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Boosting for detection of
gene–environment interactions
H. Pashova,a*† M. LeBlancb and C. Kooperbergc

In genetic association studies, it is typically thought that genetic variants and environmental variables jointly
will explain more of the inheritance of a phenotype than either of these two components separately. Traditional
methods to identify gene–environment interactions typically consider only one measured environmental variable
at a time. However, in practice, multiple environmental factors may each be imprecise surrogates for the under-
lying physiological process that actually interacts with the genetic factors. In this paper, we develop a variant of
L2 boosting that is specifically designed to identify combinations of environmental variables that jointly modify
the effect of a gene on a phenotype. Because the effect modifiers might have a small signal compared with the
main effects, working in a space that is orthogonal to the main predictors allows us to focus on the interaction
space. In a simulation study that investigates some plausible underlying model assumptions, our method outper-
forms the least absolute shrinkage and selection and Akaike Information Criterion and Bayesian Information
Criterion model selection procedures as having the lowest test error. In an example for the Women’s Health
Initiative-Population Architecture using Genomics and Epidemiology study, the dedicated boosting method was
able to pick out two single-nucleotide polymorphisms for which effect modification appears present. The perfor-
mance was evaluated on an independent test set, and the results are promising. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. Introduction

In genetic association studies, it is typically thought that important insight will be obtained through joint
modeling of genetic variants and environmental variables. However, weak effect of gene–environment
interactions and imprecise measurement of the environment make it difficult to identify ‘statistically sig-
nificant’ interaction effects. In many situations, however, there may be a combination of the measured
environmental variables that could interact with a particular gene, either because these measured vari-
ables are all imprecise surrogates for the actual underlying factor that interacts with the gene or because
multiple environmental factors each trigger the same biological mechanism.

Traditional methods to identify gene–environment interactions typically consider only one measured
environmental variable at a time. The power to identify such variables is then typically very limited.
Chatterjee et al. use Tukey’s 1-df model to combine multiple levels of environmental factors but not
multiple environmental factors [1]. Thomas mentions multiple relevant susceptibility factors (environ-
mental factors) as one of the future challenges in identifying gene–environment interactions [2]. In this
paper, we develop a variant of L2 boosting that is specifically designed to identify combinations of
environmental variables that jointly modify the effect of a gene on a phenotype.
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Boosting was initially developed as a classification procedure [3] and has since been adapted to the
regression and general prediction settings. In the original boosting algorithms, a weak classifier is applied
iteratively to re-weighted versions of the data on the basis of its performance on a training set. The esti-
mated predictions from each of the classifiers are then averaged to obtain the final estimator. Friedman
adapted boosting to the regression setting as an optimization problem with a squared error loss function
[4]. Boosting has been shown to produce consistent estimates in very high dimensional settings where
the number of predictors increases on the order of exp(sample size) [5].

Forward stage-wise linear regression, a version of boosting, has been shown to produce solutions
approximately equivalent to that of the least absolute shrinkage and selection (LASSO), a regularized
regression method [6], when using small step sizes [7]. The LASSO, initially proposed by Tibshirani,
minimizes the residual sum of squares under the condition that the sum of the absolute values of the
coefficients is less than a constant �. Because of this L1 penalty, the LASSO is able to simultaneously
perform shrinkage and variable selection and performs well when the number of potential predictors
is large.

TheL2 boosting procedure iteratively fits a learner, a simple fitting procedure, to the residuals from the
previous model’s fitted values [4]. The learner can be linear or non-parametric. The number of boosting
iterations, k, is a smoothing parameter generally chosen by cross-validation.

We investigate moderate to high dimensional regression problems where particular interest lies in
determining a set of effect modifiers with low individual signal. We propose a variation to the usual
L2 boosting procedure that focuses on the interaction search in contrast to most boosting methods that
address overall model prediction or classification. To be able to focus on the interaction space, the main
predictors are regressed out of the response variable and the interactions. The usual L2 boosting pro-
cedure is then applied to the resulting residuals. Because the effect modifiers may have small signal
compared with the main effects, working in a space that is orthogonal to the main predictors allows
improved performance of the algorithm as compared with applying the usual boosting algorithm that
combines both main effects and interactions as learners. The dedicated boosting method is not intended
for genome-wide association studies. Rather, because of computational demands, it is better suited for
follow-up studies where focus lies on a small number of single-nucleotide polymorphisms (SNPs).

A similar and broader problem referred to as ‘mandatory covariates’ has been recently addressed
by Boulesteix and Hothorn [8]. The mandatory covariates are necessarily included in the model, and the
aim is to determine the additional predictive value of other variables, such as high dimensional molecular
data. In their paper, the authors suggest the utilization of a two-stage boosting procedure, implemented
in the R package globalboosttest . The mandatory variables are regressed out of the outcome, and then
boosting is performed to determine a model with the additional covariates. Although the idea is similar,
further considerations need to be taken into account when dealing with interactions.

As the interactions and the main effects are expected to be correlated, taking the extra step of regress-
ing out the main effects from the interactions rather than just the outcome variable allows for better
performance and detection of the interaction effects. We compare the performance of dedicated boosting
with the algorithm globalboosttest in simulations and a real data example.

In Section 2, we describe the dedicated boosting algorithm in detail and its implementation. We apply
this method to a genetic association study within the Women’s Health Initiative (WHI) set in Section 3.
A simulation study of the properties of dedicated boosting is presented in Section 4. We compare its
performance with linear regression, the Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) stepwise model selecting procedures, the LASSO [6], and globalboosttest.

2. Dedicated boosting

We are interested in identifying groups of environmental factors that may modify the effect of a gene on
a phenotype. To that effect, we have developed a method to build a model consisting of an ensemble of
interactions with potentially small effects. We treat the group of interactions as a profile. The individ-
ual membership of factors in this profile is considered only suggestive as the method does not establish
significance for the individual interactions but rather investigates the ensemble as a whole.

Methods for the identification of interactions using stepwise model selection with criterions such as
the AIC and the BIC establish the significance of individual factors and thus require a strong signal. The
LASSO [6] and boosting are geared towards building ensembles with weaker effects. Our intent is to
develop a method for the purpose of interaction search that has the good performance of boosting when
there is little signal.

256

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 255–266



H. PASHOVA, M. LEBLANC AND C. KOOPERBERG

2.1. L2 boosting

We first describe the usual L2 boosting algorithm with component-wise linear least squares as base pro-
cedure [5, 9, 10]. The algorithm iteratively refits the residuals at each step and performs a linear least
squares regression against the single best predictor variable.

For a continuous outcome Y and a potentially large set of predictors Xj , we can summarize the L2
boosting algorithm as follows (following [10]):

1. Initialize bf .0/ D NY and set k D 0; let � be a small fixed number.

2. Increase k by 1. Compute the vector of residuals R.k�1/ D Y �bf .k�1/.X/ for all observations i .
3. Fit a simple linear regression for each Xj to the residual vector R.k�1/. Choose the Xb that best

predicts the residuals; let b̌b be the regression coefficient of Xb .

4. Setbg.k/ D b̌bXb , the fitted values from the best fit in step 3.

5. Update bf .k/ D bf .k�1/C �bg.k/
Iterate steps 2–5 until k D kstop. We determine the value kstop via cross-validation of the mean squared

error of .Y �bf .k// on the validation sample.
The boosting estimator is the sum of the base procedures scaled by �. The scalar � is a shrinkage

parameter used to avoid over-fitting. In general, good results are achieved with small �, but the proce-
dure is relatively insensitive to the size of �. Of course, smaller � will require the algorithm to run a
larger number of iterations. Note that that model can be written as

bf .k/ D � kX
kD1

bg.k/Cbf .0/:
Step 3 is

g.k/ D b̌bXb;
where

b D arg min
16j6J

X
i

�
R
.k�1/
i � b̌jXij�2 :

We select the predictor at iteration k in the simple linear model setting, which implies that we pick the
predictor Xj that is most highly correlated with the residuals R.k�1/ from iteration k � 1. Note that
the predictors Xj used at consecutive steps can be the same or different (thus formally we should add
an additional superscript k to Xj , which we omit for simplicity). In the remainder, we assume that the
candidatesXj are the same at each step; in some applications, theXj are changing during the procedure,
for example, when splines or regression trees on the Xj are considered.

We update the fitted function in a linear fashion; as the number of steps of the algorithm gets large,
the estimates converge to the least squares solution. We add the coefficient estimates at each iteration as
well; the coefficient associated with the Xb at that step is updated. Therefore,

b̌.k/ D b̌.k�1/C �b̌bI
so we can also write

bf .k/ DX
j

b̌.k�1/
j Xj : (1)

2.2. Dedicated boosting

For ease of notation, we will assume that we are looking for an environmental effect that may depend on
multiple environmental variablesEt D fE1; : : : ; Epg that modify a genetic SNP effectG on a regression
outcome Y .

Let Y be a n � 1 continuous response vector and G an n � 1 vector be a SNP of interest (we discuss
extension of the dedicated boosting algorithm to a binary response Y in the discussion). LetE be a n�p
matrix of environmental variables. Let the matrix of potential interaction factors be I D G � E. We
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refer to M D .G;E1; : : : ; Ep/ as the set of main effects and I D .I1; : : : ; Ip/ as the set of interac-
tions. We start by standardizing all continuous environmental variables to mean 0 and variance 1 prior
to constructing the matrix of interactions with categorical variables transformed to 0/1. We later trans-
form results back to the original scale. To be able to focus on the interaction space, we regress the main
predictors out of both the response variable and the interactions up-front. We then apply the L2 boosting
procedure described in Section 2.1 to the resulting residuals using the residuals of I as the predictors
Xj . In particular, the dedicated boosting procedure is now as follows:

1. Regress the main effects out of the outcome Y and the interaction terms I

Y D
XpC1

jD1
b̨jMj C res.Y /; (2)

I1 D
XpC1

jD1
b�j1Mj C res.I1/; (3)

: : :

Ip D
XpC1

jD1
b�jpMj C res.Ip/; (4)

where the notation res.Z/ is used to indicate the residuals of the regression model with Z as
response and the main effects M as predictors. These models are fit using ordinary least squares.

2. Apply the L2 boosting procedure with outcome res.Y / and predictor set res.I1/; : : : ; res.Ip/. In
particular, let

res.Y /D
pX
jD1

b̌.k/
j res.Ij /C residuals

be the equivalent of (1) for the L2 boosting procedure, and let b̌.k/ be the coefficients from the
boosting procedure.

Then the fitted values of the whole boosting algorithm can be retrieved by adding
Pp
jD1

b̌.k/
j to

.Y � res.Y //, so that the fit of the dedicated boosting solution can be expressed as

pC1X
jD1

b̨jMj C

pX
tD1

b̌.k/
t

0
@It �

pC1X
jD1

b�jtMj

1
A :

We see that the interaction coefficients are identical to the boosting coefficients b̌.k/. Because we applied
boosting to the residuals, the main effect coefficient for Mj becomes b̨j CPp

tD1
b̌.k/
t b�jt .

In this manuscript, we do not consider interactions between environmental variables. If such inter-
actions are known a priori, we would regress them out together with the main effects. Our interest lies
in modifiers of a particular gene, and we are not looking for interactions between environmental fac-
tors. However, the method we propose can also be used to explore interactions between a specific gene
with several other genes. Although the examples in this paper focus only on one SNP at a time and the
potential interactions between that SNP and the environmental factors, multiple SNPs and their pairwise
interactions can also be added. The algorithm will be applied in the same way. We will regress all main
effects including the SNPs under consideration and all environment factors out of the outcome variable
and the gene–environment and gene–gene interaction terms. We will then apply the boosting algorithm
with both gene–environment and gene–gene interactions as learners.

3. Women’s Health Initiative data

The WHI is a long-term national health study that focuses on strategies for preventing chronic dis-
eases, such as heart disease, breast and colorectal cancer, and fracture, in postmenopausal women.
The WHI consisted of an observational study of 93,773 postmenopausal women and four clinical tri-
als studying various interventions in 68,035 postmenopausal women [11]. Participants were recruited
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between 1992 and 1998. The active intervention of the clinical trials was stopped between 2002 and 2005
(e.g., [12, 13]). Follow-up of subjects is ongoing.

At the time of enrollment in the study, extensive environmental exposure data on WHI participants
were collected. A blood collection also took place. Using the DNA extracted from this blood collection,
a number of genetic studies among WHI participants were initiated.

Population Architecture using Genomics and Epidemiology (PAGE) is a National Human Genome
Research Institute funded consortium that includes WHI, the Multi Ethnic Cohort, Causal Variants
Across the Life Course (a consortium of five cardiovascular cohorts), and Epidemiologic Architecture
for Genes Linked to Environment (which studies the National Health and Nutrition Examination Survey
cohort). As part of PAGE, tens of thousands of subjects are genotyped for SNPs that were identified as
genome-wide significant in other studies (‘putative causal SNPs’) to study the genetic architecture of the
phenotypes for which the SNPs were identified. Each of the four PAGE groups genotyped a number of
SNPs associated with obesity or body mass index (BMI).

In the current paper, we analyze the WHI-PAGE data on obesity consisting of 11 SNPs previously
identified, mostly in genome-wide association studies, to be associated with obesity. Genotype, demo-
graphic, and environmental data assumed to be associated with obesity and collected at recruitment are
available on 17,049 women. These data include age, current exercise (expressed as metabolic equivalent
tasks (METs)/week, a continuous variable), whether the subject exercised at each of ages 18, 35, and
50 years (binary), education (11 levels, treated as continuous), ever smoking (binary), current smoking
(binary) and alcohol consumption (five levels, treated as continuous), ethnicity (Caucasian, African
American, Hispanic, Asian/Pacific Islander, American Indian), region (three levels corresponding to
north–south, as a surrogate for sun (vitamin D) exposure), and estimated percent of calories from
fat, protein, and carbohydrates on the basis of food-frequency questionnaires. The response variable is
measured BMI (weight in kilograms divided by height in square meters). The study design is described in
detail by Fesinmeyer et al. (‘Genetic risk factors for BMI and obesity in an ethnically diverse population:
results from the PAGE Study’ submitted, 2011).

We want to investigate the possibility of effect modification of the association between each of the
SNPs and BMI by some of the environmental and demographic variables. Because this effect modifi-
cation is likely to be on a small scale, the dedicated boosting algorithm is a good candidate method of
analysis. The particular composition of the group of environmental and demographic variables is only
intended to provide an illustration of our methodology: we consider this a group of predictors that may
be associated with BMI and that could be interacting with the SNP effect on BMI.

We present results for linear regression, stepwise model building using AIC and BIC model selec-
tion (described below), the LASSO, globalboosttest, and dedicated boosting. We randomly divide the
data into a training set with 13,049 subjects and a test set with 4000 subjects. For each of the 11
SNPs, we apply each method to the training data set that contains a specific SNP, all the environmental
and demographic variables, and the interactions between the SNP and the other variables. We reserve
the test set for evaluating the performance of the models. With the exception of the three FTO SNPs,
the linkage disequilibrium as measured by the absolute value of the correlations between the SNPs is
less than 0.12. The three FTO SNPs are in high linkage disequilibrium with correlations between 0.78
and 0.89.

To ensure comparability across methods, we include (unpenalized) the main effects of all variables in
each method. We perform the AIC and BIC model selection in a forward fashion starting with the main
effects model and adding the interaction effects one at a time. We apply a penalization for the LASSO
only to the interaction terms, ensuring that all main effects are included in the final model. For dedicated
boosting, we standardize the continuous predictors. We back-transform and present all results on the
original scale. For the simulations presented in Section 4, we also apply an AIC procedure that honors
model hereditary constraints. In other words, we consider interactions only when both main effects have
been selected by the stepwise algorithm to be included in the model. Results for BIC with hereditary
constraint procedure are not presented as very rarely was an interaction term selected.

On the basis of our initial experiments, we concluded that, like for the regular boosting algorithm, the
value of � is mostly irrelevant as long as it is small enough. Therefore, we took � D 0:1 throughout.

We started our analysis by applying the dedicated boosting algorithm for each of the SNPs as well
as to versions of the data with the response permuted. When comparing the number of steps that the
dedicated boosting algorithm took on the real data (as selected with cross-validation) with the number
of steps it took on the permuted data, it appeared that for SNP rs10938397 there was evidence of some
possible interactions. For SNP rs17782313, there were maybe some interactions, but these interactions
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appeared to be weaker. In our analysis, we focus on these two SNPs, providing some limited results for
the other nine SNPs.

The interactions, as found by the dedicated boosting algorithm between rs10938397 and age, current
exercise and exercise at 18 years, and Asian/Pacific Islander ethnicity (see Table I), have a negative effect
on BMI, whereas the interactions with percent calories from protein in the diet, education, smoking,
and Hispanic, African American, and American Indian ethnicities have a positive effect. For exercise
at 18 years, education level, and Hispanic and American Indian ethnicities, the interactions are in the
opposite direction of the main effects, whereas the rest of the selected interactions strengthen the cor-
responding main effects. We note that the magnitude of the coefficients from the dedicated boosting
algorithm are smaller than those from (unpenalized) linear regression and stepwise model selection using
AIC. The LASSO coefficients are neither consistently smaller nor bigger than those of the boosting algo-
rithm. The BIC method selects no interactions for this data set, whereas the globalboosttest algorithm
selects only one interaction term.

In Table II, we present results for SNP rs17782313. We again note that for those variables where AIC
and boosting selected the same terms, the boosting coefficients are smaller than the AIC coefficients.
For this SNP, the group of variables selected by dedicated boosting include age, current exercise, exer-
cise at 18 and 35 years of age, percent calories from carbohydrates in the diet, smoking, and Hispanic
and African American ethnicities. Of these, smoking and African American ethnicity are in the opposite
direction of the corresponding main effects.

Table III summarizes for each of the 11 SNPs the performance of each of the models. It also
includes the minor allele frequencies of each of the SNPs included in the study. We compute the vector
U D

P18
jD1

b̌
j res.Ij /, where b̌ is the set of estimated interaction terms for the model and res.Ij / are

the residuals left from regressing the main effects out of interaction term Ij in the test data set (see (3)
and (4)). We compute res.Y / (2), the test set BMI residual vector after regressing out the main effects
and the residual sums of squares RSSD

P4000
iD1 .res.Yi /�Ui /2. We report RSS� RSSmain, the residual

sums of squares less the residual sums of squares of the main effects model. We compute this quantity

Table I. rs10938397: Comparison of interaction terms chosen by the six methods.

Main effects Interaction effects

Estimate Std. error p-value Full AIC BIC LASSO GlobalB Boosting

(Intercept) 40.597 1.928 < 0:001

rs10938397 0.209 0.082 0.011
Age �0:195 0.008 < 0:001 �0:016 �0:018 – – – �0:014

Amount of exercise �0:066 0.005 < 0:001 �0:013 �0:013 – �0:009 – �0:010

Exercise at 18 years 1.387 0.138 < 0:001 �0:358 �0:318 – �0:227 – �0:215

Exercise at 35 years 0.345 0.147 0.019 0.074 – – – – –
Exercise at 50 years �0:518 0.134 < 0:001 �0:067 – – �0:005 – –
% Calories from

carbohydrates �0:007 0.017 0.665 �0:002 – – – – –
% Calories from

protein 0.183 0.024 < 0:001 0.031 – – – – 0.016
% Calories from fat 0.096 0.019 < 0:001 �0:005 – – – – –
Education level �0:359 0.030 < 0:001 0.093 0.091 – 0.041 – 0.060
Ever smoking 0.401 0.121 0.001 0.278 0.261 – 0.191 – 0.164
Current smoking �3:153 0.218 < 0:001 �0:093 – – – – –
Alcohol �0:612 0.055 < 0:001 �0:007 – – – – –
Hispanic �0:329 0.216 0.127 0.263 – – 0.143 – 0.019
African American 2.532 0.160 < 0:001 0.525 0.469 – 0.467 0.030 0.362
Asian/Pacific Islander �3:936 0.275 < 0:001 �0:389 – – �0:269 – �0:229

American Indian �0:603 0.565 0.286 1.336 1.308 – 0.991 – 0.816
Region middle �0:315 0.144 0.029 �0:080 – – – – –
Region south �0:361 0.137 0.008 �0:069 – – – – –

The dedicated boosting algorithm took 92 steps. Cells that are labeled ‘–’ mean that a particular approach did not select
that variable. Each approach first fits (the same) main effects; ‘Full’ refers to fitting all interaction terms using a linear
model; ‘GlobalB’ is the globalboosttest algorithm; ‘Boosting’ is the dedicated boosting algorithm.
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Table II. rs17782313: Comparison of interaction terms chosen by the six methods.

Main effects Interaction effects

Estimate Std. error p-value Full AIC BIC LASSO GlobalB Boosting

(Intercept) 40.730 1.927 < 0:001

rs17782313 0.185 0.094 0.049
Age �0:195 0.008 < 0:001 �0:034 �0:035 – – – �0:018

Amount of exercise �0:066 0.005 < 0:001 �0:009 – – – – �0:004

Exercise at 18 years 1.382 0.138 < 0:001 0.218 0.327 – – – 0.123
Exercise at 35 years 0.352 0.147 0.017 0.166 – – – – 0.075
Exercise at 50 years �0:517 0.134 < 0:001 0.048 – – – – –
% Calories from
carbohydrates �0:008 0.017 0.656 �0:010 �0:019 – – – �0:010

% Calories form
protein 0.183 0.024 < 0:001 0.015 – – – – –

% Calories from fat 0.096 0.019 < 0:001 0.006 – – – – –
Education level �0:360 0.030 < 0:001 �0:021 – – – – –
Ever smoking 0.398 0.121 0.001 �0:572 �0:558 – – – �0:368

Current smoking �3:157 0.218 < 0:001 0.234 – – – – –
Alcohol �0:611 0.055 < 0:001 �0:010 – – – – –
Hispanic �0:320 0.216 0.139 �0:861 �0:811 – – – �0:352

African American 2.440 0.157 < 0:001 �0:473 �0:441 – – 0.058 �0:152

Asian/Pacific Islander �3:984 0.274 < 0:001 0.165 – – – – –
American Indian �0:610 0.565 0.280 �0:066 – – – – –
Region middle �0:316 0.144 0.028 �0:003 – – – – –
Region south �0:361 0.137 0.008 0.026 – – – – –

The dedicated boosting algorithm took 63 steps. Cells that are labeled ‘–’ mean that a particular approach did not select
that variable. Each approach first fits (the same) main effects; ‘Full’ refers to fitting all interaction terms using a linear
model; ‘GlobalB’ is the globalboosttest algorithm; ‘Boosting’ is the dedicated boosting algorithm.

Table III. RSS for the 11 SNPs from the WHI-PAGE data based on the six examined approaches.

Minor allele
Nearest gene SNP frequency Full AIC BIC LASSO GlobalB Boosting

MTCH2 rs10838738 0:297 0:0272 0:0130 0:0000 �0:0006 0:0005 �0:0017
GNPDA2 rs10938397 0:387 0:0100 0:0019 0:0096 0:0182 �0:0015 0:0013

KCTD15 rs11084753 0:355 0:0058 0:0012 0:0091 �0:0029 0:0030 �0:0108
MC4R rs17782313 0:236 0:0677 0:0534 0:0000 0:0010 0:0001 0:0124

NEGR1 rs2815752 0:367 0:0805 0:0551 0:0000 0:0017 �0:0018 0:0060

CTNNBL1 rs6013029 0:093 0:0762 0:0433 0:0000 0:0000 �0:0020 0:0049

TMEM18 rs6548238 0:155 0:0613 0:0533 0:0000 0:0072 0:0026 0:0095

SH2B1 rs7498665 0:355 0:0440 0:0062 0:0128 �0:0003 �0:0011 �0:0095
FTO rs3751812 0:327 0:0360 0:0440 0:0110 0:0085 0:0039 0:0050

FTO rs8050136 0:394 0:0054 �0:0048 0:0000 �0:0049 0:0050 �0:0051
FTO rs9930506 0:378 0:0605 0:0328 0:0000 0:0000 0:0046 �0:0023

Results are averages of 10 random test sets with 4000 subjects that were not used in any aspect of the model building or
selection; ‘Full’ refers to fitting all interaction terms using a linear model; ‘GlobalB’ is the globalboosttest algorithm;
‘Boosting’ is the dedicated boosting algorithm. In bold is the best performing method for each SNP.

for a random split of the data in a test set of 4,000 subjects and a training set of 13,049 subjects and nine
random splits with the same division and average the resulting RSS�RSSmain over all 10 splits.

As far as RSS is concerned, globalboosttest and dedicated boosting have the best performance
(Table III), however dedicated boosting identifies more interactions that appear real. globalboosttest
identifies some interactions but also misses some. In fact, we will see later in the simulation study that
globalboosttest has fewer true positives and fewer false positives. For SNP rs17782313, the lowest error
is achieved with the BIC model, which selected no interactions for any of the splits. This would signify
that even though we have some evidence that dedicated boosting is selecting interaction terms that are
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Table IV. rs10938397: Results for permutation study based on 1000 permutations of the null.

Coefficient Selected Larger coefficient Smaller coefficient

Age �0:014 122 14 108
Amount of exercise �0:010 126 4 122
Exercise at age 18 years �0:215 119 8 111
% Calories from protein 0.016 126 43 83
Education level 0.060 115 5 110
Ever smoking 0.164 120 20 100
Hispanic 0.019 121 121 0
African American 0.362 127 4 123
Asian/Pacific Islander �0:229 144 50 94
American Indian 0.816 123 20 103

Exercise at age 35 years 105 105 –
Exercise at age 50 years 131 131 –
% Calories from carbohydrates 67 67 –
% Calories from fat 100 100 –
Current smoking 129 129 –
Alcohol 107 107 –
Region middle 127 127 –
Region south 116 116 –

Whereas the dedicated boosting algorithm on the original data took 92 steps, only 95 out of the 1000 permutations had
number of steps greater than or equal to 20 and none had number of steps larger than 85.

associated with the outcome, these interactions are not strong enough to improve the predictive properties
of the model.

Permutation test. Next, we discuss the results of a permutation test for SNPs rs10938397 and
rs17782313. We permuted the response variable BMI 1000 times after the main effects were regressed
out to generate data under the null hypothesis of no interaction effects. Each time, we applied the ded-
icated boosting algorithm using the permutation of BMI as response variable. Note that this is not a
typical global permutation test, as we are only removing the interactions rather than removing both main
effects and interactions.

Table IV summarizes the results for SNP rs10938397. For each of the covariates that were selected
by the dedicated boosting algorithm in the original analysis, we count how often the variable is selected
during the 1000 permutations and, if it is selected, whether the absolute value of the coefficient b̌ is
larger during the simulations than the original version or that it is smaller. We do the same for the
variables that were not selected, except that here if a variable is selected during the permutations,
its coefficient is larger in magnitude than the original analysis because in that case the coefficient
was zero.

With the exception of Hispanic ethnicity, the number of permutation models that included a larger
coefficient than the original coefficient was less than or equal to 50. The Hispanic ethnicity interaction
term had a larger coefficient in 121 of the permuted data samples. This suggests that if there were no true
interactions for this SNP, as is the case for the permutated data sets, results from the dedicated boosting
model would be unlikely to be observed for all covariates that were selected except for Hispanic ethnic-
ity. On the other hand, for all the covariates that were not selected in the original model, the analysis of
the permuted data sets frequently selected a larger coefficient.

We also note that in none of the 1000 permutations the boosting algorithm took as many steps as the
algorithm took on the original data. This suggests that the dedicated boosting algorithm indeed found a
‘signal’ that is beyond noise.

Table V presents the permutation results for SNP rs17782313, organized the same way as Table IV.
The interactions for exercise and exercise at age 35 years resulted in coefficients more extreme than the
original in more than 50 of the permutations, suggesting that these covariates may have ended up by
chance in the original model. The rest of the interactions had coefficients large enough to make them
unlikely if there were truly no effect modifications present for this SNP.

In 14 out of the 1000 permutations, the dedicated boosting algorithm took as many steps or more as
the algorithm took on the real data. This suggests that there likely is a true interaction effect for these
data, but that the signal is not as strong as for rs10938397.
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Table V. rs17782313: Results for permutation study based on 1000 permutations of the null.

Coefficient Selected Larger coefficient Smaller coefficient

Age �0:018 122 6 116
Amount of exercise �0.004 132 59 73
Exercise at age 18 years 0.123 139 47 92
Exercise at age 35 years 0.075 122 63 59
% Calories from carbohydrates �0.010 93 18 75
Ever smoking �0.368 134 2 132
Hispanic �0.352 124 27 97
African American �0.152 130 43 87

Exercise at age 50 years 130 130 –
% Calories from protein 148 148 –
% Calories from fat 100 100 –
Education level 149 149 –
Current smoking 153 153 –
Alcohol 126 126 –
Asian/Pacific Islander 152 152 –
American Indian 146 146 –
Region middle 135 135 –
Region south 137 137 –

On the original data, the dedicated boosting algorithm took 63 steps; 14 permutation runs had number
of steps greater than or equal to 63.

4. Simulation study

We conducted a simulation study to further examine the performance of dedicated boosting based on the
results that we obtained for SNP rs10938397 on the analysis of the WHI data. In particular, we simulate
only a new response variable and use the original data set for the prediction variables. We present
results for the least squares model without model selection, AIC and BIC based forward stepwise model
selection of interactions, the LASSO, applied to the interaction terms only, globalboosttest, AIC with
hereditary constraint, and dedicated boosting. We consider the model

Y D �0C �1G C

19X
jD2

�jEj

„ ƒ‚ …
C

18X
jD1

ˇj .Ej �G/

„ ƒ‚ …
C"

main effect interaction

Œvia dedicated boosting�

where

"DN.0; 6:422/I

note that 6.42 is the residual variance in the WHI data.
The ˇ coefficients were taken from the dedicated boosting results in Table I, and the � coefficients are

the main effects from the same table. For the interactions, there are 10 non-zero coefficients and 8 zero
coefficients. In particular, the non-zero coefficients were

ˇ D .�0:014;�0:010;�0:215; 0:016; 0:060; 0:164; 0:019; 0:362;�0:229; 0:816/;

for age, amount of exercise, exercise at 18 years, % of calories from protein, education level, ever smok-
ing, Hispanic, African American, and American Indian ethnicities, and region middle, respectively. Note
that these are the coefficients shown in Table IV. The random error is based on the residual variance of
the same model.

To compare the five methods, we compute

U D

18X
jD1

b̌
j res.Ij /
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and compare it with the true linear combination (TLC) of the interactions

TLCD
18X
jD1

ˇj res.Ij /;

where res.I / represent the residuals from the linear regression models of the main effects on the
interaction terms. We report the mean interaction added squared error (MIaSE) D n�1

P
.TLC � U/2,

an overall measure of the distance between the true and fitted coefficients for each model.
Table VI presents the results from 1000 replications of the simulation model. We note that the dedi-

cated boosting algorithm has the best performance out of all the methods with respect to RSS. For the 10
terms with non-zero ˇ’s, we report on average how many times the model assigned non-zero coefficients
(‘True positive’). The dedicated boosting algorithm has the highest proportion of true positives averaged
over the 1000 runs. The procedure assigned a non-zero coefficient to the Hispanic variable only 21% of
the time. The row ‘False positive’ counts how often one of the eight covariates with zero coefficients
was selected. Not surprisingly, the BIC model, which rarely picked any interactions, has the best false
positive performance. Dedicated boosting has less false positives than the LASSO but slightly more than
AIC. globalboosttest performs similarly to BIC, with very few false positives and very few true positives.

Further, we investigate the performance of the dedicated boosting algorithm in a range of scenarios,
varying from very weak to very strong interaction effects. Figure 1 presents the MIaSE based on the
same simulation setup as above. However, all of the interaction coefficients are multiplied by a factor
between 0.1 and 5. Thus, the coefficients in these models are aˇj where a is between 0.1 and 5, and the
ˇj are the same as above. For these models, still a fixed number of the environmental factors (but not all)
have interactions. The strength of these interactions varies between very weak and very strong. Results
are based on 50 simulations. As expected, the BIC model performs very well when the interaction terms
are very small, as it in general rarely selects interactions for inclusion in the model. All methods perform
very similarly once the interaction effects are large, as essentially every method finds the right model.

Table VI. Simulation study results based on 1000 replications.

Full AIC HAIC BIC LASSO GlobalB Boosting

Non-zero coefficients
Age 1.00 0.46 0.14 0.09 0.09 0.00 0.57
Amount of exercise 1.00 0.49 0.11 0.05 0.47 0.18 0.53
Exercise at age 18 years 1.00 0.42 0.11 0.02 0.40 0.12 0.44
% Calories from protein 1.00 0.25 0.06 0.01 0.11 0.00 0.28
Education level 1.00 0.50 0.13 0.03 0.22 0.00 0.50
Ever smoking 1.00 0.33 0.08 0.03 0.41 0.10 0.42
Hispanic 1.00 0.16 0.02 0.00 0.29 0.04 0.21
African American 1.00 0.60 0.16 0.11 0.66 0.53 0.66
Asian/Pacific Islander 1.00 0.23 0.06 0.01 0.39 0.13 0.30
American Indian 1.00 0.38 0.01 0.02 0.46 0.19 0.43

Zero coefficients
Exercise at age 35 years 1.00 0.22 0.04 0.00 0.25 0.03 0.22
Exercise at age 50 years 1.00 0.17 0.04 0.00 0.28 0.05 0.24
% Calories from carbohydrates 1.00 0.26 0.03 0.00 0.06 0.00 0.19
% Calories from fat 1.00 0.26 0.03 0.00 0.10 0.00 0.17
Current smoking 1.00 0.17 0.04 0.01 0.32 0.06 0.23
Alcohol 1.00 0.20 0.05 0.00 0.21 0.01 0.24
Region middle 1.00 0.16 0.02 0.00 0.29 0.03 0.23
Region south 1.00 0.15 0.03 0.00 0.26 0.02 0.22

Overall summary
MIaSE 0.0570 0.0532 0.0440 0.0456 0.0380 0.0395 0.0312
True Positive 1.0000 0.3819 0.0879 0.0369 0.3492 0.1293 0.4337
False Positive 1.0000 0.1979 0.0331 0.0033 0.2218 0.0249 0.2172

‘Full’ refers to fitting all interaction terms using a linear model; ‘GlobalB’ is the globalboosttest algorithm;
‘HAIC’ is the hereditary constraints AIC model; ‘Boosting’ is the dedicated boosting algorithm.
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Figure 1. Simulation study results based on 50 replications for varying magnitude of interaction terms. ‘Full’
refers to fitting all interaction terms using a linear model; ‘Boosting’ is the dedicated boosting algorithm.

Boosting outperforms the other methods for a range of values of the multiplier a between 0.75 and 3,
which importantly contains aD 1, which corresponds to the interaction effects seen in the real data.

5. Discussion

In many genetic epidemiological studies, it is not just of interest to identify SNPs that are associated with
particular phenotypes, but it is also of interest to identify environmental and demographical factors that
modify these genetic effects. The search for such effect modifiers has often had limited success, both
because the effect modifications are small and because various variables are measured with error.

Dedicated boosting is a variation of L2 boosting, which focuses on the search for effect modifiers. We
were interested in developing a method that is able to pick out ensembles of weaker effects of covariates
that interact with another risk factor, such as a SNP. Well-known methods such as AIC and BIC model
selection with stepwise model building can be modified to be used for finding interactions. However,
when using these methods, the effect of the interactions needs to be fairly strong for them to be included
in the final model. Penalized regression methods, such as the LASSO and boosting, are well suited for
finding solutions that consist of combinations of weaker effects. Our interest was in adapting such a
method for low signal in a search for interactions.

In a simulation study, our method outperforms the LASSO, globalboosttest, AIC, and BIC model
selection procedures as having the lowest test error. In the WHI-PAGE data example, the dedicated
boosting method was able to pick out two SNPs for which effect modification appears present. The
performance was evaluated on an independent test set, and the results are promising. For most SNPs,
no effect modification was detected by any of the methods. In these cases, the performance of dedicated
boosting is not markedly different from the rest of the methods. However, when some effect modification
is present, dedicated boosting gives lower error rates on the independent test set, as was the case with
SNP rs10938397.

Future work that we intend to pursue includes extending our approach to settings beyond linear regres-
sion to binary outcomes using a binomial loss function and beyond linear covariate effects and extending
ways to ‘export’ the fitted profiles that identify the effect modifiers from one epidemiological cohort to
another cohort. This may in fact turn out to be quite challenging as environmental covariates are often
measured slightly differently in different cohorts. The PAGE consortium will be an excellent place to
apply such a method, as other cohorts that are part of this consortium have the same outcome, the
same SNPs, and similar covariates measured. R code for dedicated boosting will be made available on
http://kooperberg.fhcrc.org/soft.html.
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