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Abstract

Purpose: We developed an absolute risk model to identify individuals in the general population at elevated risk of
pancreatic cancer.

Patients and Methods: Using data on 3,349 cases and 3,654 controls from the PanScan Consortium, we developed a relative
risk model for men and women of European ancestry based on non-genetic and genetic risk factors for pancreatic cancer.
We estimated absolute risks based on these relative risks and population incidence rates.

Results: Our risk model included current smoking (multivariable adjusted odds ratio (OR) and 95% confidence interval: 2.20
[1.84–2.62]), heavy alcohol use (.3 drinks/day) (OR: 1.45 [1.19–1.76]), obesity (body mass index .30 kg/m2) (OR: 1.26 [1.09–
1.45]), diabetes .3 years (nested case-control OR: 1.57 [1.13–2.18], case-control OR: 1.80 [1.40–2.32]), family history of
pancreatic cancer (OR: 1.60 [1.20–2.12]), non-O ABO genotype (AO vs. OO genotype) (OR: 1.23 [1.10–1.37]) to (BB vs. OO
genotype) (OR 1.58 [0.97–2.59]), rs3790844(chr1q32.1) (OR: 1.29 [1.19–1.40]), rs401681(5p15.33) (OR: 1.18 [1.10–1.26]) and
rs9543325(13q22.1) (OR: 1.27 [1.18–1.36]). The areas under the ROC curve for risk models including only non-genetic factors,
only genetic factors, and both non-genetic and genetic factors were 58%, 57% and 61%, respectively. We estimate that
fewer than 3/1,000 U.S. non-Hispanic whites have more than a 5% predicted lifetime absolute risk.

Conclusion: Although absolute risk modeling using established risk factors may help to identify a group of individuals at
higher than average risk of pancreatic cancer, the immediate clinical utility of our model is limited. However, a risk model
can increase awareness of the various risk factors for pancreatic cancer, including modifiable behaviors.
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Introduction

Pancreatic Cancer is the 4th leading cause of cancer death in the

United States [1]. While the lifetime risk (age 85) of pancreatic

cancer for US Caucasians is only 1.5% [1], the five-year survival

rate is less than 4.8%, the poorest of any major tumor type [1].

The primary reason for the poor survival rate is the high

proportion of patients (.80%) who are diagnosed with locally

advanced or metastatic disease. However, five-year survival rates

for patients with early-stage resectable disease can exceed 20%

[1,2], underscoring the need to improve early detection. Numer-

ous studies are underway to identify and validate promising

biomarkers [3,4] for early detection. In addition, several clinical

studies have shown that imaging via e ndoscopic ultrasound, MRI

or CT scan can detect pre-cancerous changes in the pancreas

among high-risk individuals [5–8].

Given the low incidence of pancreatic cancer in the general

population, widespread screening may not be practically feasible,

even with a highly sensitive and specific test. Therefore,

identification of individuals with substantially elevated risk will

be important to the success of early detection studies. Pancreatic

cancer tends to cluster in families and the heritability has been

estimated to 0.36, indicating a strong genetic influence [9].

Although high-penetrance germline mutations have been identi-

fied, they only explain a small fraction of cases (less than 5%),

indicating that many susceptibility variants (rare and common)

remains to be identified. There appears to be no demographic

differences between sporadic and familial pancreatic cancers.

While there has been some suggestion that familial pancreatic

cancers may have a slightly earlier age-of-onset (approximately 5

years) this finding has been inconsistent [10,11]. No differences in

the pathology of invasive pancreatic cancers in patients with

familial vs non-familial pancreatic cancers have been reported [12]

(A. Klein, unpublished work). However, non-invasive precursors

are more common in patients with familial pancreatic cancer and

these precursor lesions of higher-grade than the lesions that occur

in patients without a family history [12]

Pancreatic cancer risk has been associated with cigarette

smoking [13], heavy alcohol use [14,15], diabetes mellitus [16],

increased body mass index [17], family history of pancreatic

cancer [18] and inherited genetic variation. Germline mutations in

several genes, BRCA2, PALB2, p16, ATM, STK11, PRSS1, SPINK1

and DNA mis-match repair, have been associated with an

increased pancreatic cancer risk [19–26]. In addition, two recently

completed genome-wide association studies (GWAS), PanScan1

and PanScan2, have identified variants in ABO (rs505922), 1q32.1

(rs3790844), 13q22.1 (rs9543325) and 5p15.3 (rs401681) that are

associated with a modestly increased risks of pancreatic cancer

[27,28]. The ABO single nucleotide polymorphism (SNP) rs505922

is in strong linkage disequilibrium with O/non-O blood group

alleles indicating that individuals with non-O blood groups are at

an increased risk of developing pancreatic cancer [29,30]. In

addition, haplotypes of SNPs rs505922 and rs8176746 are

perfectly correlated with the O and B alleles, respectively

[29,30], and the assessment of both SNPs allow for complete

discrimination between blood groups.

The aim of this study was to derive an absolute risk model for

pancreatic cancer in the general population. By using data from

both prospective cohort studies and retrospective case-control

studies, we developed a relative risk model that included

established risk factors for pancreatic cancer. We then estimated

participants’ absolute risk of developing pancreatic cancer by

combining the derived risk model with incidence data from the

SEER registries.

Methods

Study Population
The PanScan Consortium is comprised of 12 case-control

studies nested within prospective cohorts and 8 retrospective case-

control studies that participated in two GWAS of pancreatic

cancer [27,28]. The cohorts include: The Alpha-Tocopherol Beta-

Carotene Prevention Study (ATBC), Give us a Clue to Cancer and

Heart Disease Study (CLUEII), Cancer Prevention Study (CPSII),

European Prospective Investigation Into Cancer and Nutrition

Study (EPIC), Health Professionals Follow-Up Study (HPFS),

Nurses’ Health Study (NHS), The New York University, Women’s

Health Study (NYU-WHS), Physicians Health Study (PHS),

Prostate, Lung, Colorectal Ovarian Cancer Screening Trial

(PLCO), Shanghai Men’s and Women’s Health Study (SMWHS),

Women’s Health Initiative (WHI), and the Women’s Health Study

(WHS). The retrospective case-control studies were conducted at

the Mayo Clinic, Yale University (Connecticut Pancreas Cancer

Case Control Study), Group Health (Seattle Puget Sound) and

Kaiser Permanente in Northern California (PACIFIC Study),

Memorial Sloan Kettering Cancer Center, MD Anderson Cancer

Center, University of California San Francisco, Johns Hopkins

Medical School, and Mount Sinai Toronto.

Ethics Statement
The Institutional Review Boards approval, including approval

of the consent procedure, was obtained for each of the studies as

follows: ATBC and Ag.Health (National Cancer Institute Special

Studies Institutional Review Board (SSIRB)), CLUE (Johns

Hopkins School of Public Health (JHSPH) Institutional Review

Board Office), CPS II (Emory University Institutional Review

Board), EPIC (International Agency for Research on Cancer

(IARC) Institutional Review Board Office), HPFS, WHS, NHS

and PHS (Partners Healthcare System, Human Research Com-

mittee, Partners Human Research Office), PLCO (National

Cancer Institute Special Studies Institutional Review Board

(SSIRB)), SMWHS (Vanderbilt University Institutional Review

Board), WHI (Fred Hutchinson Cancer Research Center Institu-

tional Review Board), Group Health – PACIFIC (Group Health

Research Institute, Human Subjects Review Office), JHU (Johns

Hopkins Medicine, Office of Human Subjects Research, Institu-

tional Review Board), MAYO (Mayo Clinic Institutional Review

Board), MDA (MD Anderson Cancer Center, Office of Protocol

Research, Institutional Review Board), MSKCC (Memorial

Sloan-Kettering Cancer Center, Institutional Review Board/

Privacy Board), TORONTO (University Health Network,

Research Ethics Board),(UCSF) University of California San

Francisco, Human Research Protection Program, Committee on

Human Research, YALE (Yale University, Human Investigation

Committee). Written consent was obtained from all study

Pancreatic Cancer Risk Model
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participants. In addition, because the National Cancer Institute is

the coordinating center for the PanScan I and II studies, the

National Cancer Institute Special Studies Institutional Review

Board (SSIRB) reviewed and approved the PanScan protocol in its

entirety.

A brief description of each study is provided in Tables S1 and

S2. Genotype and covariate data were available for 3,851 cases

and 3,924 controls. Analyses were restricted to non-Hispanic

whites as four percent of study participants reported non-

European ancestry (n = 493), precluding meaningful analyses

within this subgroup. Participants with diabetes diagnosed

(n = 467) within 3 years of pancreatic cancer diagnosis were

excluded because of possible reverse causation. To ascertain

potential confounding effects of diabetes proximal to pancreatic

cancer diagnosis, we conducted sensitivity analyses including/

excluding these participants as well as modeling an indicator

variable denoting diabetes diagnosis within three years prior to

pancreatic cancer diagnosis. Point estimates for the other key

risk factors were not substantially changed among the models. A

total of 3,349 cases and 3,654 controls were included in our

analyses.

Description of covariate and SNP data
For each study, we collected information on age, sex, ethnicity,

cigarette smoking history (never/former/current), history of

diabetes mellitus (never/.3 years duration), body mass index

(BMI, #30/.30), heavy alcohol consumption (#3 drinks per

day/.3 drinks per day), and family history of pancreatic cancer

(yes/no). Age was defined as age at diagnosis for cases and age at

interview for controls (Table 1). The following criteria were used to

select risk factors for inclusion in the model 1) factor has been

consistently associated with pancreatic cancer risk and 2) data was

available from both the case-control and cohort studies. Missing

covariate data were modeled using the missing indicator method

where a separate ‘missing’ level is created within each covariate.

Details on data collection for the various covariates have been

described in previous publications [15,17,31,32] Genotyping in

PanScan has been described earlier [27,28]. ABO alleles were

derived from genotypes for rs505922 and rs8176746 as described

previously [30]. Complete case analysis was conducted for the

genotype data; the small number of participants for whom data

were missing on at least one of the genetic markers (n = 6) were

excluded from any analyses that included genetic risk factors.

Statistical Methods
Before pooling data from the cohort and case-control studies,

logistic regression models were fit separately to both the case-

control and cohort data. We compared OR estimates for each risk

factor from the case-control and cohort studies and looked for

substantive differences. With the exception of history of diabetes

mellitus, no substantive differences were observed. Data were

pooled in the subsequent analysis.

To build a relative risk model for pancreatic cancer, we fit a

logistic regression model for case-control status as a function of

smoking history, history of diabetes, family history of pancreatic

cancer, alcohol consumption, obesity and GWAS-identified risk

markers including ABO blood group, adjusted for sex, age and

study. In particular, we fit the following logistic regression

model:

log it½Pr(Case)�~azbsexXsexzbT
ageXagezbT

studyXstudyz

bT
smokingXsmokingzbT

diabetesXdiabetesz

bT
famhxXfamhxzbT

drinkingXdrinkingz

bT
BMI XBMIzbT

ABOXABOz

b1q32X1q32zb1q32X1q32z

b5p15X5p15zb13q22X13q22

The terms Xage, Xstudy, Xsmoking et cetera are vectors of categorical

indicator variables, corresponding to the categories in Tables 1

and 2. For example, a former smoker would have Xsmoker = (1,0,0)T,

while a never smoker would have Xsmoker = (0,0,0)T. The SNPs

X1q32, X5p15 and X13q22 were coded as counts of risk alleles, and Xsex

was an indicator for female sex. We modeled the effect of history

of diabetes mellitus separately for retrospective case-control and

prospective nested case-control studies.

Given estimates of the log odds ratios, we calculated the relative

risk for an individual with a specific risk profile X~(XT
smoking,

XT
diabetes,XT

famhx,XT
drinking,XT

BMI ,XT
ABO,X1q32,X5p15,X13q22 )T as

follows:

RR(X )~exp½bT
smokingXsmokingzbT

diabetesXdiabeteszbT
famhxXfamhxz

bT
drinkingXdrinkingzbT

BMI XBMIzbT
ABOXABOz

b1q32X1q32zb1q32X1q32zb5p15X5p15zb13q22X13q22�

This relative risk model was then used to calculate Receiver

Operating Characteristic (ROC) curves (by comparing the

distribution of ORs in cases versus controls) and age-specific

incidence rates (described below). We also fit relative risk models a)

excluding the genetic factors and b) including only the genetic

factors, in order to compare the relative contribution of genetic

and non-genetic factors to risk prediction.

We calculated the area under the ROC curves using the Mann-

Whitney statistic and compared the areas for different models

using the method described by DeLong et al. [33] as implemented

in SAS PROC LOGISTIC. These calculations were performed in

the subset of data with no missing genetic or non-genetic covariate

data (435 cases and 458 controls from the cohort studies and 885

cases and 1,093 controls from the case-control studies).

Age-specific incidence for an individual with risk factor profile

X was calculated as rSEX(t) RR(X), where the sex-specific baseline

incidence rate rSEX(t) was calculated as the appropriate sex-and

age-specific average incidence rate divided by the average relative

risk in controls with no missing covariate data [34]. Average

incidence rates by age for white men and women were based on

SEER (Surveillance, Epidemiology and End Results, http://seer.

cancer.gov/) data for years 2000–2008 (SEER17). The baseline

incidence was the incidence among participants who had never

smoked, had never been diagnosed with diabetes, had no family

history of pancreatic cancer, drank an average of #3 alcoholic

drinks/day, had an adult BMI between 18.5 and 25, and did not

carry any of the risk alleles at the four known risk loci. Lifetime

risks were calculated by integrating the age-specific incidence

rates, accounting for mortality due to other causes [34,35].
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Table 1. Participants’ Characteristics, the PanScan Consortium.

Characteristic Cohort Case-Control

Cases n (%) Controls n (%) Cases n (%) Controls n (%)

Sex

Male 676 (50) 732 (51) 1076 (54) 1171 (53)

Female 667 (50) 713 (49) 930 (46) 1038 (47)

Age in years categories

,50 39 (3) 20 (1) 184 (9) 219 (10)

51–60 185 (14) 161 (11) 498 (25) 494 (22)

61–65 241 (18) 239 (17) 339 (17) 361 (16)

66–70 290 (22) 349 (24) 328 (16) 366 (16)

71–75 290 (22) 349(24) 299 (15) 369 (17)

76–80 200(15) 224(16) 225 (11) 270 (12)

81+ 98(7) 103(7) 133 (7) 130 (6)

Cigarette smoking status

Never smoker 768(59) 902(63) 661 (39) 900 (48)

Former smoker 357(27) 405(28) 772 (45) 820 (44)

Current smoker 176(14) 116(8) 270 (15) 154 (8)

Missing/Not Available 42 22 293 315

Diabetes mellitus

Never 1147(93) 1309 (95) 1103 (86) 1352 (91)

.3 years duration 89 (7) 67 (5) 181 (14) 130 (9)

Unknown 107 69 722 727

Family history of pancreatic cancer

No 524 (94) 577 (97) 1507 (94) 1620 (96)

Yes 33 (6) 20 (3) 89 (6) 66 (4)

Missing/Not Available 786 848 410 523

Heavy Alcohol Use (.3 drinks per day)

No 1083 (92) 1188 (94) 942 (85) 1224 (90)

Yes 99 (8) 82 (6) 168 (15) 136 (10)

Missing/Not Available 161 175 896 849

Body Mass Index

,18.5 10 (1) 17 (1) 16(1) 17(1)

18.5–25 499 (38) 585 (41) 574(38) 695(40)

25–30 565 (42) 566 (39) 606(40) 723(42)

.30 256 (19) 267 (19) 323(21) 287(17)

Missing/Not Available 13 10 487 487

ABO genotype

O/O 449 (33) 603 (42) 772 (38) 961 (44)

A/O 493 (37) 498 (34) 728 (36) 773 (35)

A/A 135 (10) 102 (7) 167 (8) 159 (7)

B/O 163 (12) 152 (11) 221 (11) 215 (10)

B/B 20 (2) 11 (1) 17 (1) 19 (1)

A/B 81 (6) 78 (5) 97 (5) 80 (4)

1q32 rs3790844

T/T 835 (62) 817 (57) 1319 (66) 1273 (58)

T/C 436 (32) 534 (37) 605 (30) 798 (36)

C/C 72 (5) 94 (7) 82 (4) 137 (6)

5p15 rs401681

C/C 376 (28) 434 (30) 506 (25) 698 (32)

C/T 649 (48) 688 (48) 1029 (51) 1098 (50)
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To examine the value of adding genotype data to a classic non-

genetic risk prediction tool, we plotted the estimated lifetime risk

for cases and controls based on a model without genetic factors

and a model with genetic factors. We also calculated the net

reclassification index (NRI) for men and women separately, using

twice the average lifetime risk to define high and low risk

categories [36,37].

Table 1. Cont.

Characteristic Cohort Case-Control

Cases n (%) Controls n (%) Cases n (%) Controls n (%)

T/T 318 (24) 323 (22) 471 (23) 413 (19)

13q22 rs9543325

T/T 448(33) 573 (40) 670 (33) 879 (40)

T/C 672(50) 683 (47) 952 (47) 1027 (47)

C/C 223(17) 189 (13) 382 (19) 302 (14)

doi:10.1371/journal.pone.0072311.t001

Table 2. Association between pancreatic cancer risk and smoking, personal history of diabetes, family history of pancreatic cancer,
alcohol use, body mass index, and known genetic markers.

Characteristic Multivariate Odds Ratio (95% CI) Final Model

Cigarette smoking

Never 1.00

Former 1.22 (1.09, 1.37)

Current 2.20 (1.84, 2.62)

Diabetes mellitus

Never 1.00

.3 years duration (cohort studies) 1.62 (1.15, 2.28)

Unknown (cohort studies) 2.37 (1.64, 3.44)

.3 years duration (case-control studies) 1.77 (1.37, 2.31)

Unknown (case-control studies) 1.10 (0.80, 1.50)

Family history of pancreatic cancer

No

Yes 1.00

Heavy alcohol use (.3 drinks per day) 1.60 (1.20, 2.12)

No 1.00

Yes 1.45 (1.19, 1.76)

Body mass index

,18.5 0.91 (0.54, 1.53)

18.5–25 1.00

25–30 1.08 (0.96, 1.22)

.30 1.26 (1.09, 1.45)

ABO genotype

OO 1.00

AO 1.23 (1.10, 1.37)

AA 1.49 (1.24, 1.79)

BO 1.35 (1.15, 1.59)

BB 1.58 (0.97, 2.59)

AB 1.44 (1.15, 1.81)

1q32 rs3790844 (per risk allele) 1.29 (1.19, 1.40)

5p15 rs401681 (per risk allele) 1.18 (1.10, 1.26)

13q22 rs9543325 (per risk allele) 1.27 (1.18, 1.36)

doi:10.1371/journal.pone.0072311.t002
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Results

Demographic and risk factor characteristics of study partici-

pants are presented in Table 1. Multivariable adjusted odds ratios

(OR) are presented in Table 2 for the association between the risk

factors included in our model and pancreatic cancer. In our study

population, current smoking was associated with an increased risk

of pancreatic cancer (OR: 2.21, 95% confidence interval [CI]

1.85, 2.64) as were heavy alcohol use (OR 1.37, 95%CI 1.12,

1.68), BMI .30 (OR 1.20, 95%CI 1.04, 1.40), diabetes of .3 year

duration (cohort OR 1.62, 95%CI 1.15, 2.28; case-control OR:

1.77, 95%CI: 1.37, 2.31) and family history of pancreatic cancer

(OR 1.58, 95%CI: 1.19, 2.11). In addition, all four genetic variants

tested were associated with pancreatic cancer (OR for non-O

ABO genotypes ranged from 1.25 to 1.58, and the per-allele odds

ratios for the other three risk SNPs ranged from 1.18 to 1.49).

The area under the ROC curve (AUROC) for a risk model

including only genetic factors was 57% (95%CI 0.55–0.59),

whereas the AUROC for a model including only non-genetic

factors was 58% (95%CI 0.56–0.60). The AUROC for a model

including both genetic and non-genetic factors was 61% (95%CI

0.58–0.63), which was statistically significantly larger than both the

model including only non-genetic factors and the model including

only genetic factors (p,0.0001).

Figure 1 displays the ten-year risks of pancreatic cancer for men

and women in different age categories (51–60, 61–65, 66–70, 71–

75, and 76–80) as a function of risk percentile based on a model

including all risk factors (see Methods). This figure demonstrates

the importance of age as predictor of pancreatic cancer risk, with

risk increasing with increasing age. Only a few individuals had a

10 year absolute risk greater than 2% even if all genetic and non-

genetic risk factors were present.

Figure 2 shows the distribution of estimated lifetime risks for

models that include or do not include genetic factors. Individual

risks varied slightly depending on which model was used to

estimate them. The median difference in lifetime risk estimates

from the model with genetics to the model without genetics was

0.0% (inter-quartile range 20.2% to 0.2%) for both male and

female controls. The NRI comparing the risk model with genetics

to the risk model with no genetic factors was 20.01060.0.008 and

20.02060.011 for men and women respectively (Table 3).

Neither of these estimates was statistically significant (one-sided

p = 0.89 and p = 0.97, respectively), suggesting that adding genetic

factors to the risk model did not improve clinical utility (defined as

the ability to correctly classify individuals at twice average risk).

As expected, considering that we included established risk

factors for pancreatic cancer in our non-genetic risk model, this

model improved classification relative to a null model that

classified individuals according to their sex-specific average. The

NRI comparing the model with non-genetic risk factors alone to

this null model was 0.02560.010 (one-sided p = 0.009) for men

and 0.02660.010 (one-sided p = 0.0004) for women. However,

because we evaluated model performance in the same data set

used to build the risk model, these NRIs may be somewhat

overestimated. Moreover, it is unclear whether twice the average

lifetime risk is a clinically actionable threshold: only 8.4% of male

cases (3.5% of female) have more than twice the average lifetime

risk. Most of those identified as high risk will not go on to develop

pancreatic cancer, because the average lifetime risks in both men

and women are low. Twice the average lifetime risk is

261.47% = 2.94% in men and 261.31% = 2.62% in women,

and 96.3% of men and 96.6% of women above these risk

thresholds will not develop pancreatic cancer in their lifetimes.

The risk models with and without the genetic variables do not

identify subsets of individuals at very high lifetime risks. Using

controls to estimate the distribution of risks in U.S. non-Hispanic

whites, 4/1,000 men and 2/1,000 women would be classified as

having lifetime risk greater than 5%, and none would be classified

as having more than 7% lifetime risk.

Discussion

In this study, we generated a pancreatic cancer risk model based

on established non-genetic and genetic risk factors and calculated

Figure 1. Ten-year risks of pancreatic cancer (y-axis), by age, gender, and risk score percentile (x-axis). The risk score includes smoking
history, heavy alcohol intake, BMI, history of diabetes, family history of pancreatic cancer, ABO genotype and three common genetic variants
associated with pancreatic cancer.
doi:10.1371/journal.pone.0072311.g001
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absolute risks based on relative risk estimates and US incidence.

The risk factors considered were smoking, heavy alcohol intake,

high BMI, diabetes, family history of pancreatic cancer, ABO non-

O blood group and three common genetic variants identified by

GWAS. We found that even if all these known risk factors are

included in the model, most individuals will only be at modestly

increased risks because relatively few individuals have a high

number of risk factors. In addition, we found that the genetic

factors did not add substantively to a risk model based on life-style

factors only, as most individuals remained in the same risk strata.

The low absolute risks observed here for most individuals,

together with the current lack of non-invasive and low cost

screening tools, argue against screening programs for the general

population and underscore the importance of research to identify

novel risk markers. Given the very high mortality rate of

pancreatic cancer, it remains an open question whether future

screening tools could be implemented for individuals in the

population who are at the highest risks, for example individuals

with estimated lifetime risks above 5%. It is important to note that

our model does not account for known high-penetrant genetic

variants or strong familial risk. Individuals with a strong family

history of cancer may benefit from genetic counseling. For such

individuals genetic counseling in conjunction with the PancPRO

[38] model can provide individual level risk estimates.

This study is based on data from a series of cohort and case-

control studies and constitutes the largest risk model analysis of

pancreatic cancer to date. It is also the first risk model for

pancreatic cancer that includes non-genetic risk factors. Our

model can easily be modified to include any new discovered risk

factors.

Our study has several limitations. As with all risk scores that

include genetic variants identified from GWAS, we are most likely

including proxies for the causative genetic variants. Identification

of the causal alleles might result in better performance in our

Figure 2. Reclassification of lifetime risk of pancreatic cancer among cohort controls after adding genetic information to the risk
model.
doi:10.1371/journal.pone.0072311.g002

Table 3. Reclassification of lifetime risk of pancreatic cancer after adding genetic information to the risk model with both genetic
and non-genetic covariates.

Men Women

Risk model with non-
genetic covariates only

Less than twice average
lifetime risk (#2.94%)

More than twice average
lifetime risk (.2.94%)

Less than twice average
lifetime risk (#2.62%)

More than twice average
lifetime risk (.2.62%)

Controls Less than twice 858 11 620 20

average risk

More than twice 9 20 2 7

average risk

Cases Less than twice 716 10 517 11

average risk

More than twice 16 28 7 15

average risk

doi:10.1371/journal.pone.0072311.t003
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model. Moreover, by focusing on genome-wide significant

markers, we are not including markers that are truly associated

with pancreatic cancer risk but did not achieve statistical

significance. More sophisticated multivariable modeling tech-

niques might be able to use these latent risk markers to improve

predictive ability, but these methods greatly increase the risk of

overfitting and require sample sizes an order of magnitude larger

than the number of cases and controls used in this study [39,40].

We only measured modifiable risk factors during one point in

time. As these risk factors may change over time, our assessment

does not completely capture the cumulative lifetime exposure. We

categorized continuous variables in order to balance model

parsimony and flexibility; however, this approach may have led

to a loss of fine-scale information on exposure distribution. The list

of non-genetic risk factors included here is not complete and future

studies should consider other risk factors. Here we limited the list

of non-genetic factors to well-established non-genetic risk factors

that were assessed in our study population. For example,

information on chronic pancreatitis was not included in these

analyses due to limited availability of pancreatitis data from the

cohorts and the low prevalence of this disease. We included data

from both prospective cohort studies and retrospective case-

control studies. For the prospective data exposure information

may have changed between data collection and occurrence of

pancreatic cancer, while retrospective data can be subject to recall

bias. However, the risk estimates were consistent across study

designs for all exposures other than diabetes mellitus (Table S3).

Our model does not directly measure absolute risk but rather

relies on incidence estimates from the SEER data. We used our

controls data to estimate the distribution of risk factors among

U.S. non-Hispanic whites. The distribution of risk factors in these

controls is likely different than that of the general U.S. population,

as cohort participants are likely healthier and risk factors such as

smoking are less prevalent, and not all studies were based in the

United States. These differences may have affected our risk

estimates in several ways. On the one hand, we may have

underestimated the proportion of U.S. non-Hispanic whites who

would be classified as high risk. On the other hand, by

underestimating the average relative risk (which is inversely

related to the baseline risk), we may have overestimated risk for

individuals with particular genetic and non-genetic profiles. Given

that lifetime risk estimates remained quite low (most less than 5%

and all less than 7.5%) with little variation across the study

population, this possible overestimation does not impact our

conclusions on the utility of this model.

Our analysis is based solely on a population of European

ancestry, so it cannot be generalized to other ethnicities, some of

which have a greater risk of pancreatic cancer [42].

Model fit and reclassification were assessed in the same

populations used to obtain the risk estimates for the model;

therefore, it is possible that the results presented here overestimate

how the risk model would perform in an independent study

population. However, we deliberately chose a parsimonious

approach to modeling, focusing on well-established risk factors,

in order to minimize the risk of overfitting [41]. The risk estimates

for non-genetic covariates observed in this study are consistent

with the existing literature; thus, we would expect our non-genetic

model to perform similarly in other non-Hispanic white popula-

tions. Because the genetic risk markers were discovered in this set

of samples [27,28], the per-allele odds ratios for these markers may

be overestimated due to the ‘‘winner’s curse’’ phenomenon [42].

We used the weighted maximum likelihood method of Zhong and

Prentice to adjust for inflation due to winner’s curse [43]. The

effects at the ABO and 13q22 loci were not appreciably inflated;

the estimates for rs3790844 at chr1q32.1 and rs401681 at 5p15.33

were slightly inflated, with inflation factors of 2% and 7%,

respectively. The AUROCs using the winner’s-curse-adjusted per-

allele odds ratio estimates change only slightly: AUROC = 0.55

(0.53,0.47) for the model using risk alleles alone (as compared to

0.57) and c = 0.60 (0.58,0.62) for the model with both the risk

alleles and clinical risk factors (as compared to 0.61).

In summary, in a large study sample, we derived an absolute-

risk model for pancreatic cancer and used our model to estimate

risks in the Non-Hispanic White US population. We found that

although all risk factors were individually associated with

pancreatic cancer, the low frequencies of many of the exposures,

along with the small magnitudes of their risks and even that of

their aggregated sum resulted in relatively low ten-year absolute

risks. Thus, absolute risk modeling can identify a subset of the

general population at higher than average risk of pancreatic

cancer, but with the risk factors so far considered, the clinical

utility of such general population models at this time may be

limited.
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