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F
or a given treatment and a patient
with a specific set of attributes, what
is the probability of a successful
outcome after receiving treatment?

This is a pervasive applied question in med-
icine. InPNAS, a report byBanerjeeetal. (1)
considers such a problem with respect to
personalized prediction of success of in vitro
fertilization (IVF) treatments. The majority
of IVF procedures do not achieve a live
birth; therefore, providing predictions of
success for subsequent IVF treatments
should assist a patient with decisions, given
the financial, physical, and emotional costs
of undergoing IVF therapy. The authors
note that, at this time, estimates of the
success of IVF treatment are primarily
based on age-based stratification (1).
Their statistical analysis uses available

information on clinical diagnoses, IVF
treatment, and outcomes for IVF cycles
performed at Stanford Hospital and Clin-
ics that has been recorded in their data-
base; cases are limited to those for which
complete embryo data were available.
Statistical inferences and any use of pre-
dictions based on their models will be
influenced by the nature of patient selec-
tion and reasons for going on to sub-
sequent IVF cycles. Potential unmeasured
variables will likely lead to some bias in the
estimates of success probabilities. The
authors address this issue by conducting
a sensitivity analysis with respect to avail-
ability of cycle 1 and cycle 2 IVF data, and
their results appear to support their con-
clusions (1). We think that fully addressing
the selection process is complex, and
therefore, some concerns remain, espe-
cially if using the estimated model for
predictions at other institutions where
there may be unmeasured differences in
the characteristics of patient prognostic
factors and treatment delivery. Ultimately,
the nature and collection of the data are
paramount in the types of inferences that
can be drawn in any setting. In addition,
while they report 1,000× improvement
in the fit of their model compared to the
age based control based on the likelihood
ratio, we think alternative measures of
comparative predictive performance
would be preferred and give less dramatic
results. Our motivation for this commen-
tary relates primarily to the statistical
technologies used for the predictions, which
are applicable to much more than IVF. For
instance, our applied interests relate to
chronic diseases and, primarily, cancer.
For this analysis, Banerjee et al. (1) use

a powerful statistical methodology called

boosting, which has wide applicability for
prediction and other statistical modeling
applications. Boosting algorithms were
developed by Freund and Schapiro (2) and
put into a statistical context by Friedman
et al. (3). Boosting was shown to be related
to a technique based on penalized re-
gression (using an L1 norm on the re-
gression-model coefficients to control
model complexity) called the Lasso (4).
Taken as a whole, these methods and their
many extensions likely constitute the most
important development in statistical
learning and prediction in the last two
decades, and they have generated many
important statistical publications. A nice
review is given in ref. 5, and ref. 6 puts
these methods in the broader context of
statistical learning algorithms.
Although the IVF outcome is binary,

live birth or no live birth, it is important

Banerjee et al. use a

powerful statistical

methodology called

boosting.

that the statistical models developed actu-
ally give the estimated probability of success
and not just a success or no success clas-
sification. It is clear that estimates of suc-
cess probability are needed to make de-
cisions regarding the tradeoffs to be made
for undergoing therapy. Boosting and pe-
nalized logistic regression algorithms pro-
vide probabilities and therefore are more
appropriate than some machine learning
algorithms that classify a subject only as
a case or a control. In addition, for other
prediction problems, patient outcome is
more complex than a simple binary event.
For instance, in many applications, the goal
of a new therapy is to prolong life or to
prevent or lengthen time until disease re-
currence, and therefore, time until event or
survival-analysis methods are required.

Boosting Algorithms
Because the manuscript does not describe
the form of the boosted model and algo-
rithm used for predicting the success for
IVF treatment, we briefly outline the
components here. An important variant
used by the authors, gradient boosting, is an
iterative algorithm in which, at each step,
a predictor (or simple combination of pre-
dictors) that improves the model most is
added to the model; it is also multiplied by

some small weight so as not to move the
solution too quickly in that direction:

fmðxÞ ¼ fm− 1ðxÞ þ vTmðxÞ:
Here, the term TmðxÞ indicates the simple
single predictor or combination of pre-
dictors. The boosted model can also be
represented as a simple weighted sum (an
additive combination) of these simple
model terms:

f ðxÞ ¼ ∑
m
wmTmðxÞ:

The individual component terms can ei-
ther be individual predictor variables or
other simple combinations of predictors.
Banerjee et al. (1) use a regression tree (7)
for each component TmðxÞ: A regression
tree is a binary decision model that yields
a prediction that is constant for a set of
predictor values defined by boxes in the
predictor space. Therefore, a tree model
for a simple term can be represented as:

Tm ðxÞ ¼ γj for x∈ Rj

where Rj represents a box shaped region
in the predictor space.
It is a good choice for a simple model,

because it is invariant to monotone trans-
formations for variables, and it works
well with categorical and continuous pre-
dictors. In addition, the sequence of binary
decisions is flexible enough to find inter-
actions. Boosting typically does not yield
a simple model that one can easily record
but rather, is a construction of many sim-
ple models or an ensemble of such.

Interpretation of Models
Appropriate boosted regression models
have been shown to outperform simple
linear logistic regression models or single
tree-based models in terms of prediction-
error performance. However, what is
typically lost is a simple representation
(or a simple formula) for the prediction
model. For instance, there is no easy way
for another IVF researcher to apply the
prediction model described in the report
to a new dataset, although that researcher
had collected the appropriate predictor
variables. This, of course, could be easily
rectified by supplying the estimated pre-
diction-model computer code or providing
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a web-based calculator that others could
use. In addition, there are statistical tools
to help interpret the variables used in the
complex model; the authors (1) display
variable importance calculations (8),
which show the relative contribution of
variables used to make predictions of
IVF success.
Although boosting is a powerful pre-

diction method, an alternative that these
authors choose to explore in the SI section
of their manuscript is models that yield
simple interpretations. For instance, one
can use regression-tree models that divide
the space of predictors into regions to yield
simple Boolean decision rules. One rule
they gave in the SI was of the form {Blasto-
cyst development ≥ 11%} and {Age ≥ 36},
which yields an estimated live-birth suc-
cess probability of 38%. It is a component
rule from the same class of models, re-
gression trees, used in their boosting pro-
cedure, except that, for boosting, many
regression trees are used. Because of the
discreteness of the solution of a single tree,
the improved interpretation of these rules
will typically come at the cost of some
reduced prediction performance relative to
boosted regression models. Trees are not
the only way to achieve Boolean rules. For
example, there are other tools available.
Logic regression (9) is a technique that
builds up Boolean rules based primarily on
categorical variables and has seen consid-
erable usage in genetic applications; other
methods, such as the patient rule induction
method (PRIM) (10) and extreme re-
gression (11), are better suited for ordered
variables but also give decision-rule pre-
dictions. These latter two methods allow
one to construct rules to predict average
outcome for a specified fraction of patients.
For instance, one can specify Boolean rules
to describe the 25% of patients with the
best probability of success of treatment.

Model Selection and Computation
Overfitting data is of critical concern
in flexible statistical modeling. In the
context of a prediction problem, it could

manifest as an overly large boosted re-
gression model that seems to give won-
derful predictions on an original training
sample but gives relatively poor predic-
tions when tested on a similar but new set
of data. The importance of model selec-
tion is widely appreciated, and these
authors use cross-validation (where sub-
sets of the data are repeatedly left out)
and the IVF models are refitted to try to
approximate what the prediction error
would be on a new dataset; the model size
that gives a good prediction result is cho-
sen. That final model is used on the new
dataset to evaluate the performance of
the prediction model. These are critical
steps in prediction-model building across
many applications.
The authors also note that this boosted

tree algorithm “allows many variables to
be analyzed simultaneously, without need
to select variables a priori” (1). In this
case, with at most ∼50 potential variables
and a reasonable number of patient cases,
this is likely true. However, does this
statement scale to other applications one
may want to consider? Our experience in
higher-dimensional settings such as those
resulting from genome-wide association
studies (GWASs) with up to 1 million
SNPs and high-dimension gene expression
array data are that additional filtering or
pre-selection can yield improved pre-
dictions. In those settings, which we be-
lieve to be of interest to some PNAS
readers, even with an L1 penalized re-
gression (as a replacement for boosting),
one likely needs to be more aggressive
with respect to controlling the variance of
the modeling strategy to avoid getting
tricked by spurious associations. For in-
stance, for a GWAS, there were improve-
ments in risk prediction if the number
of SNPs used was filtered based on uni-
variate or marginal test statistics to select
a small fraction of the total number of
variables (SNPs) to <1,000, as reported in
ref. 12. A flexible off-the-shelf algorithm
such as boosting still needs to be used with
some application-specific considerations.

Extensions: Models for Treatment
Selection
The authors note that the prediction
model could be helpful in making choices
about whether to undergo subsequent IVF
cycles. However, for many medical issues,
there can be alternative competitive
treatments available either at baseline or
after a failed previous treatment. We need
improved datasets (probably best from one
or more randomized studies) and statisti-
cal methods that compare predictions of
success between two different therapies
based on patient characteristics, poten-
tially including genetic factors, to predict
for a given patient if one treatment (A)
should be preferred to another treatment
or (B) the reverse and by how much. This
can be recognized as a generally un-
achieved goal of personalized medicine.
These proposed statistical models would
go beyond simple prediction to be pre-
scriptive (13), because such models
would aid in patient-level treatment se-
lection. For many applications, these sta-
tistical methods would also need to allow
for survival data or other longitudinal
data. It is interesting to note the strong
connection to the active research area of
identification of gene × environment in-
teractions and modeling, especially in the
context of genomics and GWASs (14).
There are commonalities in the strategies
for these areas, and both problems address
statistical interactions or varying effects
(treatment or environment) in subgroups
of subjects. There is room for improved
statistical methods and algorithms, poten-
tially, for example, by developing special-
ized extensions of the regression tree and
boosting algorithms that Banerjee et al.
(1) applied to the IVF prediction problem.
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