix A (see Fig. 2). By following the
relationship through time (the differentiation), we can capture
whether coordinate gene regulation and chromosomal organi-
zation are integrated. In support of this hypothesis, the numer-
ical simulations show that the behavior of R initially decreases
in order, after which a highly ordered state emerges [Fig. 4 A
(R1-R3) and B]. Furthermore, the chromosome association
network of the differentiated state is similar to the model
predicted network structure. Therefore, these simulation results
reveal that coregulated gene expression and chromosome asso-
ciation networks are mutually related and lead to deterministic
nuclear self-organization (Fig. 4C). We believe our approach
provides a simple mathematical framework for further investi-
gation of the dynamics of genome organization during cellular
differentiation and other cell fate decisions.

Discussion

The nucleus is compartmentalized according to the various
functions it performs. For example, a subnuclear body, such as
the nucleolus, represents the spatial localization of the compo-
nents necessary to carry out its particular activities, rDNA
transcription and ribosomal biogenesis (5, 7). The process of
self-organization provides an attractive model by which to
understand the relationship between nuclear form and function
(4). The key feature of a self-organizing system is the emergence
of a structure that both results from and subsequently supports
localized interactions (Fig. 4C). Evidence indicates a role for this
phenomenon in the genesis of nuclear bodies. For example, it has
been shown that the DNA damage response can be initiated in
the absence of damage by the localization of components of the
repair machinery to a particular genomic site (23). Moreover, a
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recent study has directly demonstrated features of self-
organization in the de novo formation of Cajal bodies, involved
in the processing of small nuclear ribonucleoproteins, by the
nonhierarchical localization of constituent proteins (24).

Beyond the organization of specific activities into nuclear
bodies, the nucleus also demonstrates a general compartmen-
talization of transcriptional activity. One example of this is gene
loci assuming developmentally regulated positions within the
nucleus (7). We have reasoned that if this behavior was extended
over the total complement of genes that are regulated during the
differentiation of a specific cell type, then lineage-specific nu-
clear topologies may occur (12). In testing this idea, we have
previously shown that the genome—in both the linear distribu-
tion of genes and the association of homologous chromo-
somes—is organized according to coregulated gene expression
during the in vitro differentiation of a hematopoietic progenitor
(FDCPmixA cells) to derived erythroid and neutrophil cell types
(11). We have therefore suggested that the genome—at the level
of chromosomes—may self-organize to facilitate coordinate
gene regulation during cellular differentiation. Here, we present
a test of this hypothesis, applying the mathematical approaches
of distance matrices and coupled oscillators to our datasets of
gene expression and chromosomal associations (in the form of
rosettes) from the differentiation of the progenitor to the
erythroid and neutrophil lineages.

A major difficulty in comparing total coordinate gene expres-
sion with total chromosomal association patterns is finding
similarities embedded in high-dimensional datasets. In our cur-
rent study, we have found a solution to this problem by depicting
the networks of gene expression and chromosomal associations
as matrices, allowing us to compare them in their entirety to
uncover shared features. We believe this approach may be useful
for a broad range of biological questions dealing with informa-
tion-rich datasets. Our analysis determined that coordinate gene
expression undergoes a phase transition—characterized by an
increase in entropy—upon commitment of the progenitor. As
differentiation continues, there is a gradual loss of entropy,
culminating in a highly ordered state in the differentiated cell
types (Fig. 1). The coregulated gene sets of the semiordered
progenitor and ordered erythroid and neutrophil lineages are
significantly correlated with lineage-specific chromosomal as-
sociation patterns (Fig. 2 and Table 1). Furthermore, by
transforming the gene expression networks along the time
course to corresponding chromosomal association matrices,
we demonstrated that chromosomal topologies change dynam-
ically during differentiation but, as with gene expression, result
in a more highly ordered state in the differentiated cell types
(Fig. 3). Finally, we modeled this relationship by employing
nonlinear dynamical systems theories (i.e., the concept of
coupled oscillators), revealing the mutual entrainment—or
self-organization—of coordinate gene regulation and chromo-
somal associations (Fig. 4).

That the genome self-organizes according to gene coregula-
tion may be broadly relevant for cell fate decisions, in particular
those of progenitor/stem cells. The phase transition we observe
upon commitment of the hematopoietic progenitor suggests 2
salient features of a multipotent state: (i) a progenitor/stem cell
is a defined cell type in terms of its genomic organization; and
(ii) this semiordered state must be disrupted for a subsequent
identity or higher-order state to be established. Additionally, our
demonstration that terminal differentiation coincides with the
stabilization of this highly ordered state indicates that cellular
potential is inversely related to genomic order. A hallmark of
stem cells is their ability to undergo asymmetric division, allow-
ing both self-renewal and commitment to a differentiation
pathway. We suggest that this process may be related to our
observation of a phase transition: A daughter cell that commits
to a program of differentiation will have a marked increase in

Rajapakse et al.

genomic entropy, whereas the self-renewing cell will not. Recent
studies have demonstrated bivalent chromatin marks underscor-
ing the “primed” expression profile of stem cells, in particular ES
cells (25, 26). The resolution of this bivalency and subsequent
differentiation may require a brief increase in disorder for the
establishment of a pattern of chromatin modifications that
potentiates a given differentiation pathway. Based on our results,
we would further suggest that this reordering would be mani-
fested in a discernable chromosome topology. Future work
comparing gene expression analyses and chromatin compart-
ments both in silico and in situ will be necessary to validate these
claims.

Although asymmetric division of a stem cell was once thought
to be unidirectional, resulting in the irreversible commitment of
a daughter cell, recent evidence indicates that it is possible to
induce pluripotent stem (iPS) cells from differentiated cell types
(27, 28). Because these strategies rely heavily on the expression
of transcription factors to induce pluripotency, it is likely that the
changes leading to iPS cells are reflected in nuclear organization.
Our demonstration of dynamic genomic reorganization through
a phase transition may provide a means to refine iPS strategies
for a wide variety of differentiated cell types. For example, by
identifying the GC of gene expression during the differentiation
of a particular cell lineage, we can determine the gene set that
drives the phase transition and thereby reverse-engineer the
genetic network to that critical juncture. Knowing the GC of a
given differentiation program permits the identification of the
transcriptional regulatory factors significant in the process,
either by analysis of functionally characterized regulatory ele-
ments and/or the alignment and description of shared domains.
These factors could then be ectopically expressed to drive a
differentiated cell back to the disordered state of the phase
transition wherein it is amenable to multiple pathways. Beyond
a possible role in the asymmetric cell division of stem cells or iPS
cell strategies, our demonstration of nuclear self-organization
may be of importance to any feature of the nucleus representing
a dynamical system.

Methods

Symmetrized Kullback-Leibler (SKL) Divergence. For any two points x and y of
ACRY, the Bregman divergence Bs (.,.): A—R of x to y, corresponding to a
strictly convex and differentiable function F, is defined as

Br (x,y) = F(x) = F(y) = (VF(y),(x = y))

where VFis the gradient of Fand (.,.) the inner product. SKL divergence can be

derived by substituting the convex function: F(x) = X x(i)log x(i) (14, 16).
13

We define SKL (x,y) = 1/2 Br (x,y) + 1/2 Bf (y,x), then

1 . 1 .
SKL(x, y) = 5 ( 2 x(i)logf}ﬁi) + 5 ( ; y(i)logi)g.)).

i

Note that x and y should be nonnegative. It can be shown that SKL(x,y) is
always nonnegative, 0 = SKL(x,y), and SKL(x,y) = 0 iff x = y (16).

Chromosomal Association Analysis. As reported previously (11), total chromo-
somal organization was analyzed in prometaphase rosettes from progenitor,
erythroid, and neutrophil cells. At least 30 rosettes were examined for each
cell type. Briefly, chromosome identity was determined through spectral
karyotyping (SKY) and a pattern recognition algorithm was used to assay
chromosomal associations in the rosette. The relative proximity of each chro-
mosome to all others was measured. Chromosomes were considered to be
associated if they were removed by no more than 2 chromosomes. Results
from rosettes were verified in the interphase nucleus (11).

SSD.
SSD(X, Y) = SD(X, Y) + SD(Y, X)
= trace(XY ') + trace(X"'Y) — 24
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which is invariant under both matrix scale transformations and matrix inver-
sion. Note especially that SSD(X,Y) = 0 if X = Y (16). The distance between X
and Y~ 'is:

SSD(X, Y1) = trace(XY) + trace(X" !, Y1) — 2d
This distance measure is designed to test our main hypothesis: If gene coregu-
lation is related to the overall proximity of chromosomes, then the 2 types of
matrices should be inversely related. The relative entropy difference is stan-
dardized with respect to the first time point and is defined as follows:

Dy = SSD((By) ~',(By) 1),
D,

SSD((By) ™!, (B) ™Y, ... ... ,
Dy

SSD ((By) ', (By) 1),

where Dg is the difference in entropy between the progenitor and the differ-
entiated cell state. We performed all calculations using the MATLAB software
package.

Dynamics of Networks. The complexity of a network depends on topological
structure, network evolution, node connectivity and diversity, and/or dynam-
ical evolution. The evolving nature of a network is determined by both the
dynamical rules governing the nodes and the flow occurring along each link.
Mathematically, a network can be represented by a graph, recalling that a
graph is an ordered pair of disjoint sets (V,E) such that E is a subset of the set
of unordered pairs of V. Vis the set of vertices and E is the set of edges. Most
computations of graph properties are accomplished by representing the
graph in the form of a matrix, called the adjacency matrix A; Aisan X n
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symmetric matrix, where nisthe number of vertices in the network. The matrix
A has the elements aj; : a; = 1 if the node i is connected to the node j and aj;
= 0 otherwise. The A is symmetric if there is an edge between j and j there is
also an edge between j and /i (3, 18). For a weighted network, a; has a
numerical value, which represents the weight on the edge connecting the
nodes i and j. Thus, a weighted network can be represented mathematically
by an adjacency matrix with entries that are not simply 0 or 1, but are equal
instead to the weights on the edges. Note that distance matrices are related
to adjacency matrices, with the difference that an entry of the distance matrix
is smaller if 2 elements are closer, whereas ’close” (connected) vertices yield
larger entries in an adjacency matrix. The evolving nature of the network is
given by:

d i "
Z) =filx) + C E agh;(x;)

Jj=1

where x; = [x; yi, Z,...]T € RN is the state vector of node i fori = 1,2,...,n and
describes the node equations as f: RV — RN, If we assume that the first
components of each node are connected to each other, then hj(x)) : R — R is
the output of the node j, C =[1,0,...,0]", and ajjis as described above (22). The
above model becomes the Kuramoto model when it is used to describe a
network of phase oscillators.
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