
Biometrika (2012), 99, 4, pp. 929–944 doi: 10.1093/biomet/ass044
C© 2012 Biometrika Trust Advance Access publication 25 September 2012

Printed in Great Britain

Two-stage testing procedures with independent filtering
for genome-wide gene-environment interaction

BY JAMES Y. DAI, CHARLES KOOPERBERG, MICHAEL LEBLANC

AND ROSS L. PRENTICE

Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle,
Washington 98109, U.S.A.

jdai@fhcrc.org clk@fhcrc.org mleblanc@fhcrc.org rprentic@WHI.org

SUMMARY

Several two-stage multiple testing procedures have been proposed to detect gene-environment
interaction in genome-wide association studies. In this article, we elucidate general conditions
that are required for validity and power of these procedures, and we propose extensions of two-
stage procedures using the case-only estimator of gene-treatment interaction in randomized clin-
ical trials. We develop a unified estimating equation approach to proving asymptotic indepen-
dence between a filtering statistic and an interaction test statistic in a range of situations, includ-
ing marginal association and interaction in a generalized linear model with a canonical link. We
assess the performance of various two-stage procedures in simulations and in genetic studies
from Women’s Health Initiative clinical trials.

Some key words: Case-only estimator; Filtering; Gene-treatment interaction; Multiple testing; Pharmacogenetics;
Randomization.

1. INTRODUCTION

Gene-environment interaction is increasingly of interest as it informs disease aetiology, treat-
ment and prevention (Hunter, 2005); yet there are few successes in detecting gene-environment
interaction in genome-wide association studies (Rothman et al., 2010). Several aspects of
genome-wide gene-environment interaction contribute to the lack of success. Environmental
exposures are more difficult to characterize, as individual exposure may be highly variable over
time and possibly subject to measurement error. The standard variable-by-variable testing strat-
egy typically has low power due to stringent significance rules that are needed to guard against
false positives arising from millions of single-nucleotide polymorphisms. This power shortage
is further exacerbated because detecting gene-environment interaction requires a much larger
sample size than is needed for detecting marginal association.

At the single genetic variant level, efficient case-only estimators have been proposed for
gene-environment interaction and generalized to case-control sampling or two-phase strat-
ified sampling with common diseases (Piegorsch et al., 1994; Umbach & Weinberg, 1997;
Chatterjee & Carroll, 2005; Dai et al., 2009); however, they are subject to bias due to devia-
tion from gene-environment independence in observational studies (Albert et al., 2001). Empir-
ical Bayes estimators have been proposed to combine case-only and case-control estimators
(Mukherjee & Chatterjee, 2008), which involve a trade-off between efficiency and bias. These
estimators improve efficiency in estimating interaction, although the power gain may not sur-
mount Bonferroni correction for millions of tests in genome-wide association studies.
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To this end, two-stage multiple testing procedures with independent filtering have been
proposed for detecting gene-environment interactions (Kooperberg & LeBlanc 2008; Murcray
et al., 2009). Rather than increasing the estimation efficiency of interaction, the idea is to filter
out the majority of irrelevant genetic variants initially and only test for interactions among the
promising ones. Two types of filtering statistics have been considered: marginal association of
a genetic variant (Kooperberg & LeBlanc, 2008) and gene-environment association in the com-
bined case-control sample (Murcray et al., 2009). The latter procedure has been compared with
approaches that exploit gene-environment independence (Mukherjee et al., 2012; Cornelis et al.,
2012) and extended to studies with case-parent trios (Gauderman et al., 2010). In all these proce-
dures, the statistic used in the filtering stage is suggested to be independent of the statistic in the
testing stage under the null hypothesis, so one may only need multiple testing correction for the
tests that actually pass the filtering, thereby potentially improving power. Theoretical justification
and generalization of these two-stage testing procedures, however, have not been elaborated.

Similar ideas have been considered recently in family-based genetic association studies
(Van Steen et al., 2005; Ionita-Laza et al., 2007). Genetic variants are ranked by association evi-
dence from the population-level data and then tested using the family-level data, either in a
subset of top-ranking variants (Van Steen et al., 2005) or for all variants by weighted p-values
(Ionita-Laza et al., 2007). In the context of microarray gene expression data, two-stage proce-
dures using independent, unsupervised filtering statistics, such as overall variance, have been
discussed in Bourgon et al. (2010). While conceptually connected, the two-stage procedures for
detecting gene-environment interaction differ from these procedures in that the filtering crite-
ria exploit outcome-dependent information in the same overall dataset, so that the independence
of some filtering statistics, for instance filtering marginal genetic association for interaction,
requires theoretical development.

In this article, we discuss general properties of two-stage procedures for detecting gene-
environment interaction in genome-wide association studies. We prove the asymptotic inde-
pendence of various filtering and testing statistics previously proposed or newly developed.
Our work is motivated by genetic studies within the Women’s Health Initiative clinical trials.
These studies build on the extensive and unique resource of randomized, placebo-controlled
trials in postmenopausal women and aim to assess genetic and environmental influence on a
number of clinical endpoints, e.g., cardiovascular events and incident diabetes. The exposure,
postmenopausal hormone therapy or dietary intervention, was randomized, so these studies offer
gold-standard data for studying gene-environment interaction. While all procedures developed
for gene-environment interaction can be used, gene-treatment independence dictated by random-
ization leads to important extensions of the two-stage procedures, such as use of case-only esti-
mators in the testing stage.

2. CONTROL OF THE FAMILYWISE ERROR RATE BY TWO-STAGE TESTING PROCEDURES

2·1. A class of two-stage multiple testing procedures

Consider a genetic study with n independent subjects drawn from a cohort based on a prespec-
ified sampling plan. Let Yi denote the outcome variable, and let Xi = (Xi1, . . . , Xim) denote
a collection of m genetic variants measured for the i th subject. There is a key environmental
variable or a randomized intervention, denoted by Zi , along with a list of known predictors or
potential confounders Wi . For different subjects, the random variables (Yi , Xi , Zi , Wi ) are inde-
pendent and identically distributed. Let θ j denote the gene-environment interaction between Z
and X j in a regression model. The goal is to test m null hypotheses H0 j : θ j = 0 against alternative
hypotheses H1 j : θ j |= 0.
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The test statistic for H0 j : θ j = 0 is often formulated by asymptotically linear estimators
(Newey & Powell, 1990; Robins et al., 1994) and scaled by its estimated standard error. An esti-
mator θ̂ j is asymptotically linear if n1/2(θ̂ j − θ j ) = n−1/2 ∑n

i=1 Bi j + op(1) where E(Bi j ) = 0
and E(BT

i j Bi j ) < ∞. The function Bi j is referred to as the influence function of θ̂ j , in the sense

of Casella & Berger (2002). By the central limit theorem and Slutsky’s theorem, n1/2(θ̂ j − θ j )

is asymptotically normal with mean zero and variance E(BT
i j Bi j ). We define a Wald statistic

Tj = θ̂ j/ ˆvar(θ̂ j )
1/2 for testing H0 j .

Now consider a different set of hypothesis tests for the filtering step, K0 j : ζ j = 0 versus
K1 j : ζ j |= 0. Let ζ̂ j denote an asymptotically linear estimator of ζ j . A Wald statistic is formu-
lated similarly as T 0

j = ζ̂ j/ ˆvar(ζ̂ j )
1/2. We call T 0

j the filtering statistic, since it is potentially
informative as a filter for testing H0 j .

We discuss the following two-stage testing procedure. Denote by α0 a prespecified tun-
ing parameter, with 0 < α0 < 1, that defines the first-stage rejection region �0

j = {T 0
j : |T 0

j | >
�−1(1 − α0/2)}, where �−1(·) is the quantile function of the standard normal distribution. Sup-
pose that m0 genetic variants pass the filter. Denote by α (with 0 < α < 1) the targeted familywise
error rate that defines the second-stage rejection region � j = {Tj : |Tj | > �−1{1 − α/(2m0)}.
We declare the j th test to be statistically significant if T 0

j ∈ �0
j and Tj ∈ � j .

2·2. Pairwise asymptotic independence

When hypothesis testing is high-dimensional and adjacent genetic variants are correlated,
which are features of genome-wide association studies, we prove that asymptotic independence
between the pairs of estimators ζ̂ j , θ̂ j and weak dependence among genetic variants are suffi-
cient to control the familywise error rate in the strong sense, even though Bonferroni correction
is applied only to the second-stage testing. Strong control of the familywise error rate means that
for any set of null hypotheses, the probability of having at least one false positive test is less than
or equal to the prespecified level α (Holm, 1979).

THEOREM 1. If the asymptotic joint distribution of ζ̂ j and θ̂ j is multivariate Gaussian with
zero asymptotic covariance, i.e. cov{n1/2(ζ̂ j − ζ j ), n1/2(θ̂ j − θ j )} → 0 in probability for all j ∈
{1, . . . , m}, and m0/m converges to a constant α′

0 in probability, then the proposed two-step
procedure preserves the familywise error rate at the level α for large m and n in the strong
sense; that is, for any nonempty index set J ⊆ {1, . . . , m} and under the null hypotheses H0 j for
all j , limm→∞ limn→∞ pr{⋃ j∈J (T 0

j ∈ �0
j ) ∩ (Tj ∈ � j )} � α.

The proof is given in the Appendix. The conditions for obtaining m0/m → α′
0 in probability

are those required by the law of large numbers for correlated data. For instance, if

cov{I (T 0
j ∈ �0

j ), I (T 0
k ∈ �0

k )} → 0

as | j − k| gets large, then the law of large numbers for a sequence of I (T 0
j ∈ �0

j ) holds as m →
∞ (White, 2000). This type of serial correlation is exactly the linkage disequilibrium pattern
observed in the human genome (International HapMap Consortium, 2005).

We present a series of examples that use different independent filtering statistics to test for
gene-environment interaction in genome-wide association studies. To establish the asymptotic
joint distribution of ζ̂ j and θ̂ j , it is necessary to study their behaviour under potentially misspec-
ified models, since the model indexed by ζ j may disagree with the model indexed by θ j ; for
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example, a model is misspecified if it only includes marginal association parameters when actu-
ally there are interactions. The true disease model for complex diseases may include multiple
loci, multiple environmental exposures, and possibly multiple gene-gene and gene-environment
interactions.

Maximum likelihood estimation under misspecified models was discussed in White (1982).
Let θ be the vector of parameters in the model indexed by θ j , and let ζ denote the vector of param-
eters in the model indexed by ζ j . Let

∑n
i=1 U1i = 0 be the set of estimating equations solved for

θ̂ , and let
∑n

i=1 U2i = 0 be the set of estimating equations to be solved for ζ̂ . Suppose that θ∗ is
the unique solution to the estimating equations E(U1i ) = 0, where E denotes expectation under
the true distribution. Similarly, suppose that ζ ∗ is the unique solution to the estimating equations
E(U2i ) = 0. Then ζ̂ → ζ ∗ almost surely and θ̂ → θ∗ almost surely.

Let A1 = E(∂U1i/∂θ), A2 = E(∂U2i/∂ζ ) and Bkk′ = E(UkiUk′i ) (k, k′ = 1, 2). Under suit-
able regularity conditions (White, 1982), it can be shown that n1/2(θ̂ − θ∗) and n1/2(ζ̂ − ζ ∗) are
asymptotically equivalent to A−1

k n−1/2 ∑n
i=1 Uki (k = 1, 2). For each k, the random vector Uki is

independent and identically distributed with zero mean, but for the same i , U1i and U2i are pos-
sibly correlated. The joint distribution of ζ̂ and θ̂ is established by the Cramer–Wold device. The
limiting distribution of {n1/2(θ̂ − θ∗), n1/2(ζ̂ − ζ ∗)} is multivariate Gaussian with zero means
and covariance matrix (

A−1
1 B11 A−1

1 A−1
1 B12 A−1

2
A−1

2 B21 A−1
1 A−1

2 B22 A−1
2

)
. (1)

To assess asymptotic independence of ζ̂ and θ̂ , we need to evaluate the off-diagonal element
of the covariance matrix, A−1

1 B12 A−1
2 . This provides a unified approach to proving asymptotic

independence, as illustrated in the examples below.

2·3. Filtering by marginal association

In this section, we provide formal justification of the independence of marginal association and
interaction in generalized linear models with a canonical link. This result holds quite generally for
the parameter estimates in two nested generalized linear models with a canonical link function.
To make the result more visible, we state the theorem in the general setting of two nested models,
and leave the result for gene-environment interaction as a corollary.

THEOREM 2. Let (Yi , Vi1, . . . , Vip) (i = 1, . . . , n) denote independent and identically dis-
tributed random variables sampled from a joint probability function P , where Y is an outcome
variable in a generalized linear model with a canonical link function g, and (Vi1, . . . , Vip) are
p covariates. Let (Vi1, . . . , Viq), with q < p, be the first q covariates in the set (Vi1, . . . , Vip).
Consider two nested generalized linear models

g{E(Y | V1, . . . , Vq)} = β0 +
q∑

j=1

β j V j , (2)

g{E(Y | V1, . . . , Vp)} = γ0 +
p∑

j=1

γ j V j . (3)

Under regularity conditions for maximum likelihood estimation under misspecified mod-
els, the maximum likelihood estimators (β̂0, . . . , β̂q) and (γ̂q+1, . . . , γ̂p) are asymptotically
independent.
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COROLLARY 1. Let Y be an outcome variable in a generalized linear model with a canoni-
cal link function g, and let X be the genetic variable, Z the environmental variable and W the
additional covariates. Consider two nested generalized linear models

g{E(Y | X, W )} = β0 + β1 X + β2W,

g{E(Y | X, Z , W )} = γ0 + γ1 X + γ2 Z + γ3 X Z + γ4W. (4)

Then the maximum likelihood estimators β̂1 and γ̂3 are asymptotically independent.

The proof of Theorem 2 is given in the Appendix. Corollary 1 follows from Theorem 2 imme-
diately. To our knowledge, this independence of two estimators in two nested generalized linear
models is novel to the statistical literature. It holds under both the null and the alternative hypothe-
ses, and thus is more general than the independence result suggested in Hjort & Claeskens (2003,
Lemma 3.2). It covers both binary traits and quantitative traits often investigated in genetic stud-
ies. For linear models, the independence holds exactly for any sample size. In the logistic regres-
sion model, our simulations yield nearly zero empirical correlation when the sample size is a few
hundred. For case-control sampling, the likelihood comprises the retrospective distributions of
covariates conditional on disease status. It is well known that if a standard logistic regression is
fitted to case-control data, then β̂1 and γ̂3 are the semiparametric maximum likelihood estimators
even when biased sampling is ignored (Prentice & Pyke, 1979); therefore the proof of Theorem 2
still applies.

Remark 1. Using marginal association as a filter for gene-environment interaction implicitly
assumes that a gene which has an interaction with the environmental variable is likely to also dis-
play evidence of marginal association with the phenotype. This is plausible when the interaction
effect is in the same direction as the main genetic effect. For qualitative interaction, where the
subgroup effects may cancel out when averaged, using marginal association as a filter for inter-
action will yield limited power. On the other hand, marginal genetic association itself is often
the primary goal of genetic association studies, so it is convenient to look for gene-environment
interaction among genetic variants that demonstrate marginal association. Furthermore, the use
of marginal genetic association as a filter for interaction is applicable to both qualitative and
quantitative traits. This is in contrast to gene-environment association, the other filtering crite-
rion we discuss later, which can only be used for case-control studies.

Exploiting the case-only estimator in the second-stage test, we next propose two extensions
of the two-stage multiple testing procedure that use marginal genetic association as a filter. The
first extension is to use the case-only estimator in case-control genetic studies within random-
ized clinical trials. When gene-environment independence holds in the study population and the
disease is rare, the standard estimator of interaction in case-control sampling is not as efficient as
the case-only estimator (Piegorsch et al., 1994; Umbach & Weinberg, 1997). Despite exhibiting
a substantial efficiency gain, the case-only estimator is generally sensitive to departures from
the gene-environment independence assumption (Albert et al., 2001). In genetic studies within
randomized clinical trials, however, independence between the treatment assignment and genetic
variants is dictated by the study design. In such settings, if we use two-stage procedures to test for
gene-treatment interaction, it is appealing to replace the standard case-control interaction esti-
mator by the case-only estimator, even though the independence of marginal association and the
case-only estimator has not yet been established. We now provide this result.
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PROPOSITION 1. Consider a case-control genetic association study in a randomized clinical
trial. The data are composed of n observations, each of which has a binary disease outcome Y ,
a binary treatment variable Z, a genetic variant X and a vector of covariates W . Two logistic
regression models are considered,

logit{E(Y | X, W )} = β0 + β1 X + β2W, (5)

logit{E(Z | X, Y = 1)} = γ0 + γco X, (6)

where β1 is the marginal genetic effect and γco is the case-only interaction between Z and X. If Z
is independent of X and the disease outcome Y = 1 is rare, then the parameter γco is equivalent
to γ3 in (4). Furthermore, the maximum likelihood estimators for β1 and γco are asymptotically
independent.

The proof of Proposition 1, given in the Appendix, is quite different from that of Theorem 2,
since we do not have nested models. If gene-environment independence holds, use of the case-
only estimator for testing gene-treatment interaction in the second stage would substantially
improve the power, as we show in simulations.

The second extension is to consider two-stage procedures for survival outcomes. In random-
ized clinical trials, study endpoints are often time-to-event outcomes and analyses are often
based on the Cox proportional hazard model. One may wonder whether the independence of
marginal association and interaction carries over to the estimators in the Cox proportional hazard
model. The key to the proof of independence in Theorem 1 is that the estimating equations
can be expressed as the sum of independent and identically distributed terms in the form of
X{Y − E(Y | X)}. The score functions for partial likelihood take a specialized form, and the
arguments used to show independence in the previous examples do not apply in general. However,
in the special case where the endpoint is rare, we show that the estimator for marginal association
in a Cox model is asymptotically independent of the case-only estimator of the interaction.

PROPOSITION 2. Consider a randomized clinical trial with survival time Y , subject to inde-
pendent right censorship. We observe T = min(Y, C) and 
 = I (Y � C), where C is the cen-
soring time. Denote by Z the randomized treatment, and denote by X a genetic variant. Let
(Ti , 
i , Zi , Xi ) (i = 1, . . . , n), be independent replicates. Consider the Cox models

λ(t; Z , X, W ) = λ0x (t) exp(γ2 Z + γ3 Z X + γ4W ), (7)

λ(t; X, W ) = λ0(t) exp(β1 X + β2W ), (8)

where (7) is a stratified Cox proportional hazard model to assess the treatment hazard ratio and
(8) is a Cox proportional hazard model to assess the main effect of X. If the disease is rare and
the censoring rate is equal in two randomized arms, the typical case-only interaction in the model
logit{E(Z | X, 
 = 1)} = γ0 + γco X is equivalent to the interaction γ3 in (7). Furthermore, the
estimators β̂1 and γ̂co are asymptotically independent.

The proof is given in the Supplementary Material. This result generalizes the use of the case-
only estimator in two-stage procedures to randomized clinical trials with rare time-to-event out-
comes. It can be further extended to Cox-model marginal association analyses based on such
cohort sampling techniques as nested case-control and case-cohort sampling, as long as the event
in the trial is rare.

The two-stage procedures discussed in this section essentially use two independent pieces of
information in the data, one for filtering and the other for testing. Since both are of interest
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in genetic studies, we have constructed in a companion paper (Dai et al., 2012) a joint test for
marginal effect and gene-environment interaction simultaneously, although its purpose is quite
different from that of the two-stage procedures described here.

2·4. Filtering by gene-environment association

If the disease outcome Y is binary and rare, a different filtering criterion to detect gene-
environment interaction, namely gene-environment association in the combined case-control
samples, was proposed by Murcray et al. (2009). The rationale is that when the disease is rare,
we expect to have Z independent of X in the controls if Z and X are independent in the cohort.
If there is an interaction between Z and X , then they will be dependent in the cases, as suggested
by the case-only estimator. Owing to oversampling of cases, Z and X should also be dependent
in the combined case-control sample.

The filtering statistic appears to be unsupervised, since gene-environment association is
assessed in the combined case-control sample irrespective of the disease status Y , so the fil-
tering statistic should be independent of the test statistic. On the other hand, the information
used for filtering comes from oversampling of cases, so the filtering statistic does contain out-
come information. The formal proof of independence uses estimating equation theory. We state
this result in the context of testing for gene-environment interaction.

PROPOSITION 3. Consider a case-control genetic association study. The data are composed
of n subjects, each with (Y, Z , X, W ) as previously defined. Let R denote the indicator of being
selected into the case-control sample. Consider the logistic regression models

logit{E(Z | X, W, R = 1)} = τ0 + τ1 X + τ2W, (9)

logit{E(Y | X, Z , W )} = γ0 + γ1 X + γ2 Z + γcc X Z + γ4W, (10)

where τ1 is the gene-environment association in the combined case-control sample and γcc is the
standard interaction in case-control studies. Then the maximum likelihood estimators for τ1 and
γcc are asymptotically independent.

The proof is given in the Appendix. Murcray et al. (2009) provided a proof of the independence
between τ̂1 and γ̂cc. Our proof is more general and accommodates confounders in both models.
The proof of independence between τ̂1 and γ̂cc does not require the independence of Z and X
in the population, but this assumption is useful for the filter to have power to screen for gene-
environment interaction. In observational studies, one cannot be sure that the gene-environment
independence assumption holds for every genetic variant, although a large deviation from gene-
environment independence can be detected by comparing the proportion of variants passing the
filter to the threshold α0.

Remark 2. The gene-environment association in the combined case-control sample, namely
τ1 in (9), is a diluted version of the case-only interaction γco when the disease is rare. We make
three cautionary comments on its use. First, when the disease is common, it is less clear whether
the gene-environment association is useful for detecting gene-treatment interaction, as gene-
treatment independence no longer holds in the controls. Second, the case-control sampling ratio
could be critical to the power of the gene-environment association as a screening tool. More con-
trols would make τ1 less informative about the interaction γcc. Third, asymptotic independence
does not hold between the estimated gene-environment association and the case-only estimator,
thus one cannot use gene-environment association as a filter when the case-only estimator is
being employed for testing interaction.
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On the other hand, because of the unsupervised nature of τ1, its estimator is independent of
estimators of any parameters in a regression of Y on Z and X . The use of τ1 as a filter can be
expanded to the adjusted marginal effect in the model

logit{E(Y | X, Z , W )} = β0 + βadj X + β2 Z + β3W.

By the same proof as for Proposition 3, β̂adj is independent of τ̂1. When the treatment Z influences
Y , the adjusted effect βadj could be of interest. One could use τ̂1 as a filter for β̂adj, because a
nonzero τ1 implies a nonzero interaction γcc, which may also imply a nonzero adjusted effect
βadj.

The derivation of our results on asymptotic independence also applies to the likelihood ratio
test and the score test, since the asymptotic covariance matrix for these test statistics can be
similarly expressed in the form (1). See, for example, the derivation of the asymptotic distribution
of the likelihood ratio test in van der Vaart (1998, Ch. 16).

3. POWER CONSIDERATIONS AND THE TUNING PARAMETER α0

We have shown that the proposed two-stage procedures control the familywise error rate. For
such two-stage procedures to be useful, they should also have higher power than the bench-
mark one-stage Bonferroni correction for all genetic variants. Intuitively, the power advantage of
the two-stage procedures, if any, comes from the less stringent significance rule due to a much
smaller number of genetic variants passing the filter. Moreover, a true alternative should have a
high probability of passing the filter. This implies two conditions.

First, the alternative hypothesis H1 j should imply the alternative hypothesis in the filtering
stage K1 j ; otherwise, filtering would not enrich for true alternatives H1 j . This is equivalent to
the condition discussed for two-stage procedures used in microarray experiments (Bourgon et al.,
2010), that the filtering statistics and test statistics need to be correlated under alternatives. This
condition is true for the gene-environment association filtering when gene-environment indepen-
dence, the rare-disease assumption and oversampling of cases are all met. It is not always true
for filtering by marginal association, since genetic variants with gene-environment interaction
could have zero marginal effect. In this sense, marginal association is a leaky filter that could
lose some true alternatives in interaction.

Second, even if H1 j implies K1 j , the probability of passing the filter for a true alternative
H1 j should be sufficiently high. A weak filter may offset the benefit of fewer tests in the second
stage. To see this, it is necessary to approximate the power for the two-stage procedure and for the
one-stage Bonferroni test. For a hypothesized disease risk model H1 j and a sampling scheme, the
power to detect a genetic variant for a large sample size n and a large number of genetic variants
m is approximately

[
1 − �

{
�−1

(
1 − α0

2

)
− |μ0|

σ 0/n1/2

}] [
1 − �

{
�−1

(
1 − α

2mα0

)
− |μ|

σ/n1/2

}]
, (11)

where μ0 and σ 0 are the mean and asymptotic standard deviation of the first-stage filtering
estimator, and μ and σ are the mean and asymptotic standard deviation of the second-stage testing
estimator. We have assumed in (11) that the genetic variants are independent, so that m0 = mα0
for a large m. Clearly, α0 plays an important role in power performance. An unduly small α0
would allow too few genetic variants to pass the filter, thus adversely affecting the power. As α0
increases, the probability of passing the filter will be greater, but the multiple testing penalty for
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Table 1. Empirical familywise error rate (%) for various two-stage procedures in 1000 simu-
lations. A total of 10 000 genetic variants were simulated for 1000 cases and 1000 controls by
case-control sampling. Genetic variants were generated either independently or with serial cor-

relation 0·5. The disease status was generated by the logistic model (10)

γ = (−4, 0, 0, 0) γ = (−4, 0, log 1·5, 0)

α0 = 0·001 α0 = 0·01 α0 = 0·1 α0 = 0·001 α0 = 0·01 α0 = 0·1
ρ = 0 β1 → γcc 3·7 4·5 5·0 5·0 4·6 4·3

β1 → γco 4·2 5·1 4·3 4·1 3·0 3·7
τ1 → γcc 4·2 4·7 3·2 4·2 3·5 3·4
τ1 → βadj 3·6 3·3 4·7 3·6 3·6 2·6

ρ = 0·5 β1 → γcc 4·4 4·6 4·6 5·3 4·0 3·9
β1 → γco 5·2 5·0 4·3 5·1 5·1 4·4
τ1 → γcc 4·1 3·4 3·9 4·6 4·5 4·6
τ1 → βadj 4·7 3·7 4·8 4·5 4·3 4·0

The parameters in the second column are from the following models: logit{E(Y | X)} = β0 + β1 X ;
logit{E(Y | X, Z)} = γ0 + γ1 X + γ2 Z + γcc X Z ; logit{E(Z | X, Y = 1)} = γ0 + γco X ; logit{E(Z | X)} = τ0 + τ1 X ;
logit{E(Y | X, Z)} = β0 + βadj X + β2 Z .

genetic variants passing the filter will also increase. With prior assumptions on the true model,
such as (μ, σ ) and (μ0, σ 0), an optimal α0 can be computed based on (11).

Similarly, the power of the standard one-stage Bonferroni correction can be approximated as

1 − �[�−1{1 − α/(2m)} − n1/2|μ|/σ ]. (12)

For the power of the two-stage procedure (11) to exceed the power of the one-stage procedure
(12), the probability of passing the filter for a true alternative should be larger than the ratio of
the second components in (11) and (12). For a well-powered one-stage Bonferroni procedure,
one may not be able to find a filter that further improves power.

4. SIMULATIONS

We first examine the correlation of various estimators in small samples, one for linear regres-
sion and another for logistic regression. The results are satisfactory: for a sample size of a few
hundred, the correlation is nearly zero in all simulation settings. These results are included in the
Supplementary Material.

We next assess the empirical familywise error rate over 1000 simulated datasets, each con-
taining 10 000 genetic variants for 1000 subjects. The minor allele frequencies were randomly
generated from a uniform distribution from 0·1 to 0·5. The diploids were formed assuming
the Hardy–Weinberg equilibrium. The genetic variants are either independent or have a serial
correlation 0·5. A binary treatment assignment was randomly generated as a Ber(0·5) distri-
bution. The binary disease status was generated by the logistic model logit{E(Y = 1 | X, Z)} =
γ0 + γ1 X + γ2 Z + γ3 X Z with parameters (−4, 0, 0, 0) or (−4, 0, log 1·5, 0); the latter assumes
a mild treatment effect. The two-stage procedures were applied to screen for interactions with
α0 = 0·001, 0·01 or 0·1 and α = 0·05. Table 1 shows that the familywise error rate is controlled
at the level 0·05 as expected. Control of the familywise error rate was also observed with other
parameter settings not reported here.

We investigate the power of the two-stage procedures. We assume a case-control genetic study
within a randomized clinical trial with half a million independent genetic variants, of which
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Fig. 1. Power comparison of the two-stage procedures for detecting gene-treatment interac-
tion. The four panels represent the scenarios (a) rare disease and quantitative interaction, (b)
rare disease and qualitative interaction, (c) common disease and quantitative interaction, and
(d) common disease and qualitative interaction. Five testing methods are plotted: the one-
stage case-control interaction (solid), the one-stage case-only interaction (short dashes), the
two-stage procedure with marginal association filtering and standard interaction testing (long
dashes), the two-stage procedure with marginal association filtering and case-only interaction
testing (dot-dash), and the two-stage procedure with gene-environment association filtering

and standard interaction testing (dots).

one is a true association and the rest are null associations. The diploids were formed assuming
Hardy–Weinberg equilibrium. The randomization ratio to the treatment arm and the control arm
is 1:1, and the case-control sampling ratio is also 1:1. With almost half a million independent null
tests, the number of tests passing the first-stage criterion would vary little from mα0, so we used
the second-stage cut-off �−1{1 − α/(2mα0)} as if it were fixed in every simulation. The power
was computed as the percentage of simulations where the genetic variant with the signal was
declared to be significant when the familywise error rate is controlled at 0·05 in 10 000 simula-
tions. We attempted numerous parameter settings and a range of values for α0 to study operating
characteristics. Figure 1 shows several scenarios where the relative power comparison for detect-
ing gene-treatment interaction is representative. Additional simulations using gene-environment
association to screen for adjusted genetic effect are left to the Supplementary Material.
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Figures 1(a) and 1(b) show the power to detect an interaction between the signal genetic variant
X and the treatment Z when the disease is rare, with prevalence 0·02. We display power versus
α0 for each parameter setting in order to examine the effect of α0. Let N be the total sample size,
n the sample size for the case-control sample, f the minor allele frequency of the target genetic
variant, and γ the vector of parameters in model (10) that generates the data.

Figure 1(a) shows a setting with a quantitative interaction between the genetic variant and
the treatment: N = 50 000, n ≈ 1000, f = 0·1 and γ = (−4, 0, 0, log 2). Clearly, the two-stage
procedure with filtering by marginal association and testing by the case-only interaction yields
substantially improved power over other procedures. The two-stage procedure with filtering by
marginal association and testing by the standard case-control interaction provides approximately
30% power, similar to the one-stage case-only procedure with Bonferroni correction. The two-
stage procedure with filtering by the gene-environment association and testing by the standard
interaction is outperformed by both the one-stage case-only procedure and the other two-stage
procedures. The one-stage standard interaction procedure yields almost no power in this scenario.
This example demonstrates the advantage of using the case-only estimator in the two-stage pro-
cedure with marginal association filtering.

In Fig. 1(b), we simulate a setting with a qualitative interaction between the genetic vari-
ant and the treatment, i.e., the sign of the genetic variant effect differs in different treatment
groups: N = 50 000, n ≈ 1000, f = 0·2 and γ = (−4, −0·5 log 2, 0, log 2). The main effect of
the genetic variant in this setting is negligible, which leads to poor performance of the two-stage
procedures using marginal association for an initial screen. The two-stage procedure using the
gene-environment association avoids the cancellation of opposite genetic variant effects and so
yields a noticeable power gain over the two-stage procedures using marginal association. The
best procedure in this scenario, however, is the case-only estimator with Bonferroni correction.
This example confirms that for qualitative interactions, marginal association is not effective as a
filter for gene-treatment interaction.

Figures 1(c) and 1(d) show the power to detect the interaction when the disease prevalence is
10%. In this scenario, the case-only estimator may have bias and an inflated type I error because
the rare disease assumption is not met. In Fig. 1(c), a model with a quantitative interaction was
generated: N = 10 000, n ≈ 1000, f = 0·1 and γ = (−2, 0, 0, log 2). In this setting, the best pro-
cedure is the two-stage procedure with filtering by marginal association and testing by standard
interaction, while the worst is the one-stage procedure with standard interaction. Because of the
1:1 case-control sampling ratio, the two-stage procedure with the gene-environment association
shows improved power over the one-stage procedure. In Fig. 1(d), a model with a qualitative
interaction was generated: N = 10 000, n ≈ 1000, f = 0·1 and γ = (−2, −0·5 log 2, 0, log 2).
The two-stage procedure with marginal association as a filter has no power at all, while the gene-
environment association as a filter outperforms the one-stage procedure.

Taken collectively, each of the two-stage procedures has a niche in power performance. There
are situations where none of them improves power upon the one-stage Bonferroni procedure.
For simulations with half a million genetic variants, the optimal α0 for power performance is in
the range of 0·0001 to 0·001. This is in agreement with previous work (Kooperberg & LeBlanc,
2008; Murcray et al., 2009).

5. APPLICATION

The Women’s Health Initiative is one of the largest studies of postmenopausal women’s health
in the United States, and is composed of four randomized clinical trial components and a
prospective observational study. An elevated invasive breast cancer risk was found among women
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Table 2. Results of the two-stage procedures applied to the Women’s Health Initiative study, using
gene-environment association as a screening criterion applied to the estrogen-alone trial. Four
genetic variants out of the top 50 genetic variants reach statistical significance in testing the

adjusted marginal genetic effect

rs7705343 rs13159598 rs9790879 rs4415084
Odds ratio p-value Odds ratio p-value Odds ratio p-value Odds ratio p-value

E-alone τ̂1 1·5823 0·0006 1·5217 0·0014 1·4701 0·0035 1·4269 0·0063
All trials β̂adj 1·1672 0·0006 1·1653 0·0007 1·1649 0·0007 1·1695 0·0005
E-alone γ̂co 1·5231 0·0298 1·4657 0·0444 1·3842 0·0907 1·3832 0·0936

E-alone, estrogen-alone trial. The estimators in the second column are from the following models, where Z
denotes the treatment and X the genetic variant: logit{E(Z | X)} = τ0 + τ1 X ; logit{E(Y | X, Z)} = β0 + βadj X +
β2 Z ; logit{E(Z | X, Y = 1)} = γ0 + γco X . Note that τ̂1 and γ̂co are based on data from the estrogen-alone trial, while
β̂adj is based on data from all four trials.

assigned to estrogen plus progestin, with evidence of risk reduction among women assigned either
to estrogen alone or to a low-fat dietary pattern. To discover the genetic variants that may influ-
ence breast cancer risk, perhaps jointly with the interventions, a genome-wide association study
was launched with a multi-stage design (Prentice & Qi, 2006). In the final stage, a total of 9039
genetic variants were selected and genotyped among 2166 invasive breast cancer cases in the
clinical trials and 1:1 matched controls.

Primary analyses have been presented recently (Prentice et al., 2009, 2010). Seven genetic
variants in the fibroblast growth factor receptor 2 met criteria for genome-wide significance.
Recognizing limited power in detecting interactions, the investigators focused the search for
treatment-genotype interactions to the top seven genetic variants ranked by marginal association
(Prentice et al., 2009, 2010). Since invasive breast cancer is a rare event in the study, the inves-
tigators used the case-only estimators for interactions where genetic scores were coded as two
indicator variables. Several genetic variants showed suggestive evidence of interactions with one
or more interventions. In particular, the nominal p-value for the interaction between the genetic
variant rs3750817 and the dietary modification intervention is 0·005, which remains significant
after multiple testing adjustment. Our results justified the focused testing for interactions in a
subset of genetic variants ranked by top marginal association.

In addition, we also explored the two-stage procedures using the gene-environment associa-
tion criterion to look for significant adjusted marginal effects and interactions. This was done
separately for each of the four randomized trials. In the first stage, we ranked genetic variants
by p-values for gene-environment association. We then tested for adjusted marginal effects and
interactions for the top 50 genetic variants ranked by gene-environment association. For discov-
ery purposes, the additive genetic models were used for both adjusted marginal effects and the
interactions. Table 2 shows four genetic variants picked by the gene-environment association cri-
terion in the estrogen-alone trial that have significant adjusted association. In the estrogen-alone
trial, four genetic variants pass the Bonferroni correction for 50 genetic variants in testing for
adjusted genetic variant effect. The adjusted additive genetic variant effect β̂adj was estimated
from case-control data for all four trials, adjusted for matching variables, important baseline
predictors and randomization indicators. The effect size in terms of odds ratio is fairly modest,
around 1·16. In the estrogen-alone trial, there seems to be a weak interaction between the genetic
variants and the treatment. The effect sizes of the case-only interaction γ̂co are around 1·4 to 1·5.

These four genetic variants are all located in the mitochondrial ribosomal protein S30
gene, which has shown some evidence of interaction with multiple clinical interventions
(Huang et al., 2011). None of the variants reaches the genome-wide significance level for either
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marginal effect or interaction, yet they reach the familywise error rate level of 0·05 for marginal
association by our two-stage procedure. The reason might be that these four genetic variants
have weak main effects and weak interactions with the estrogen-alone intervention. The gene-
environment association criteria seem to synthesize these weak effects and prioritize them for
further testing. This application suggests that in the low-power settings, two-stage procedures
can be used as a data-adaptive tool, as opposed to candidate genes from prior studies, for discov-
ering novel genes that affect disease risk. Certainly, this search strategy should serve only as a
supplement to the standard one-stage Bonferroni test, since it missed the seven genetic variants
in the fibroblast growth factor receptor 2 gene.

6. DISCUSSION

We discuss control of the familywise error rate by two-stage testing procedures, since it is
widely used in genome-wide association studies, primarily because of the scarcity of suscepti-
bility variants. It is of interest to generalize these results to more liberal error measures, such as
the false discovery rate. The latter can be useful when there is a replication sample following
the discovery sample. For independent tests, the control of the false discovery rate is immedi-
ately seen when applying the procedure in Benjamini & Hochberg (1995) to the variants passing
the filter. For correlated genetic variants, further work is needed, possibly using the method in
Benjamini & Yekutieli (2001).

All these procedures require a prespecified proportion of genetic variants passing the filter-
ing stage. As we show from simulations, the optimal proportion may depend on the unknown
underlying interaction model. Rather than giving a harsh cut-off for entering the second stage,
a better strategy could be to weight the significance of the test for interaction by the strength
of the corresponding filtering statistic. All genetic variants will be tested and adaptive selection
of α0 is avoided. This strategy was first suggested by Ionita-Laza et al. (2007) in family-based
association studies. We have also explored the weighting strategy in the context of detecting
gene-environment interaction (Hsu et al., 2012).

Since the two filtering criteria are complementary in performance, it would be sensible to
combine them into one procedure. Practical guidance on doing so is not pursued in this paper.
Murcray et al. (2011) have suggested a hybrid procedure by allocating a proportion of the overall
genome-wide significance level to each filtering method. We have also explored more flexible
ways to combine the two filtering criteria and to incorporate the case-only estimator, or the empir-
ical Bayes estimator (Mukherjee & Chatterjee, 2008), into one composite procedure (Hsu et al.,
2012).
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Supplementary material available at Biometrika online includes a proof of Proposition 2, sim-
ulations to examine the empirical correlation of various estimators, and additional simulations
to assess the performance of using gene-environment association to screen for adjusted genetic
association.
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APPENDIX

Proof of Theorem 1

Under mild regularity conditions, standard estimating equation theory implies that n1/2(ζ̂ j − ζ j ) →
N (0, V1) in distribution and n1/2(θ̂ j − θ j ) →N (0, V2) in distribution, where V1 and V2 are asymptotic
variances which can be estimated by their respective empirical averages, V̂1 and V̂2. By the law of large
numbers, V̂1 and V̂2 are consistent estimators. Since cov{n1/2(ζ̂ j − ζ j ), n1/2(θ̂ j − θ j )} → 0 as n → ∞, it
is straightforward to show that T 0

j and Tj are asymptotically independent for all j under the global null
hypothesis for H .

Observe that under the null hypothesis H0 j for all j , m0 = ∑m
j=1 I (T 0

j ∈ �0
j ). Unless the T 0

j are inde-
pendent, E(m0/m) is generally not equal to α0. However, if m0/m → α′

0 in probability, we can prove the
main result as follows:

lim
m→∞ lim

n→∞ pr

{ ⋃
j∈J

(T 0
j ∈ �0

j ∩ Tj ∈ � j )

}
� lim

m→∞ lim
n→∞

J∑
j=1

pr(T 0
j ∈ �0

j ) pr(Tj ∈ � j ) (A1)

= lim
m→∞ lim

n→∞

{
1

m

J∑
j=1

pr(T 0
j ∈ �0

j )

}
mα

m0
� α′

0

α

α′
0

= α. (A2)

Inequality (A1) uses the Bonferroni inequality and the asymptotic independence of T 0
j and Tj , while (A2)

holds because m−1
∑J

j=1 pr(T 0
j ∈ �0

j ) � α′
0 and, by Slutsky’s theorem, mα/m0 → α/α′

0 in probability.

Proof of Theorem 2

Let X1 denote the p-dimensional design matrix for the bigger model (3), and let X2 denote the q-
dimensional design matrix for the smaller model (2). Let U1 denote the estimating functions for (2)
and let U2 denote the estimating functions for (3). Because both models are generalized linear mod-
els with the canonical link, U1 and U2 can be expressed as X1{Y − E(Y | X1)} and X2{Y − E(Y | X1)},
respectively.

The asymptotic covariance matrix was derived to be (1). We evaluate the off-diagonal submatrix
A−1

1 B12 A−1
2 . Observe that upon leaving out the dispersion parameters,

B12 ∝ E[(XT
1X2){Y − E(Y | X1)}{Y − E(Y | X2)}]

= E[(XT
1X2)E{Y 2 − Y E(Y | X1) − E(Y | X1)E(Y | X2) + E(Y | X1)E(Y | X2) | X1}]

= E{(XT
1X2) var(Y | X1)},

and thus

A−1
1 B12 A−1

2 ∝ E{XT
1X1 var(Y | X1)}−1 E{XT

1X2 var(Y | X1)}E{XT
2X2 var(Y | X2)}−1.

Let T1 = X1{var(Y | X1)}1/2 and T2 = X2{var(Y | X1)}1/2, so that A−1
1 B12 = E(TT

1T1)
−1 E(T1T2). Since

T2 is contained in T1 as the first q columns, E(TT
1T1)

−1 E(TT
1T2) is a p × q matrix, of which the top q × q

submatrix is diagonal with entries 1, and the bottom (p − q) × q submatrix has zero for every entry. Some
algebra leads to the result that the entries of the lower (p − q) × q submatrix of A−1

1 B12 A−1
2 are zero. This

implies that all the estimators for the parameters in (2) but not in (3) are asymptotically uncorrelated with
all the estimators for the parameters in both (2) and (3).
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Proof of Proposition 1

Because the disease is rare, we can approximate a logistic regression as (4) by a log-linear regression.
Observe that

pr(Z = 1 | X, Y = 1, W )

pr(Z = 0 | X, Y = 1, W )
= pr(Y = 1 | X, W, Z = 1) pr(Z = 1)

pr(Y = 1 | X, W, Z = 0) pr(Z = 0)

= exp

(
log

π

1 − π
+ γ2 + γ3 X

)
,

where π = pr(Z = 1). Hence Z is independent of W given X and Y = 1, and γco = γ3. The estimating
equations from the two models (5) and (6) are U1 = X1{Y − E(Y | X)} and U2 = X2{Z − E(Z | X)}1[Y=1],
where X1 is the design matrix with i th row (1, xi , wi ) and X2 is the design matrix with i th row (1, xi ).
Note that U2 = 0 if Y = 0. Let β = (β0, β1, β2) and γ = (γ0, γco). The asymptotic covariance matrix for β̂

and γ̂ is A−1
1 B12 A−1

2 , as defined in (1). Observe that B21 equals

pr(Y = 1)EX,W |Y=1[XT
1X2{1 − pr(Y = 1 | X, W )}EZ |X,W,Y=1{Z − E(Z | X, Y = 1)}] = 0.

The derivation uses the law of iterated expectations. Hence the covariance matrix of (β̂, γ̂ ) is zero, and the
proof is complete.

Proof of Proposition 3

The estimating equations for models (9) and (10) are written as U1 = X1{Z − E(Z | X1)} and U2 =
X2{Y − E(Y | X2)}, where X1 is the design matrix for (9) with i th row (1, xi , wi ) and X2 is the design
matrix for (10) with i th row (1, xi , zi , xi zi , wi ). Observe that

B21 = EZ ,X,W [XT
1X2{Z − E(Z | X, W )}EY |Z ,X,W {Y − E(Y | X, W, Z)}] = 0.

The derivation uses the law of iterated expectations. Hence the off-diagonal element of the covariance
matrix is zero, and the proof is complete.
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