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Polymorphisms in genes related to one-carbon metabolism are
not related to pancreatic cancer in PanScan and PanC4
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Abstract

Purpose The evidence of a relation between folate intake

and one-carbon metabolism (OCM) with pancreatic cancer

(PanCa) is inconsistent. In this study, the association

between genes and single-nucleotide polymorphisms

(SNPs) related to OCM and PanCa was assessed.

Methods Using biochemical knowledge of the OCM

pathway, we identified thirty-seven genes and 834 SNPs to

examine in association with PanCa. Our study included

1,408 cases and 1,463 controls nested within twelve

cohorts (PanScan). The ten SNPs and five genes with

lowest p values (\0.02) were followed up in 2,323 cases

and 2,340 controls from eight case–control studies (PanC4)

that participated in PanScan2. The correlation of SNPs with

metabolite levels was assessed for 649 controls from the
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European Prospective Investigation into Cancer and

Nutrition.

Results When both stages were combined, we observed

suggestive associations with PanCa for rs10887710

(MAT1A) (OR 1.13, 95 %CI 1.04–1.23), rs1552462 (SYT9)

(OR 1.27, 95 %CI 1.02–1.59), and rs7074891 (CUBN) (OR

1.91, 95 %CI 1.12–3.26). After correcting for multiple

comparisons, no significant associations were observed in

either the first or second stage. The three suggested SNPs

showed no correlations with one-carbon biomarkers.

Conclusions This is the largest genetic study to date to

examine the relation between germline variations in OCM-

related genes polymorphisms and the risk of PanCa.

Suggestive evidence for an association between polymor-

phisms and PanCa was observed among the cohort-nested

studies, but this did not replicate in the case–control

studies. Our results do not strongly support the hypothesis

that genes related to OCM play a role in pancreatic

carcinogenesis.

Keywords Pancreatic cancer � One-carbon metabolism �
Polymorphisms � Biomarkers � Epidemiology

Introduction

Impaired DNA methylation is known to cause cancer

through induction of chromosomal instability [1]. Folate

and related nutrients (homocysteine, cysteine, methionine,

cobalamin, and vitamin B6) are thought to influence

carcinogenesis through the one-carbon metabolism (OCM)

pathway, which is involved in DNA repair, nucleotide

synthesis, and methylation [2]. In particular, low folate

levels may result in decreased S-adenosyl-methionine lev-

els, the primary donor for methylation reactions. It has

been hypothesized that hypomethylation may occur as

result of altered folate metabolism [3]. One-carbon

metabolites (i.e., folate and related nutrients) have been

associated with several types of cancer [4–8], and inverse

associations with pancreatic cancer (PanCa) have been

observed for dietary folate, although study results have

been inconsistent [9–16]. In addition, previous studies in

association with PanCa for OCM-related SNPs observed a

positive association with PanCa for the MTHFR 677TT

genotype [17] and for two SNPs on the MTRR gene

(rs162049 and rs10380) [18]. Genome-wide association

studies (GWAS) of PanCa have not identified associations

with genes involved with OCM [19–24].

In the present study, we used a two-stage approach to

evaluate whether 31 genes thought to play a role in the

OCM pathway (http://wikipathways.org/index.php/Pathway:

WP241) were associated with PanCa. Additionally, genes

(ALPL, CPS1, CUBN, FUT2, PRICKLE2, and TCN1) that

included SNPs previously observed to predict one-carbon

metabolite levels in GWAS [25–27] were also included. The

first stage included nested case–control studies from twelve

cohorts that participated in the National Cancer Institute

(NCI) Pancreatic Cancer Cohort Consortium genome-wide

association study (PanScan1) [19]. The second stage, used

for replication, included eight case–control studies with
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GWAS data that participated in the Pancreatic Cancer

Case–Control Consortium (PanC4) and were part of Pan-

Scan 2 [22].

Methods

The methods for PanScan1 and PanScan2 are described

elsewhere [19, 22]. The study population included PanCa

cases and control participants from the previously con-

ducted GWAS in the PanScan1 and PanC4 [19, 22]. The

first stage of our analyses included 1,408 incident cases

and 1,463 controls from the twelve cohort studies that

participated in PanScan1 [19]. The second stage included

2,323 cases and 2,340 controls from eight case–control

studies that participated in PanC4 and were part of

PanScan1 and PanScan2 [19, 22]. All included studies

had available dietary and lifestyle data. Cases were

defined as participants diagnosed with primary adeno-

carcinoma of the exocrine pancreas, and controls were

matched to cases according to birth year, sex, and self-

reported race/ethnicity and were free of PanCa at the time

of recruitment [19, 22]. Genotyping was performed by

the NCI Core Genotyping Facility using the Illumina

HumanHap550 and HumanHap550-Duo SNP arrays

(PanScan1) and Illumina Human 610-Quad arrays (Pan-

Scan2) [19, 22]. Each individual study obtained informed

consent from study participants and approval from local

institutional review board. The Special Studies Institu-

tional Review Board of the NCI approved the pooled

PanScan study [19, 22].

Details of the collection of data across the cohorts are

described elsewhere [19]. A total of 37 genes and 834

SNPs were included in the study. From all studies, data on

the participant’s age and gender were obtained. In addition,

five effective principal components or eigenvectors deter-

mined from the GWAS data were included as quantitative

covariates to correct for population structure.

Data on one-carbon metabolite biomarkers (homocys-

teine, cysteine, methionine, folate, cobalamin, and vitamin

B6) measured in plasma were available for 327 controls of

the case–control study nested within the EPIC cohort.

Biomarker levels were analyzed by MS-based methods in

the laboratory of BEVITAL AS (http://www.bevital.no) in

Bergen, Norway [28].

In the first stage, the association for each SNP with

PanCa was examined within the cohorts of PanScan using

unconditional logistic regression, adjusted for age and sex.

To correct for population stratification, analyses were also

adjusted for cohort and five principal components of pop-

ulation stratification. Allelic additive models were used

where the risk allele was the least frequent allele. p values

were adjusted for multiple testing using the permutation-

based closed step-down minP procedure [29]. Genes were

evaluated separately using the adaptive rank truncated

product (ARTP) method [30] with 20 truncation points,

using 10,000 permutations. This captures potential multiple

association signals within a gene, accounting for gene size

and LD structure. Gene ARTP p values were adjusted for

multiple comparisons using a false discovery rate [31].

The ten SNPs and five genes that showed lowest p val-

ues for the association with PanCa in the cohort data were
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followed up in eight case–control studies from PanC4,

using similar analyses. Because fewer comparisons were

performed in this second stage, a Bonferroni correction was

applied to both SNP and gene p values to adjust for mul-

tiple comparisons. Finally, a combined analysis of both

stages was performed. Because combined results were

mainly driven by cohort results, these were adjusted for

multiple comparisons using similar techniques as applied

to the first stage.

Adaptive rank truncated product p values also were

computed for the total OCM pathway in all stages using the

top 5 genes as truncation points. An adjusted p value below

0.05 was considered statistically significant.

Modification of the top ten SNPs by dietary intake of

folate (in tertiles) was assessed in the cohorts by testing the

statistical significance of the multiplicative interaction

terms using likelihood ratio tests. Differences in least-

squares means for plasma metabolite levels (homocysteine,

cysteine, methionine, folate, cobalamin, and vitamin B6)

were compared per genotype for each SNP by a pairwise

t test in controls only.

Results

In the first stage of our analyses (cohort studies),

rs10887710 (MAT1A) showed the lowest p value of all

tested SNPs (allelic OR 1.24, 95 % CI 1.08–1.41, p 0.002)

(Table 1). However, after correcting for multiple compar-

isons, none of the SNPs were statistically significant. None

of the top ten SNPs for the first stage showed a relation

with PanCa in the second stage (case–control studies),

with all p values greater than 0.2. When all studies were

combined (cohort and case–control), statistically signifi-

cant associations were found for rs10887710 (MAT1A),

rs1552462 (SYT9), and rs7074891 (CUBN). However, after

correcting for multiple comparisons, the associations were

not statistically significant.

Two genes (MAT1A, p 0.021 and TYMS, p 0.033)

showed statistically significant ARTP p values in the first

stage (Table 2). In the replication stage, none of the

genes showed an association with PanCa. When both

stages were combined, MTRR (p for cohort stage: 0.19)

showed a significant p value (p 0.05). After adjustment

for multiple comparisons, no significant associations

were found in all stages. Additionally, the pathway

analysis showed ARTP-adjusted p values above 0.50 in

all stages.

There were no significant interactions of the top one-

carbon pathway SNPs or genes by dietary folate. Within the

subset of EPIC participants with the one-carbon biomarkers,

several associations were observed between one-carbon

biomarkers and the ten SNPs with the lowest p values in

the cohort stage. For three SNPs in TYMS (rs3819101,

rs11873007, and rs3786355) that were in high linkage

disequilibrium, the TT genotype correlated with higher
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methionine levels than the CT (28.46 vs. 25.34 lmol/L;

p 0.01) or CC genotype (25.45 lmol/L; p 0.01). The AA

genotype at rs1835898 (PRICKLE2) was associated with

higher folate (17.26 vs. 14.55 nmol/L for AG; p 0.04) and

higher pyridoxal phosphate (PLP) concentrations (63.44 vs.

44.45 nmol/L for AG; p 0.02 and 41.35 nmol/L for GG,

p 0.02), when compared to the AG or GG genotypes. The AC

genotype at rs222338 (PRICKLE2) was associated with

higher cobalamin levels than the CC genotype (477.45 vs.

379.26 pmol/L; p 0.03) (data not shown).

Discussion

This is the largest genetic study to date examining the

relation between germline variations in OCM-related genes

and PanCa risk. In the first stage of this study (cohort

studies), evidence for an association between genes

(MAT1A and TYMS) and SNPs (most notably rs10887710

[MAT1A]) involved in OCM with PanCa was observed.

However, after correcting for multiple comparisons, these

associations were not statistically significant, nor did the

suggestive evidence replicate in the second stage (case–

control studies) of this study. No interaction between die-

tary folate and any of the ten SNPs with lowest p values in

the first stage was observed.

For several of the top ten SNPs, a correlation with one-

carbon biomarkers was observed. This indicates that the

SNPs possibly directly influence biomarker levels, which

could strengthen evidence for a relation between these

SNPs and PanCa. However, none of the SNPs replicated

in a second stage and correlations with biomarkers could

only be calculated from a subset of all included partici-

pants. Additionally, no clear association between one-

carbon metabolites and risk of PanCa has been observed

within EPIC using the same data on metabolites and

PanCa [32].

The reason for observing no replication of the sug-

gestive evidence observed in the first stage of the study

may have been due to differences in study designs, as

cohort studies may be less prone to survival bias. How-

ever, considering the large number of SNPs tested, it is

most likely that the significant SNPs observed in the

cohort studies, which did not replicate in case–control

studies, were false-positives in the first stage of the

analysis.

In conclusion, we observed suggestive associations

between SNPs and genes involved in one-carbon metabo-

lism and risk of PanCa in the first stage of this study

(cohort studies), but none of the results replicated in the

second stage (case–control studies). Our results do not

strongly support the hypothesis that genes related to OCM

play a role in pancreatic carcinogenesis.
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Table 1 Top ten SNPs from cohort with corresponding odds ratios and p values for cohort, case–control, and combined data

Markera, Allelesb, Chrc,

Locationc, and Gened
Subsete MAFf Subjectsg p valueh p value (adjusted for

multiple testing)i
OR (95 % CI)j

rs10887710 (T,C), 10q23.1

(82019765), MAT1A
Cohort 0.17|0.20 1,463|1,407 0.002 0.564 1.24 (1.08–1.41)

Replication, case–control 0.19|0.20 2,340|2,323 0.341 1.000 1.06 (0.94–1.18)

Combined 0.18|0.20 3,803|3,730 0.005 0.990 1.13 (1.04–1.23)

rs1552462 (C,T), 11p15.4

(7213717), SYT9
Cohort 0.02|0.03 1,463|1,408 0.010 1.000 1.58 (1.12–2.23)

Replication, case–control 0.02|0.03 2,338|2,320 0.600 1.000 1.08 (0.81–1.44)

Combined 0.02|0.03 3,801|3,728 0.033 1.000 1.27 (1.02–1.59)

rs3819101 (C,T), 18p11.32

(667240), TYMS
Cohort 0.29|0.33 1,462|1,407 0.011 1.000 1.16 (1.03–1.30)

Replication, case–control 0.32|0.33 2,336|2,323 0.784 1.000 1.01 (0.92–1.11)

Combined 0.31|0.33 3,798|3,729 0.098 1.000 1.06 (0.99–1.14)

rs2276433 (C,T), 11p15.1

(20630443), SLC6A5
Cohort 0.38|0.41 1,463|1,407 0.013 1.000 1.15 (1.03–1.28)

Replication, case–control 0.42|0.39 2,340|2,323 0.986 1.000 1.00 (0.89–1.12)

Combined 0.40|0.40 3,803|3,730 0.800 1.000 0.99 (0.93–1.06)

rs11873007 (C,T),

18p11.32 (670380), TYMS
Cohort 0.30|0.33 1,359|1,302 0.013 1.000 1.16 (1.03–1.30)

Replication, case–control 0.32|0.34 2,326|2,309 0.742 1.000 1.02 (0.93–1.12)

Combined 0.31|0.34 3,685|3,611 0.100 1.000 1.06 (0.99–1.14)

rs7074891 (T,C), 10p13

(17228480), CUBN
Cohort 0.00|0.01 1,463|1,408 0.014 1.000 2.36 (1.22–4.55)

Replication, case–control 0.01|0.01 2,340|2,322 0.356 1.000 1.45 (0.59–3.58)

Combined 0.01|0.01 3,803|3,730 0.017 1.000 1.91 (1.12–3.26)

rs1835898 (A,G), 3p14.1

(64096330), PRICKLE2
Cohort 0.45|0.42 1,462|1,408 0.015 1.000 0.88 (0.79–0.98)

Replication, case–control 0.44|0.44 2,339|2,323 0.748 1.000 1.01 (0.93–1.11)

Combined 0.44|0.43 3,801|3,731 0.172 1.000 0.95 (0.89–1.02)

rs3740873 (G,T), 11p15.1

(20626016), SLC6A5
Cohort 0.45|0.49 1,462|1,407 0.016 1.000 1.14 (1.02–1.27)

Replication, case–control 0.49|0.47 2,340|2,323 0.201 1.000 0.95 (0.87–1.03)

Combined 0.47|0.48 3,802|3,730 0.646 1.000 1.02 (0.95–1.09)

rs3786355 (C,T), 18p11.32

(671962), TYMS
Cohort 0.30|0.33 1,463|1,408 0.016 1.000 1.15 (1.03–1.29)

Replication, case–control 0.32|0.33 2,338|2,320 0.822 1.000 1.01 (0.92–1.11)

Combined 0.31|0.33 3,801|3,728 0.125 1.000 1.06 (0.98–1.14)

rs222338 (C,A), 3p14.1

(64202692), PRICKLE2
Cohort 0.05|0.04 1,463|1,408 0.017 1.000 0.73 (0.57–0.95)

Replication, case–control 0.05|0.06 2,334|2,320 0.751 1.000 1.03 (0.85–1.26)

Combined 0.05|0.05 3,797|3,728 0.266 1.000 0.92 (0.79–1.07)

The SNP-level results from the unconditional logistic regression of the genotypes generated in a total of 1,407 pancreatic cancer cases and 1,463

controls

The analysis adjusted for age in ten-year categories, sex, study, five principal components of population stratification

OR Allelic odds ratio, CI 95 % confidence interval
a NCBI dbSNP identifier
b Major allele, minor allele
c Chromosome and NCBI Human genome Build 36 location
d Gene neighborhood within 20 kb upstream and 10 kb downstream of SNP
e Subset: cohort, cohort studies; case–control, case–control studies; combined, all studies
f Minor allele frequency in control and case participants
g Controls, cases
h 1 d.f. Wald test
i P values of cohort and combined stage adjusted for multiple testing by the step-down minP procedure. p values of case–control stage adjusted

by Bonferroni
j Estimate assuming additive model
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