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32 Methods for SNP 
Regression Analysis 
in Clinical Studies
Selection, Shrinkage, 
and Logic

Michael LeBlanc, Bryan Goldman, and 
Charles Kooperberg

32.1  INTRODUCTION

Investigations of the association of patient outcome with a few candidate single 
nucleotide polymorphisms (SNPs) or much larger numbers of SNPs have been 
undertaken in various therapeutic studies in oncology (e.g., Durie et al. 2009, Song 
et al. 2010). Since the genomic material often consists of germline DNA, not tumor 
DNA, the primary associations to therapeutic efficacy are typically not expected to 
be as strong as those seen for tumor gene expression. However, even with non-tumor 
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DNA, there could potentially be some strong correlations with disease symptoms at 
diagnosis, measures of drug metabolism and patient adverse events due to treatment.

While primarily outside the therapeutic setting, there have been many high-
dimensional SNP studies which can be useful in defining good statistical strategies. 
For instance, there are an increasing number of validated associations seen from 
high throughput SNP studies including genome wide association studies (GWAS) 
(e.g., Hindorff et al. 2009, Peterson et al. 2010, Thomas et al. 2009). Often these 
are case-control studies and may include subject level meta-analyses on multiple 
cohorts to arrive at total numbers in the multiple thousands of cases and controls to 
achieve power to detect at least modest individual SNP associations with outcome. 
In addition, there has been some development of multi-SNP risk models from GWAS 
including Miyake et al. (2009), Zheng et al. (2008), Yang et al. (2010).

In most therapeutic clinical trials, the number of patients are typically only sev-
eral hundreds, even when combining across studies. These sample sizes are modest 
enough to make it far more challenging to conduct well powered tests of association 
or risk modeling. Realistically, only large effects will be reliably identified in these 
moderately sized studies. However, given sufficient signal, SNP association stud-
ies are feasible; therefore, this chapter will consider model building strategies to 
construct prognostic or disease risk models, trading off variance control as well as 
interpretation. A good statistical strategy for risk modeling with GWAS data was 
outlined in Kooperberg et al. (2010) but we think it applies more broadly to smaller 
scale SNP analyses more typical of cancer therapeutic studies. Our proposal for a 
straight-forward statistical regression modeling approach can be outlined as follows: 
(1) data cleaning, (2) selection of a smaller number SNPs (if there are initially a large 
number under consideration), (3) modeling in some parsimonious fashion; shrinkage 
methods are one possibility or using a method that combines features in some logical 
fashion (such as logic regression or regression trees) and (4) a strategy to avoid draw-
ing false positive associations or building models that are overly complex.

We note that there are many options for modeling in this context. Our focus is on 
SNP regression; we do not address alternatives here in terms of haplotype recon-
struction, although algorithms have been developed for that purpose (for instance, 
see SNP-Haplotype Adaptive Regression [SHARE]) (Dai et al. 2009). Other than 
direct haplotype methods, there are methods to reduce dimensionality by using 
regularization to combine SNPs within gene as a component of the modeling pro-
cedure (Chen et al. 2010).

We illustrate the methods with a SNP data set from a clinical trial of multiple 
myeloma patients from the University of Arkansas generated as part of the Bank on 
a Cure project.

32.2  SIMPLE GENOTYPE DATA

Humans have two copies of each autosomal chromosome. The total length is about 
three billion base pairs. The most common variation between humans are variations 
in a single locus, known as SNPs. SNPs are typically coded as 0,1, or 2, the number 
of minor (variant) alleles at a particular locus. These data can be re-coded as a vari-
able for the dominant effect by labeling 1 if SNP = {1,2} or 0 otherwise and for the 
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recessive effect as a 1 if SNP = {2} or 0 otherwise. Often, given such a large number 
of SNPs, and hope for mostly cumulative association with subject outcome, the addi-
tive code {0,1,2} is used in many statistical testing and regression strategies. This 
coding is often the most powerful in detecting SNP disease associations.

Data quality is, of course, a fundamental issue in any analysis. However, in this 
chapter we will not address steps to assess the quality of the genotyping calls. These 
issues are platform dependent and checking quality would likely involve investiga-
tion of control and replication samples. In addition, in some cases, depending on the 
platform, it could involve returning to the images of relative intensities to re-evaluate 
the calls. Other quality control techniques involve inspection of QQ plots of the asso-
ciations (where there are sufficient numbers of SNPs being investigated) to check 
for more global departures from the 45° line than what would be expected for the 
hypothesized scenarios where only a few SNPs are thought to be associated with 
patient outcome or toxicity.

Additional filtering of samples and SNPs for subsequent analysis also typically 
involves removal based on a sufficient number of observed called genotypes. For 
instance, often all samples with a call rate smaller than some value (say 97% for 
large arrays, but often this is set somewhat lower for smaller scale genotyping tech-
nologies) will be removed for consideration for further analysis. In addition SNPs 
that substantially fail the assumption of Hardy–Weinberg (HW) equilibrium, for 
instance, with a p-value of 10−3–10−5, are not considered. The extremeness of the 
p-value would need to depend on the number of SNPs under consideration. We note 
that typically the check of HW is done in control samples only; in our clinical trial 
settings all patients typically have disease. So while checking HW plays a role in 
data cleaning, it is not clear that HW equilibrium needs to be valid for all SNPs in 
the therapeutic “all case” setting. Another filtering option used primarily for power 
considerations, is to remove SNPs with a low minor allele frequency (say .05) prior 
to any formal model building.

32.3  EXAMPLE: MYELOMA SNP ANALYSIS

To demonstrate methods in this chapter, we use data based on patients with pre-
viously untreated multiple myeloma enrolled in the TT2 trial at the University of 
Arkansas between October 1998 and February 2004. Details of patient characteris-
tics plus treatment and clinical outcomes have been reported previously (Durie et al. 
2009). The multiple myeloma baseline evaluation included serum and urine protein 
electrophoresis, quantitative immunoglobulin measurements, total 24 h urine protein 
excretion and serum beta-2 microglobulin. The outcome was defined as extensive 
bone disease defined by x-ray criteria.

While the original study had data on 282 patients, we construct a larger simulated 
data set which we think is a more appropriate size for demonstrating regression mod-
eling methods in this chapter. In addition to the observed data cases, 118 additional 
cases were drawn as a simple bootstrap sample to augment the real sample to yield 
a total of 400 real and simulated patients for analysis. Given the data set we used is 
partially simulated, the results presented in this chapter do not agree with the prior 
published results for this data set.
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32.4  ASSESSING ASSOCIATIONS

Continuous, binary, or survival endpoints are potentially of interest in the SNP asso-
ciation studies in the context of cancer clinical trials. Therefore, to keep the discus-
sion general, we present the models in terms of the regression component of each of 
the outcome models.

32.4.1  Univariate Associations

Most SNP association studies involve, at a minimum, a report of single SNP associ-
ations, potentially after adjusting for population heterogeneity; the adjustments may 
be based on reported race, genomic measurements of racial variation, and/or base-
line clinical factors in a therapeutic study. As noted earlier, a single SNP has three 
levels, so common coding for assessment of association can be as linear X = {0,1,2}, 
dominant X = 1 if SNP is 1 or 2, 0 otherwise recessive X = 1 if SNP = 2 or 0 otherwise.

Consider a regression setting, where there are n observations on variables includ-
ing non-genomic Z1:l = 1, …, L and genomic Xk:k = 1, …, K. To simplify presentation, 
assume only a single adjustment variable denoted as Z. Then testing individual SNPs 
can be reduced to assessing score or likelihood test statistics of βk = 0 in the regres-
sion model for coded SNP k

	 η β γ β( )X Z, = + + .0 Z Xk k

Nominal p-values can be calculated for all k = 1, …, K tests of association. If the 
goal is to identify univariate associations, then strategies to control the error rates 
for false positives are of primary importance. The simplest way to control the fam-
ily wise error rate (FWER) is to use a Bonferroni correction. However, it is often 
preferable with moderate numbers of SNPs (some chosen that may have relatively 
high correlation with each other—high linkage disequilibrium) to acknowledge 
the correlation structure. A simple way to incorporate the correlation structure 
in testings is by permutation sampling and to compare the observed statistics to 
those observed from a sample from the permutation distribution. Where the model 
includes adjustment variables, permutation of the score residuals and recalculating 
the test statistics is a more relevant null distribution. If the primary objective focuses 
on risk or prognostic modeling based on multiple SNPs, then the selection of a set 
of SNPs for further modeling does not require such a stringent selection of SNPs. 
One may select some limited number regardless of their overall significance. For 
instance, with a 3000 SNP study, one may select the SNPs with the top 1% or 5% of 
p-values to reduce overall variability of the subsequent modeling method. However, 
as described later, additional strategies for model selection (such as cross-validation) 
will ultimately be needed.

32.4.1.1  Example: Univariate Statistics
After filtering for low allele frequency and call rate, 1903 out of 3404 geno-
typed SNPs remained in the myeloma data set. We calculated univariate statistics 
for each of the SNPs displayed in Figure 32.1, testing the SNP associations with 
bone disease. While one could assess significance via permutation sampling here, 
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Bonferroni-corrected .05 level corresponds to the log10 p-value of −4.58 which only 
includes one SNP. The labels on the plot correspond to the SNPs selected as part of 
the regularized regression method (least absolute and selection operator [LASSO]) 
described in a later section. It also demonstrates that it may be useful to include 
slightly more variables (SNPs) as part of the modeling method, even if they do not 
achieve significance by multiple comparison adjusted methods.

32.5  MULTIVARIATE ASSOCIATIONS

Assume there is interest in combining genetic information across loci. The simplest 
model is some additive combination of the genotype data. For instance, for binary 
outcome data or case control studies, a logistic regression model can be used where 
the probability of disease or toxicity is P(Y = 1|Z, X) = exp(η(X,Z))/(1 + exp(η(X,Z))) 
where a linear combination of individual SNPs which is the simplest way to combine 
information between SNPs adjusting for any baseline factors is

	

η β γ γ β( )X Z, = + + .
= =
∑ ∑0

1 1l

L

l l

k

K

k kZ X 	 (32.1)

32.5.1  Penalized Regression

Consider the likelihood-based regression setting. Assume there are n independent 
observations of the genotype and non-genotype data described earlier. Denote the 
likelihood function as l(·) which would be a binomial likelihood for binary outcomes, 
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FIGURE 32.1  Univariate SNP p-values.
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partial likelihood for survival endpoints or the typically normal likelihood for con-
tinuous outcome data. While step-wise model building is a reasonable strategy for 
building models (with the Akaike information criteria [AIC] Akaike [1974] or BIC 
to do the model selection), we believe penalized methods offer the advantage of 
reduced variability especially in moderate sample size settings. A popular regular-
ization or penalization method is the LASSO (Tibshirani 1996) and its extensions 
(e.g., Hastie et al. 2009). There has been considerable subsequent work on rapid 
estimation methods. Suppressing the notation for the adjustment variables, which 
may or may not be penalized, the LASSO estimate β̴ = (β̴

1, … β̴
m)′ is defined as the 

maximizer of

	

g l Y X
i

n

i k ik k( )β β λ β= ,
⎛
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∑ ∑ ∑
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1
1

where λ1 is a non-negative penalty parameter. This estimator has the attractive prop-
erty that as the penalty λ1 increases, maximizing g(β) with respect to β leads to 
some of the βk set to zero. In addition, the variable selection and regression func-
tion estimates tend to have overall less variability than those obtained from forward 
or backward variable selection methods. Further variance reduction, at the cost of 
potentially less sparse solution involving more non-zero coefficients, is obtained by 
using a mixture of L1 and L2 penalty called the “elastic net” proposed by Zou and 
Hastie (2005). The elastic net can be expressed as an optimization problem with the 
objective function with both squared and absolute penalty terms

	

g l Y Xi k ik
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There is overall shrinking of the linear predictor and setting of some of the coeffi-
cients to zero in the model as the penalty parameters λ1 and λ2 are increased. Flexible 
software that fits continuous, binary, and survival data is available in R statistical 
language (GLMNET). In this section, we have described these methods in terms of 
the original predictors Xk; we could generalize to sets of regression splines or even 
more complex multivariable basis functions, Bj(X), j = 1, …, p as described in the 
next section.

For the case of LASSO, the models are indexed by a single parameter λ1 or for the 
elastic net by two parameters λ1 and λ2. To objectively choose these tuning param-
eters, one can either use a separate data set or use a resampling technique such as 
K-fold cross validation. For K-fold cross validation, the data are divided in approxi-
mately K groups (for instance, K = 5 or 10), and fractions (K − 1)/K are used to con-
struct the models and index the sequence of models by the tuning parameters, and 
the log-likelihood is evaluated for each model on the remaining 1/K of the data, 
called the test data. The analysis is repeated for each of the K subsets of the data, 
and test sample log-likelihoods are averaged over the K subsets. Tuning parameters 
(λ1 and λ2 in the case of the elastic net) are chosen that lead to maximum likelihood 
solutions. It is important that all of the variable selection aspects of the modeling be 
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included in the cross-validation loop. For instance, if the initial filter is to use only 
the top q most significant variables in the penalized regression algorithm, that should 
be part of the cross-validation loop.

32.5.1.1  Example: L1 Penalized Regression Bone Disease Model
We chose to use L1 regression to construct a multi-SNP model of bone disease. Based 
on prior methodological work we filtered the number of SNPs under consideration 
prior to using LASSO. For this example we chose only the top 20 SNPs (the top 1% 
SNPs) with the smallest p-values. We left the SNP coding as ordinal {0,1,2}. We 
applied five fold cross validation over both the variable selection as well as the model 
building and the final model chosen included eight SNPs. We acknowledge the num-
ber of SNPs filtered is another tuning parameter which could also be estimated using 
cross-validation. The coefficient profile is presented in Figure 32.2. There are eight 
SNPs remaining in the model; the labels of these SNPs are included in Figure 32.1. 
Cross-validated log-likelihood is presented in Figure 32.3.

32.5.1.2  Example: L1 Penalized Regression Simulation
A concern with the relatively small sample sizes with SNP studies as part of thera-
peutic cancer studies is that only large effects would be seen. We conducted a small 
simulation study to investigate this issue. SNP data were generated by resampling 
from the “observed 400” patient cohort and the disease response was simulated from 
a single SNP regression model out of the total of 1903 SNPs under consideration. For 
an odds ratio of 1.75, 91% of the LASSO models (with complexity selected by five 
fold cross validation) included the true SNP. On average, 5.2 SNPs were selected, 
indicating at least some tendency for over-fitting. For an odds ratio of 2.0 the prob-
ability of selecting the correct SNP increased to 98.6% with a similar level of overfit-
ting. This indicates the potential for identifying moderately strong associations from 
clinical SNP data.
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FIGURE 32.2  L1 penalized regression coefficient paths.



598 Handbook of Statistics in Clinical Oncology

32.5.2  Logic Regression

One way to extend the linear model, described earlier, is to consider more complex 
SNP combinations. For instance,

	

η β β( ) ( )X = + ,∑0

h

h hB X

where the basis functions Bh(X) could represent nonlinear functions of several 
of the Xk. A specific example of this model is regression trees (Breiman et al. 
1984) and extended to survival data, for instance, by Segal (1988) and LeBlanc 
and Crowley (1993). In that case, the basis functions Bh(X) are products of subset 
functions of the individual variables, of SNPs. In tree-terminology they would be 
terminal nodes of a regression tree. Trees are discussed in detail in another chapter 
and hence are not developed here. Trees have been used in the analysis of SNP data 
both as single trees (Durie et al. 2009), and as ensembles, such as random forests 
(Ishwaran et al. 2008).

In this section we describe a method which can be viewed as one that uses alter-
native interpretable basis functions based on logical or Boolean rules. The method, 
called “logic regression” is a methodology that is particularly suited for situa-
tions where the data are binary or in the case of SNP data “almost binary” and are 
binary if they are first coded as binary or recessive or dominant codes for each 
SNP (Ruczinski et al. 2003, Kooperberg and Ruczinski 2005). The resulting model, 
again suppressing the adjustment variables, can be expressed as basis functions or as 
Boolean combination of binary predictors Xj, j = 1, …, p such as

	
B X X X Xh
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where the Xj are binary coding of the SNP data as either dominant or recessive 
effects and hence Xj are assumed to be either 0 or 1. X j

c is the complement function, 
so X Xj

c
j= −1 . Additional adjustment covariates Z can be included in the model as 

for the other models described earlier.
Logic regression is usually implemented as a stochastic simulated annealing 

algorithm which selects those logic terms Bh(·) which maximize the log-likelihood 
corresponding to the model. Given the potential complexity or adaptivity in fitting 
each basis function, the number of logic terms m is set to be some small constant 
(between 1 and 3).

There is a tree-based representation of any logic term, which allows an easy 
specification for the stochastic optimization algorithm. At each step of the simulated 
annealing algorithm, one logic tree can be replaced by another logic tree through sim-
ple change operations on the tree. These operations are demonstrated in Figure 32.4.

As is true for other simulated annealing algorithms, if the likelihood of the new 
model is larger than for the current model, then the new model is chosen; if the cur-
rent model has a smaller likelihood than the new model, then new model is chosen 
with a probability that is a function of the difference between the current and new 
model log-likelihood. The probability of choosing the new model is related to the 
current step number of the algorithm. At early steps of the procedure most of new 
models are accepted, while after many steps, only improved models are chosen with 
high probability.

Similar to penalized regression methods, the model complexity (which we have 
measured as the number of leaves or terms in the logic model) should be selected in 
such a fashion that acknowledges the significant adaptivity of the logic regression 
algorithm. Logic regression allows both permutation tests to assess overall associa-
tion as well as K-fold cross validation.
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32.5.2.1  Example Revisited: Logic Regression
We return to our example, but now with the goal of constructing a simple logic 
regression model of Boolean combinations of SNPs. After conducting full cross 
validation, involving both filtering to the 20 SNPs and application of logic regres-
sion, there was no evidence of improvement in prediction over the null model. As 
expected in the relatively modest sample size setting, the more adaptive and discrete 
logic regression method suffers somewhat from additional variance, even if the inter-
pretation of a small number of SNPs would be desirable. However, for demonstration 
purposes we show the three-leaf tree which on the full data set had a deviance of 288 
compared to the null model deviance of 321. The model is presented in Figure 32.5. 
The estimated odds ratio was 2.12 and the logic representation was

	

L = ( ) ( )

(

NOT AND

OR

dominant rs dominant rs

dominant r

4292454 3745202

ss7843746)

which represented patients at a higher risk of extensive bone disease.

32.6  ASSESSING TREATMENT–GENE INTERACTIONS

In the prior section, we demonstrated logic regression which can be viewed as a 
procedure which builds models within a special class of interactions. However, there 
is now an increasing literature for efficiently assessing more simple gene × gene or 
gene × baseline clinical factor, or gene × treatment interactions. It has been shown 
that significant gains in power can be obtained in many situations by only consider-
ing SNPs with the most significant marginal association prior to testing the interac-
tion. It has been shown that if the test of interaction is independent of the marginal 
test, then one needs to adjust only for the number of interactions tested rather than 
the total number of marginal tests conducted (Kooperberg and LeBlanc 2008, Dai 
et al. 2011). Penalized regression strategies that directly incorporate interactions 

Parameter = 2.12 or

and

1 2

3

FIGURE 32.5  Selected logic regression tree with 3 SNPs (1) rs4292454, (2) rs3745202, and 
(3) rs7843746.
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were considered by Park and Hastie (2008). Several strategies for evaluating and 
utilizing interactions in genomic studies were described in Kooperberg et al. (2009).

However, potentially the most important class of interactions of interest in thera-
peutic studies is the interaction of a SNP with the assigned treatment group. A question 
may arise: Does the impact of treatment (say on toxicity) depend on a gene? A simple 
case of one treatment and one SNP in a multiplicative model can be represented as

	 η β γ β δ( ) ,X Z, = + + +0 Z X ZXk k k 	 (32.2)

where
Z = {0,1} indicates treatment
Xk represents the specific genetic variable

To assess potential interactions, one can test all K gene by treatment interactions. 
Another strategy, as noted earlier, is to first test all the gene main effects, and then 
only test a subset of the interactions corresponding to the top most significant gene 
main effects. It can be shown that the second stage testing is asymptotically inde-
pendent of the first stage; so if only M interaction tests are considered at the second 
stage, then significance only need to be adjusted by the factor of M tests. This can 
lead to increased power to find interactions in many settings. Of course, if the inter-
action is “pure” or hidden entirely in the marginal test, then it will be missed at 
second stage testing (Dai et al. 2011).

If a true interaction is not the primary goal, but rather interest focuses on any 
gene association that may be modified by baseline clinical factors, then more gen-
eral weighted tests can be used. For instance, LeBlanc and Kooperberg (2009) con-
structed adaptively weighted test statistics that can be substantially more powerful 
than the single tests if interactions are truly present in the data so that within a subset 
of patients the genetic association is substantially stronger.

32.7  DISCUSSION

In this chapter our goal was not to provide an exhaustive review of methods for 
prognostic or risk modeling with SNP data, but rather to focus on two techniques 
which have been used and/or developed for SNP data which represent smooth pre-
diction and non-smooth interpretation-based strategies: penalized regression and 
logic regression. Obviously alternatives to linear penalized models could include 
regression trees demonstrated in the analysis of clinical SNP data by Durie et al. 
(2009) or ensembles of trees such as random forests. Other methods have been pro-
posed, including multifactor dimensionality reduction (MDR, Richie et al. 2001) 
which focuses on low-dimensional combinations of SNPs.

We have not addressed sensible ways to combine SNPs that may be close together; 
for instance, some sets of SNPs may be thought to correspond to a haplotype block. 
In that setting, prior to doing some of the modeling proposals we have made in this 
chapter, one may first want to use a haplotype reconstruction method (e.g., Li et al. 
2006). After appropriately acknowledging the haplotype uncertainty, one can use 
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regression methods to predict the outcome. An adaptive technique that does SNP 
selection and haplotype regression, “SNP and HAplotype REgression” was devel-
oped by Dai et al. (2009). An alternative approach is to group using regularized 
methods on SNPs localized in a region; see, for instance, Chen et al. (2010).

An important issue with the analysis of SNP data in the context of moderate-size 
clinical studies is an assessment of power to detect meaningful associations. For 
instance, unlike some large case control studies including meta-analyses used for 
GWAS studies, our experience is that SNP association studies in therapeutic settings 
often consist of small numbers of cases. Therefore, statistical methods which control 
the variability and don’t over-fit the data are critically important. In addition, where 
power to detect reasonable sized effects is limited, combining across clinical studies, 
where scientifically sensible, may be a useful strategy.

Software for logic regression and GLMNET are currently available at CRAN.
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