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A recent genome-wide association study (PanScan) identified significant associations at the ABO gene
locus with risk of pancreatic cancer, but the influence of specific ABO genotypes remains unknown. We
determined ABO genotypes (OO, AO, AA, AB, BO, and BB) in 1,534 cases and 1,583 controls from 12 pro-
spective cohorts in PanScan, grouping participants by genotype-derived serologic blood type (O, A, AB, and
B). Adjusted odds ratios (ORs) for pancreatic cancer by ABO alleles were calculated using logistic regression.
Compared with blood type O, the ORs for pancreatic cancer in subjects with types A, AB, and B were 1.38
[95% confidence interval (95% CI), 1.18–1.62], 1.47 (95% CI, 1.07–2.02), and 1.53 (95% CI, 1.21–1.92), respec-
tively. The incidence rates for blood types O, A, AB, and B were 28.9, 39.9, 41.8, and 44.5 cases per 100,000
subjects per year. An increase in risk was noted with the addition of each non-O allele. Compared with OO
genotype, subjects with AO and AA genotype had ORs of 1.33 (95% CI, 1.13–1.58) and 1.61 (95% CI, 1.22–
2.18), whereas subjects with BO and BB genotypes had ORs of 1.45 (95% CI, 1.14–1.85) and 2.42 (1.28–4.57).
The population attributable fraction for non-O blood type was 19.5%. In a joint model with smoking, current
smokers with non-O blood type had an adjusted OR of 2.68 (95% CI, 2.03–3.54) compared with nonsmokers
of blood type O. We concluded that ABO genotypes were significantly associated with pancreatic cancer
risk. Cancer Res; 70(3); 1015–23. ©2010 AACR.
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Introduction

Pancreatic cancer is the fourth leading cause of cancer-
related mortality in Western societies, and >95% of patients
who develop pancreatic cancer will die from the disease (1).
Several highly penetrant but rare genetic alterations that
have been identified predispose individuals to pancreatic
cancer, but predisposing genetic alterations remain un-
known for the vast majority of patients who develop this
disease (2).
Work by Dr. Karl Landsteiner in the early 20th century led

to the identification of three blood groups, forming the basis
of transfusion medicine (3). A single gene on chromosome
9q34 was ultimately found to define a person's blood group,
and its nucleotide sequence was elucidated in 1990 (4, 5). The
ABO gene encodes a glycosyltransferase with three main var-
iant alleles (A, B, and O), with different substrate specificities
(6). The A, B, and O glycosyltransferases transfer N-acetylga-
lactosamine, D-galactose, and no sugar residue, respectively,
to a protein backbone, known as the H antigen, which is ex-
pressed on the surface of RBC and numerous other tissues
throughout the body (7). A role for ABO blood group antigens
in human diseases has been suspected for several decades (8,
9), although an association with pancreatic cancer risk has
been inconsistent (9–14).
A recent genome-wide association study (GWAS) among

pancreatic cancer cases and controls (PanScan) found that
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several single nucleotide polymorphisms (SNP) at the ABO
gene locus were among the most statistically significant
associations with pancreatic cancer risk (15). However, the
nature of this association and the influence of specific ABO
genotypes on the risk of pancreatic cancer remain unknown.
We hypothesized that defining a subject's ABO blood group
alleles might provide additional risk information and provide
supportive evidence for the role of ABO glycosyltransferase
specificity in pancreatic tumorigenesis. Therefore, we used
the genotype data from more than 3,000 subjects in 12 pro-
spective cohort studies participating in PanScan to impute
individual ABO alleles and determine their association with
pancreatic cancer risk. This allowed us to investigate the full
range of genotypic variation at the ABO gene locus (OO, AO,
AA, AB, BO, and BB), as well as the ABO serotype (O, A, B,
and AB) inferred from ABO genotypes. In addition, our
nested prospective design allowed for rigorous investigation
of interactions between known risk factors for pancreatic
cancer and ABO blood group alleles.

Materials and Methods

Study population. The Pancreatic Cancer Cohort Consor-
tium includes nested case-control studies from 12 prospec-
tive cohorts: Alpha-Tocopherol Beta-Carotene Cancer
Prevention Study (ATBC); CLUE II; American Cancer Society
Cancer Prevention Study II (CPS II); European Prospective
S
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Table 1. Characteristics by genotype-derived ABO blood type among control participants
Characteristic
 Genotype-derived ABO blood type
O
 A
 AB
Cance
B

No. of control participants
 657
 642
 89
 195

Mean age (y, ± SD)
 69.6 ± 7.5
 68.9 ± 8.4
 70.3 ± 5.9
 69.3 ± 7.6

Female gender (%)
 54.0
 50.2
 48.3
 50.8

White race/ethnicity (%)
 92.9
 94.1
 86.5
 84.1

Smoking status (%)
Current
 19.8
 25.2
 21.4
 26.7

Past
 37.9
 31.2
 44.9
 28.7

Never
 41.3
 42.1
 31.5
 42.6

Unknown
 1.1
 1.6
 2.3
 2.1
Mean BMI (kg/m2) ± SD
 26.5 ± 4.5
 26.4 ± 4.6
 25.2 ± 4.2
 26.1 ± 4.4

History of diabetes mellitus (%)
 6.2
 7.3
 5.6
 5.1
r Research



ABO Blood Group Alleles and Pancreatic Cancer Risk
Investigation into Cancer and Nutrition Study (EPIC); Health
Professional's Follow-up Study (HPFS); New York University
Women's Health Study (NYUWHS); Nurses' Health Study
(NHS); Physicians' Health Study I (PHS); Prostate, Lung, Co-
lorectal, and Ovarian Cancer Screening Trial (PLCO); Shang-
hai Men's and Women's Health Study (SMWHS); Women's
Health Initiative (WHI); and Women's Health Study (WHS).
See Supplementary Table S1 for the list of participating co-
horts with corresponding methodologic references. In each
cohort, a defined population of subjects was followed pro-
spectively with repeated assessments of lifestyle factors and
ascertainment of cancer diagnoses. Cases included subjects
with incident primary pancreatic adenocarcinoma (ICD-O-3
code C250-C259 or C25.0-C25.3, C25.7-C25.9). All subjects
with nonexocrine pancreatic tumors (C25.4, histology type,
8150, 8151, 8153, 8155, 8240, and 8246) were excluded. Each
cohort study selected participants with blood or buccal cells
collected before cancer diagnosis. Incident pancreatic cancer
cases identified by self-report, report of next of kin, or
through national death indices were confirmed by subse-
quent medical record review, linkage with a cancer registry,
or both, without prior knowledge of genetic data.
One control was selected per case within each cohort.

Controls were matched on year of birth (±5 years), gender,
self-reported race/ethnicity, and source of DNA (peripheral
blood or buccal cells). Controls were alive without pancreatic
www.aacrjournals.org
cancer on the incidence date of the matched case. Four co-
horts (HPFS, NHS, PHS, and WHS) were additionally
matched on smoking status (never, former, and current),
and some cohorts were also matched on age at baseline
(±5 years), age at blood draw (±5 years), date/time of day
of blood draw, or fasting status at blood draw. Each cohort
obtained informed consent from study participants and ap-
proval from its institutional review board. The Special Stud-
ies Institutional Review Board of the National Cancer
Institute (NCI) approved the pooled PanScan study.
Assessment of ABO blood group alleles. Detailed methods

for genotyping by PanScan can be found elsewhere (15).
Haplotypes of rs687289 and rs8176746 are perfectly correlated
(r2 = 1) with the O and B alleles, respectively, in the 60
HapMap phase 2 Centre d'Etude du Polymorphisme Humain
European founders (16). Because rs687289 was not genotyped
as part of PanScan, we used rs505922, which is a perfect surro-
gate for rs687289 in all HapMap phase 2 samples. Using
rs505922 and rs8176746, all subjects' phased haplotype
pairs could be inferred using an expectation-maximization
algorithm with >99% posterior probability (17). Because each
subject has two ABO alleles, six genotypes were possible: OO,
AO, AA, AB, BO, and BB.
In the HPFS and NHS, participants self-reported ABO sta-

tus as defined serologically (O, A, AB, or B) in 1996. In a
validation study of these two cohorts, self-reported ABO
Table 2. Distributions of ABO alleles among control participants and comparable reference populations
SNPs
 ABO allele distributions
ABO alleles
 rs505922
 rs8176746
 All controls* (%)
 White controls (%)†
Can
Reference populations‡ (%)
O
 T
 C
 63.8
 64.3
 61–66

A
 C
 C
 26.8
 27.0
 24–29

B
 C
 A
 9.5
 8.7
 6–11
*All controls from PanScan, regardless of race/ethnicity (n = 1,583).
†Only White controls from PanScan (n = 1,455).
‡White populations from the published literature: refs. 14, 16, and 22–25.
Table 3. Age-adjusted and multivariable-adjusted ORs (95% CIs) for incident pancreatic cancer by
genotype-derived ABO blood type
O
 A
 AB
cer Res; 70(3
B

No. of cases/controls
 511/657
 700/642
 97/89
 226/195

Age-adjusted OR
 1.0
 1.39 (1.19–1.63)
 1.43 (1.05–1.95)
 1.51 (1.21–1.89)

Multivariable-adjusted OR*
 1.0
 1.38 (1.18–1.62)
 1.47 (1.07–2.02)
 1.53 (1.21–1.92)

Multivariable–adjusted OR†
 1.0
 1.38 (1.17–1.63)
 1.45 (1.03–2.04)
 1.54 (1.20–1.97)
*Multivariable adjustment by age, gender, race/ethnicity, cohort, smoking status, BMI, and history of diabetes mellitus, in the entire
study population.
†Multivariable adjustment by age, gender, cohort, smoking status, BMI, and history of diabetes mellitus, in white participants only.
) February 1, 2010 1017
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blood type was concordant with laboratory-assessed serologic
blood type in 91% of participants (14). We further examined
the concordance of genotype-derived and self-reported blood
type in 187 NHS and HPFS participants included in PanScan.
In 92% of subjects, the self-reported blood type and the geno-
type-derived blood type were identical; this proportion is
Cancer Res; 70(3) February 1, 2010
within the limit of error expected from the prior validation
of self-report and strongly supports the accuracy of the
genotype-defined blood group alleles.
Assessment of covariates. Across all 12 participating

cohorts, covariates were collected through written question-
naires or in-person interviews. Detailed descriptions of data
Figure 1. Risk of pancreatic cancer
in non-O blood type versus O
blood type by a prospective cohort
study. Two participating cohorts
(NYUWHS and WHS) were not
included in this figure due to
unstable estimates with small
numbers of contributed subjects
(≤25 cases).
Table 4. Age-adjusted and multivariable-adjusted ORs (95% CIs) for incident pancreatic cancer by ABO
blood group alleles
Second allele
 First allele
O
 A
C

B

O

No. of subjects
 1,168
 1,080
 377

Age-adjusted OR
 1.0
 1.35 (1.14–1.59)
 1.43 (1.14–1.81)

Multivariable-adjusted OR*
 1.0
 1.33 (1.13–1.58)
 1.45 (1.14–1.85)

Multivariable-adjusted OR†
 1.0
 1.32 (1.11–1.57)
 1.47 (1.14–1.90)
A

No. of subjects
 —
 262
 186

Age-adjusted OR
 1.61 (1.23–2.11)
 1.43 (1.05–1.95)

Multivariable-adjusted OR*
 1.61 (1.22–2.18)
 1.47 (1.07–2.02)

Multivariable-adjusted OR†
 1.68 (1.27–2.24)
 1.45 (1.03–2.04)
B

No. of subjects
 —
 —
 44

Age-adjusted OR
 2.35 (1.26–4.39)

Multivariable-adjusted OR*
 2.42 (1.28–4.57)

Multivariable-adjusted OR†
 2.54 (1.19–5.39)
*Multivariable adjustment by age, gender, race/ethnicity, cohort, smoking status, BMI, and history of diabetes mellitus, in the entire
study population.
†Multivariable adjustment by age, gender, cohort, smoking status, BMI, and history of diabetes mellitus, in white participants only.
ancer Research
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collection methods have been published previously (see
Supplementary Table S1 for references). We obtained data
from each cohort on participants' age, gender, race/ethnic-
ity (white, Asian, African, other), body mass index (BMI),
smoking status (current, past, never), and history of diabe-
tes (yes, no).
Statistical analyses. Participant characteristics were ex-

amined for cases and controls, and by blood type among con-
trols. We compared the distribution of blood type alleles in
our study with the distributions seen in other comparable
populations. We used unconditional logistic regression to
calculate odds ratios (OR) and 95% confidence intervals
(95% CI) for pancreatic cancer by ABO alleles, adjusted for
age, gender, race/ethnicity, cohort, smoking status, BMI,
and history of diabetes. We then repeated our analyses,
now limiting to white subjects and excluding the 74 cases
and their matched controls that were included in our prior
www.aacrjournals.org
analysis of self-reported ABO serotype and pancreatic cancer
risk (14). In addition, to adjust for detectable differences in
population substructure, a principal component analysis of
all DNA samples used in PanScan was performed using the
entire set of the ∼550,000 SNPs with the EIGENSTRAT pro-
gram (15, 18). Five principal components were effective for
distinguishing significant population groups, and we per-
formed an additional analysis that included these principal
components in our models to correct for genetic admixture.
We used the likelihood ratio test for nested models to assess
whether a model based on ABO genotypes improved model
fit relative to a model using rs505922 alone.
We assessed effect-measure modification by conducting

analyses stratified by other risk factors for pancreatic cancer,
including age (≤65, 66–75, >75 years), gender (male, female),
race/ethnicity (white, nonwhite), smoking (current/recent
quitter, never/distant quitter), and BMI (<25, 25–29.9, >30
Table 5. ORs (95% CIs) and incidence rates for pancreatic cancer by genotype-derived ABO blood type
and selected covariates among white participants
Predisposing factor
 Genotype-derived ABO blood type
Cancer Res; 70(3) Feb
Pinteraction
O
 Non-O
Smoking status*
 0.33

Never/quit date ≥5 y
No. of cases/controls
 241/357
 433/449

Adjusted OR† (95% CI)
 1.0
 1.44 (1.17–1.78)

Incidence rate (cases/100,000 subjects)
 24.5
 35.3
Current/quit date <5 y or unknown

No. of cases/controls
 136/150
 355/263

Adjusted OR† (95% CI)
 1.66 (1.22–2.27)
 2.68 (2.03–3.54)

Incidence rate (cases/100,000 subjects)
 40.7
 65.6
BMI
 0.95

<25 kg/m2
No. of cases/controls
 171/252
 347/350

Adjusted OR† (95% CI)
 1.0
 1.43 (1.11–1.83)

Incidence rate (cases/100,000 subjects)
 26.1
 37.4
≥25 kg/m2
No. of cases/controls
 295/353
 560/490

Adjusted OR† (95% CI)
 1.20 (0.93–1.54)
 1.66 (1.31–2.10)

Incidence rate (cases/100,000 subjects)
 31.3
 43.2
History of diabetes mellitus
 0.44

No
No. of cases/controls
 382/550
 772/753

Adjusted OR† (95% CI)
 1.0
 1.46 (1.24–1.73)

Incidence rate (cases/100,000 subjects)
 27.1
 39.6
Yes

No. of cases/controls
 50/35
 75/50

Adjusted OR† (95% CI)
 2.15 (1.35–3.41)
 2.29 (1.55–3.39)

Incidence rate (cases/100,000 subjects)
 58.1
 62.0
*Participants from HPFS, NHS, PHS, and WHS were matched on smoking status and, therefore, were excluded from the joint
analyses with smoking status.
†Multivariable adjustment by age, gender, cohort, smoking status, history of diabetes mellitus, and BMI, excluding the covariate
included in the joint analysis.
ruary 1, 2010 1019
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kg/m2). Tests for modification by other risk factors were as-
sessed by entering the cross-product of blood type and the
covariate into the model. We jointly assessed the effect of
the ABO genotype on pancreatic cancer risk and the three
best-characterized modifiable risk factors for pancreatic can-
cer: tobacco use, obesity, and diabetes mellitus. Participants
from the HPFS, NHS, PHS, and WHS were matched on smok-
ing status and, therefore, were excluded from the joint anal-
yses with smoking status.
The population attributable fraction (PAF) for pancreatic

cancer due to non-O blood groups was calculated using the
following equation: PAF = Pd [(OR − 1) / OR], where Pd is
the prevalence of exposure among pancreatic cancer cases
and OR is the multivariable-adjusted OR calculated by logis-
tic regression models (19). Using the PAF and population
average incidence rate λ, we calculated the absolute inci-
dence rates of pancreatic cancer in whites by ABO blood
group G as (1 − PAF) λ ORG (20). Average age-adjusted
population rates weighted by gender for U.S. whites
50 years and older were obtained from the Surveillance,
Epidemiology, and End Results data.
We assessed heterogeneity in the association between

blood type and pancreatic cancer risk across the cohorts us-
ing Cochran's Q statistic (21). All statistical analyses were
performed using the SAS 9.1 statistical package (SAS Insti-
tute), and all P values were two-sided.

Results

From the 12 participating cohorts, 1,534 pancreatic can-
cer cases and 1,583 controls were available for analysis. As
expected, a higher proportion of cases than controls were
current smokers or reported a history of diabetes (Supple-
mentary Table S2). Characteristics of control participants
were similar among the ABO blood types, except that par-
ticipants with blood types AB and B were less likely to be
white, a pattern consistent with the increased frequency of
B alleles among Asians (Table 1). The frequency distribu-
tions of ABO alleles were highly similar among our control
participants and subjects in previous studies (Table 2; refs.
14, 16, 22–25). The frequencies of blood types O, A, AB, and
B were 41.5%, 40.6%, 5.6%, and 12.3%, respectively, among
our control participants, which were also consistent with
previously reported studies (14, 16, 22–25).
We estimated the risk of pancreatic cancer according to

genotype-derived ABO blood type among all study partici-
pants (Table 3). Compared with subjects with blood type
O, those with blood types A, AB, and B were at greater risk
of developing pancreatic cancer. Moreover, when we limited
the analysis to whites only (Table 3), removed the 74 cases
and matched controls who were included in a previous anal-
ysis of self-reported ABO blood type and pancreatic cancer
risk (14), or included the five principal components of genetic
structure in our model, the adjusted ORs for blood types A,
AB, and B were essentially unchanged. The incidence rates
for pancreatic cancer (cases per 100,000 persons at risk)
among white participants with blood types O, A, AB, and B
were 28.9, 39.9, 41.8, and 44.5, respectively.
Cancer Res; 70(3) February 1, 2010
We further examined pancreatic cancer risk according
to the ABO genotype. An increased risk was observed with
the addition of each non-O allele (OR, 1.29; 95% CI, 1.16–
1.42). Compared with subjects with OO, those with AO and
AA had ORs of 1.33 (95% CI, 1.13–1.58) and 1.61 (95% CI,
1.22–2.18), respectively, whereas subjects with BO and BB
had ORs of 1.45 (95% CI, 1.14–1.85) and 2.42 (95% CI, 1.28–
4.57), respectively (Table 4). The comparison of a model
including full genotypic variability at the ABO locus and
a model with only genotypic variation at rs505922, the
most statistically significant SNP from the GWAS, resulted
in a P value of 0.48.
We calculated the PAF for participants with non-O

blood groups (i.e., blood types A, AB, or B). White partici-
pants with non-O blood group had an adjusted OR for
pancreatic cancer of 1.42 (95% CI, 1.21–1.66). Based on this
OR and the prevalence of non-O blood types in these cases
(66.2%), 19.5% of all pancreatic cancers in our European
ancestry population were attributable to the inheritance
of a non-O blood group.
The ORs comparing subjects with non-O blood groups

to those with blood group O were highly similar across
cohorts [Cochran's Q statistic P = 0.91 for the comparison
of non-O blood type (i.e., A, AB, or B) to O blood type
across cohorts; Fig. 1]. In addition, the ORs comparing
subjects with non-O blood groups to those with blood
group O were not modified to a significant extent by
age, gender, race/ethnicity, smoking status, or BMI (Sup-
plementary Table S3). As tobacco use, obesity, and diabe-
tes mellitus are the best-defined modifiable risk factors for
pancreatic cancer, we also evaluated these covariates and
ABO blood type in joint models (Table 5). In combination
with smoking, overweight, or diabetes, the non-O blood
type was associated with ORs of 2.68, 1.66, and 2.29, re-
spectively, compared with subjects who had O blood type
and lacked the exposure. These ORs are compatible with a
multiplicative OR model for the joint effects of these fac-
tors and non-O blood type; there was no evidence for sta-
tistically significant interactions.

Discussion

Among pancreatic cancer cases and controls from 12
large prospective cohort studies, we observed a significantly
elevated risk for incident pancreatic cancer among those
with blood group alleles A or B compared with those with
blood group O. Importantly, an increased risk was noted
with the addition of each non-O allele, with a large increase
in risk noted for participants with blood type BB. These da-
ta suggest that additional useful risk information may be
provided by determining the full genotypic variability at
the ABO locus; however, further studies are needed of
ABO alleles and pancreatic cancer risk to confirm these
findings. Joint models showed further increases in risk
when ABO status was evaluated jointly with known risk fac-
tors for pancreatic cancer; statistically significant interac-
tions were not observed between known predisposing
factors and ABO blood type, indicating that this risk factor
Cancer Research
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may be relevant across populations with diverse clinical
characteristics. We estimate that 19.5% of all cases of pan-
creatic cancer in European ancestry populations are attrib-
utable to inheriting a non-O blood group.
Studies examining serotype-defined blood type or tumor-

al expression of ABO antigens have suggested a role for
ABO blood groups in the development and progression
of cancer for several decades (26). However, studies exam-
ining serologic blood type and pancreatic cancer risk have
been somewhat inconsistent (9–13), likely due to small
case numbers, retrospective data collection, heterogeneous
pathology review, and the use of poorly matched control
populations.
We previously performed a prospective cohort study of

participants in the NHS and HPFS to examine the influ-
ence of serologic-defined ABO blood type on the subse-
quent development of pancreatic cancer (14). Compared
with participants with blood group O, those with blood
groups A, AB, or B were more likely to develop pancreatic
cancer, with adjusted hazard ratios for incident pancreatic
cancer of 1.32 (95% CI, 1.02–1.72), 1.51 (95% CI, 1.02–2.23),
and 1.72 (95% CI = 1.25–2.38), respectively. However, this
analysis included only 316 pancreatic cancer cases and
was unable to examine the full range of blood type allelic
variation (i.e., OO, AO, AA, AB, BO, and BB), as it was
based on serotype.
Cases and controls in the current analysis were drawn

from the Pancreatic Cancer Cohort Consortium, which re-
cently completed a GWAS involving ∼550,000 SNPs across
the human genome (15). The GWAS identified four SNPs
at the ABO gene locus (rs505922, rs495828, rs657152, and
rs630014) as among the most statistically significant asso-
ciations with pancreatic cancer risk (P < 10−5); however,
the mechanism by which these SNPs influence risk is un-
known. A possible explanation for the association of these
SNPs with disease risk is their linkage to ABO glycosyl-
transferase specificity, i.e., with the polymorphisms that de-
fine glycosyltransferases O, A, and B. The current study
would support this explanation, given the increase in can-
cer risk with increasing the number of non-O alleles, and
the suggested differences in risk for subjects with blood
types AA and BB. Alternatively, SNPs at the ABO locus
could modulate gene expression, such that glycosyltransfer-
ase specificity is of lesser importance than levels of ABO
gene expression. Finally, our study cannot rule out that
these SNPs may act as markers of allelic variants in nearby
genes, and the ABO antigens may not be directly involved
in pancreatic carcinogenesis.
Glycoconjugates are important mediators of intercellular

adhesion and membrane signaling, two processes integral
to malignant progression and spread (7). In addition, these
surface molecules are recognized by the host immune re-
sponse and may have a role in facilitating immunosurveil-
lance for malignant cells (27). Nevertheless, little data are
available to directly link these processes to an association
between blood type and pancreatic cancer risk.
Chronic inflammation is a predisposing factor for pan-

creatic carcinogenesis; pancreatic cancer induces a strong
www.aacrjournals.org
desmoplastic reaction that acts as an abundant source of
inflammatory mediators, supporting tumor growth and me-
tastases (28, 29). Interestingly, two recent GWAS suggest
that ABO blood group antigens may affect the systemic in-
flammatory state (16, 30). SNPs at the ABO locus were as-
sociated with two serum markers of inflammation—tumor
necrosis factor-α (TNF-α; ref. 30) and soluble intercellular
adhesion molecule 1 (16). TNF-α is a proinflammatory cy-
tokine known to modulate rates of pancreatic ductal cell
apoptosis (28), whereas plasma levels of soluble intercellu-
lar adhesion molecule 1 are associated with the risk of in-
cident diabetes (31), a known predisposing factor for
pancreatic cancer. These results raise the possibility that
blood group antigens may alter the systemic inflammatory
state, thereby influencing the risk of developing pancreatic
cancer.
Our study has several possible limitations. Blood type in

this study was derived from genotype data not determined
serologically, leading to the possibility of measurement error
and exposure misclassification. However, the ABO gene was
cloned ∼20 years ago (4, 5), and methods for determining
blood type from a subject's DNA are well established (22,
24, 25). In addition, the genotype-derived blood types imput-
ed in the current study were highly concordant with validat-
ed blood type in NHS and HPFS participants. Moreover, any
resultant misclassification due to measurement error is likely
to be nondifferential in nature, and therefore attenuates,
rather than exaggerates, our findings.
Our study population was composed primarily of white

participants, which somewhat limits the generalizability of
our results. However, other risk factors for pancreatic can-
cer do not seem to differ substantially by race/ethnicity,
and the association between ABO blood type and risk
did not differ materially between the white and nonwhite
subjects in this study. Nonetheless, further investigations
that include more diverse study populations are warranted.
Finally, we cannot definitively rule out the presence of re-
sidual confounding or that our risk estimates are higher
than those that will be confirmed in other populations
due to the winner's curse (32).
Our study has several notable strengths. The Pancreatic

Cancer Cohort Consortium provided a large number of pan-
creatic cancer cases from 12 cohort studies, and the prospec-
tive design of these cohorts minimized the potential for
survival or selection biases. The risk of detecting a false asso-
ciation due to population stratification was relatively low, giv-
en the inclusion of prospective cohorts with homogeneous
ethnic compositions, the primarily non-Hispanic European
ancestry of the full study population, and the paucity of evi-
dence for variation in pancreatic cancer risk in the ancestral
population (33, 34). In addition, after adjusting for potential
population stratification bias by including the top five princi-
pal components of genetic variation as covariates in the logis-
tic regression models, our results were unchanged. Finally,
prospectively collected covariate information was not subject
to recall bias or the need for proxy interviews and, thus, im-
proved our ability to control for confounding and evaluate
effect modification.
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There remains only a limited understanding of the genetic
determinants of pancreatic cancer risk. Our results suggest
that ABO blood group alleles represent a common, partially
penetrant genetic determinant for pancreatic cancer. Addi-
tional investigation is necessary to elaborate mechanisms
by which ABO antigens may influence pancreatic cancer risk.
In the future, it is possible that the ABO blood type could be
incorporated into predictive models for this disease, together
with other genetic loci and currently identified risk factors,
such as tobacco use, obesity, and diabetes mellitus.
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