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ABSTRACT
Objective Genome-wide association studies have
identified a large number of single nucleotide
polymorphisms (SNPs) associated with a wide array of
cancer sites. Several of these variants demonstrate
associations with multiple cancers, suggesting pleiotropic
effects and shared biological mechanisms across some
cancers. We hypothesised that SNPs previously
associated with other cancers may additionally be
associated with colorectal cancer. In a large-scale study,
we examined 171 SNPs previously associated with 18
different cancers for their associations with colorectal
cancer.
Design We examined 13 338 colorectal cancer cases
and 40 967 controls from three consortia: Population
Architecture using Genomics and Epidemiology (PAGE),
Genetic Epidemiology of Colorectal Cancer (GECCO), and
the Colon Cancer Family Registry (CCFR). Study-specific
logistic regression results, adjusted for age, sex, principal
components of genetic ancestry, and/or study specific
factors (as relevant) were combined using fixed-effect
meta-analyses to evaluate the association between each
SNP and colorectal cancer risk. A Bonferroni-corrected p
value of 2.92×10−4 was used to determine statistical
significance of the associations.
Results Two correlated SNPs—rs10090154 and
rs4242382—in Region 1 of chromosome 8q24, a
prostate cancer susceptibility region, demonstrated
statistically significant associations with colorectal cancer
risk. The most significant association was observed with
rs4242382 (meta-analysis OR=1.12; 95% CI 1.07 to

Significance of this study

What is already known on this subject?
▸ Several hundred common genetic variants have

been associated with a wide array of cancer types.
▸ Only a small proportion of the heritability of

colorectal cancer can be explained by the
currently identified risk loci from genome-wide
association studies of colorectal cancer.

▸ Identifying shared genetic associations between
diseases (ie, pleiotropy) is a useful approach to
identify new risk loci, and may elucidate
common etiologies and help in risk prediction.

What are the new findings?
▸ This study clearly shows that two genetic

variants in Region 1 of the 8q24 locus, a
prostate cancer risk region, are also associated
with colorectal cancer risk.

▸ Furthermore, this study provides additional
evidence that the telomerase reverse transcriptase
locus is associated with colorectal cancer.

How might it impact on clinical practice in
the foreseeable future?
▸ Colorectal risk variants may be used as part of

a risk prediction model to define high-risk
populations for targeted screening regimens
and, possibly, inform clinical decision making.
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1.18; p=1.74×10−5), which also demonstrated similar associations
across racial/ethnic populations and anatomical sub-sites.
Conclusions This is the first study to clearly demonstrate Region 1 of
chromosome 8q24 as a susceptibility locus for colorectal cancer; thus,
adding colorectal cancer to the list of cancer sites linked to this
particular multicancer risk region at 8q24.

INTRODUCTION
Since the first series of genome-wide association studies (GWAS)
for cancer was published in 2007, several hundred common
genetic variants have been associated with a wide array of
cancer sites.1 As GWAS continue to identify variants associated
with cancer, patterns of pleiotropic associations have emerged
that highlight key loci and shared pathways that affect multiple
cancer sites. For instance, genetic variants at chromosome 8q24
have been associated with cancers of the prostate, colorectum,
breast, bladder and other sites.2–7 Similarly, genetic variants in
and near the telomerase reverse transcriptase (TERT) gene,
which encodes for telomerase activity, have been associated with
glioma, lung, prostate, colorectal and other cancers,5 8–11

emphasising the importance of cellular ageing in cancer
development.

Pleiotropy occurs when a genetic locus is associated with mul-
tiple phenotypic traits. Accordingly, any genetic difference at a
pleiotropic locus may have wide-ranging effects across different
cell types. Evidence of pleiotropic associations can improve our
understanding of disease aetiology by identifying shared
molecular components underlying disease risk and by validating
the pathogenicity of variants at a locus.12 To illustrate, a recent
study of the genetic overlap between systematic lupus erythema-
tosus and other autoimmune diseases found novel pleiotropic
associations that support a role for T cell and innate immune
response pathways, providing valuable evidence for dissecting
the biological mechanisms that underlie their shared
aetiologies.13

Previous analyses of shared genetic variants across cancers
have focused primarily on hereditary disorders, such as the
Lynch and Li-Fraumeni syndromes. Although multiple cancer
types are known to cluster within families,14 studies of shared
genetic factors across various non-familial cancers have been
limited. Given the numerous associations reported by GWAS of
cancer, we now have an opportunity to assess pleiotropy across
different cancers. These pleiotropic associations may have been
missed in prior GWAS of colorectal cancer (CRC) due to
smaller sample sizes, and the stringent threshold of significance
of testing hundreds of thousands to millions of single nucleotide
polymorphisms (SNPs) in GWAS. For this study, we tested
GWAS-identified risk variants of 18 other cancers for pleio-
tropic associations with CRC risk in a large-scale collaboration,
including multiple racial/ethnic groups. Specifically, we con-
ducted a meta-analysis study of 13 338 CRC cases and 40 967
controls from 16 studies of three consortia: Population
Architecture using Genomics and Epidemiology (PAGE);
Genetics and Epidemiology of Colorectal Cancer Consortium
(GECCO); and the Colon Cancer Family Registry (CCFR).

METHODS
Study participants
Three consortia contributed data to this meta-analysis study:
PAGE;15 GECCO11 16 and CCFR.17 This collaboration com-
prised 13 338 CRC cases and 40 967 controls from 16 studies
(see online supplementary table S1). Briefly, PAGE studies
included: Atherosclerosis Risk in Communities (ARIC),18 which

is part of Causal Variants Across the Life Course (CALiCo);
Epidemiologic Architecture for Genes Linked to Environment,
which accesses the Vanderbilt University biorepository (EAGLE-
BioVU);19 Multiethnic Cohort (MEC);20 and Women’s Health
Initiative (WHI). GECCO studies included: French Association
STudy Evaluating RISK for sporadic CRC (ASTERISK);21

Hawaii Colorectal Cancer Studies 2 & 3 (Colo2&3);22

Darmkrebs: Chancen der Verhütung durch Screening
(DACHS);22 Diet, Activity, and Lifestyle Study (DALS);23

Health Professionals Follow-up Study (HPFS);24 Nurses’ Health
Study (NHS); Ontario Familial Colorectal Cancer Registry
(OFCCR);25 26 Physicians’ Health Study (PHS);27 Prostate,
Lung, Colorectal, and Ovarian Cancer Screening Trial
(PLCO);28 29 Post-Menopausal Hormones Supplemental Study
to the CCFR (PMH-CCFR);30 VITamins And Lifestyle (VITAL)
study;31 and WHI.32 33 While WHI participates in both PAGE
and GECCO, only WHI data as a part of GECCO was used.
CCFR17 included a population-based case-control subset.

Demographic, genetic and epidemiologic information was
obtained by each study according to its enrolment, genotyping
and assessment protocols. Case and control definitions, as well
as factors used in matching, differed by study (see online supple-
mentary material, supplementary table S2). The majority of
studies used incident CRC cases; controls had no diagnosis of
CRC. Six GECCO studies (DACHS, DALS, HPFS, NHS, PLCO
and WHI) contained study-specific subsets that were genotyped
and analysed individually due to differences in sample collec-
tion, year of ascertainment, or controls used for each subset (see
online supplementary material; supplementary table S2). This
led to a total of 22 analytic subsets from the 16 studies.
Supplementary figure S1 shows the participating studies and
overall study design. Institutional review board approval was
obtained for all studies.

SNP selection and genotyping
A total of 171 SNPs previously associated with 18 cancers other
than CRC were selected by PAGE researchers (see online sup-
plementary table S3). These SNPs were identified to be asso-
ciated with cancer, as of January 2010, from the National
Human Genome Research Institute (NHGRI) GWAS catalogue
(http://www.genome.gov/26525384)1 as well as review of the
cancer GWAS and fine-mapping literature.15 References for each
selected SNP are provided in online supplementary table S3.
The risk allele for each SNP was defined as the allele associated
with an increased risk of cancer in prior publications. For SNPs
associated with multiple cancer sites, the first reported GWAS
was used in assigning the risk allele. These SNPs were geno-
typed using a custom panel in each PAGE study with the excep-
tion of ARIC. In ARIC, GECCO and CCFR, genotype data
were abstracted from previously generated GWAS data.

To control for potential bias due to population stratification
(ie, confounding due to racial/ethnic differences in allele fre-
quencies and disease risk), 128 ancestry informative markers
that capture the major continental genetic diversity34 were geno-
typed in all PAGE studies with the exception of ARIC. Principal
components were estimated from these markers by
EIGENSTRAT35 and included in regression models, providing
objective quantitative estimates of genetic ancestry in compari-
son with self-reported race/ethnicity. In ARIC, CCFR and
GECCO, principal components of ancestry were derived from
the GWAS dataset of each study using EIGENSTRAT.35

In addition to direct genotyping, imputation for some of the
171 cancer risk variants was conducted in studies having GWAS
data (ARIC study in PAGE and each study in GECCO) to

Cheng I, et al. Gut 2014;63:800–807. doi:10.1136/gutjnl-2013-305189 801

Colon

 group.bmj.com on April 11, 2014 - Published by gut.bmj.comDownloaded from 

http://www.genome.gov/26525384
http://www.genome.gov/26525384
http://gut.bmj.com/
http://gut.bmj.com/
http://group.bmj.com/
http://group.bmj.com/


estimate genotypes for untyped SNPs based on shared haplo-
types and correlation with genotyped SNPs. Standard
quality-assurance and quality-control measures were used to
ensure genotyping quality. Further details are provided in the
online supplementary material. The majority of the 171 SNPs
of interest were available across studies (97% SNPs were geno-
typed or imputed in all 22 analytic study sets; see online supple-
mentary table S3).

Statistical analyses
For each study, the association between each SNP and CRC was
estimated using unconditional logistic regression. SNPs were
coded additively with 0, 1, 2 referring to the number of risk
alleles (or the allele dosage for imputed SNPs). Primary models
were adjusted for age, sex and the most relevant principal com-
ponents of genetic ancestry to account for relevant population
substructure for each study. A few studies were additionally
adjusted for study centre (CCFR, DALS, PLCO and DACHS),
study component (WHI), smoking (PHS), or batch effects
(ASTERISK). To examine patterns of associations across race/
ethnicity, each study with at least 80 CRC cases per race/ethni-
city conducted analyses stratified by racial/ethnic population.
Polytomous unconditional logistic regression was also per-
formed in each study to examine associations across anatomical
subsite (colon vs rectum). This method allowed us to simultan-
eously examine the associations for colon and rectal cancer in a
single regression model, providing an efficient approach and the
ability to test for heterogeneity in effects by anatomical subsite.

To examine whether the top associations found for the prostate
cancer risk variants at Region 1 of chromosome 8q24 were inde-
pendent from Region 3, an established colorectal risk region at
8q24, rs6983267 (a Region 3 CRC risk variant; meta-analysis
OR=1.14; p=5×10−14) was included in the regression model
with each Region 1 prostate cancer risk variant.

Log odds regression estimates were combined across studies
using inverse-variance weighted, fixed-effect meta-analysis in
METAL36 for overall and stratified analyses. Heterogeneity
p values were estimated based on Cochran’s Q statistic. SNP
associations demonstrating heterogeneity in associations across
studies at p<0.05 were additionally examined using
random-effects meta-analysis (see online supplementary table
S4). A Bonferroni-corrected p=2.92×10−4 (nominal α/number
of SNPs tested=0.05/171) was used to determine the statistical
significance of the overall association for each SNP with CRC.

RESULTS
The main characteristics of the 54 305 subjects (13 338 cases;
40 967 controls) are presented in online supplementary table
S1. The PAGE studies consisted of six different racial/ethnic
populations, whereas the GECCO and CCFR consisted of
European ancestry populations. In sum, the majority of the sub-
jects were of European ancestry (80.6%), with the remainder
comprising 7.0% African–American, 4.5% Hispanic, 6.4%
Asian and 1.4% Pacific Islander or Native American ancestry.
Most studies ascertained men and women (51.1% women
overall), with the exception of WHI and NHS (women only)
and HPFS and PHS (men only). Age varied across studies:
ARIC ascertained younger adults (mean age of cases=55.8, con-
trols=54.0), whereas the MEC ascertained older adults (mean
age of cases=70.0, controls=68.4). Disease stage and anatom-
ical subsite also varied across studies: EAGLE-BioVU, a clinic-
based collection of patients, had the largest proportions of
advanced stage disease (59.2%) and rectal tumours (42%).

A total of 171 risk variants for 18 cancers other than CRC,
representing 100 unique chromosomal regions, were tested in
13 338 cases and 40 967 controls from 16 studies across three con-
sortia. Of the 171 risk variants, 16 variants were nominally asso-
ciated with CRC at p<0.05 (see online supplementary table S3,
figure 1), which was more than the ∼9 associations expected by

Figure 1 Manhattan plot of the meta-analysis association between risk variants of 18 other cancers and colorectal cancer. The solid line is the
Bonferroni-corrected significance threshold. Each association is coloured according to the cancer for which the single nucleotide polymorphism was
originally reported, and positioned on the x-axis according to its genomic position.
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chance (171 SNPs×0.05=8.55). These 16 risk variants consisted
of 1 basal cell carcinoma SNP, 1 breast cancer SNP, 1 glioma SNP, 1
leukemia SNP, 2 lung cancer SNPs, 1 non-Hodgkin’s Lymphoma
SNP, 8 prostate cancer SNPs, and 1 testicular cancer SNP (figure 1,
see online supplementary table S3). Four of these 16 variants are
correlated (8q24 Region 1 variants; r2>0.88 in HapMap CEU37)
and may not represent independent results.

Two correlated prostate cancer risk variants (rs10090154 and
rs4242382; r2=0.79 in CEU) in Region 1 of chromosome 8q24
(125.6–129.4 Mb38) demonstrated statistically significant associa-
tions with CRC, reaching a conservative Bonferroni-corrected
criterion of significance (p<2.92×10−4). For the most statistic-
ally significant association, rs4242382, we observed a 12%
increased risk of CRC among CRC cases in comparison to con-
trols (overall meta-analysis OR=1.12, 95% CI 1.07 to 1.18;
p=1.74×10−5; figure 2), and no evidence of heterogeneity
across studies (phet=0.07). Notably, the associations with
rs10090154 and rs4242382 remained statistically significant
when adjusting for rs6983267, a CRC risk variant in Region 3 of
8q24 (Region 3 adjusted meta-analysis ORrs10090154=1.11;
p=5.0×10−5 and ORrs4242382=1.11; p=5.7×10−5). Two add-
itional prostate cancer risk variants in Region 1 of 8q24
(rs7837688, rs1447295) and one in Region 3 (rs7000448) were
also associated with CRC (p=3.32×10−4 – 4.85×10−3) though
they did not reach our conservative threshold of statistical signifi-
cance. These five prostate cancer SNPs demonstrated similar
positive associations with CRC for the corresponding prostate
cancer risk alleles. These SNPs are located upstream of MYC at
chromosome 8q24, spanning ∼98 kb, and are in various
amounts of linkage disequilibrium among HapMap Europeans.
The Region 1 variants appear correlated with each other

(r2>0.88) but not with the Region 3 variant (r2≤0.02; HapMap
release 22 CEU).

Outside of chromosome 8q24, we observed a marginally signifi-
cant association with rs2736100, a glioma risk variant at the TERT
locus at 5p15, and CRC (meta-analysis for the G allele OR=0.94;
95% CI 0.91 to 0.97; p=6.57×10−4; phet studies=0.31; see
online supplementary table S3). This inverse association with CRC
was in the opposite direction to that observed with the glioma G
risk allele of this SNP (figure 3). Another potentially interesting
inverse association was observed with the A risk allele of rs981782,
a breast cancer variant at the HCN1 locus at 5p12 (meta-analysis
OR=0.96; 95% CI 0.93 to 0.99; p=0.009; phet studies=0.79; see
online supplementary table S3).

Next, we evaluated the 16 associations at p<0.05 for patterns
of associations across race/ethnicity and anatomical subsite (see
online supplementary tables S5 and S6). We observed no evi-
dence of heterogeneity in associations by race/ethnicity, with the
exception of a potentially nominal association with rs7837688
(phet=0.049). For the most statistically significant overall associ-
ation, rs4242382, we observed consistent positive associations
at p<0.05 for African–American (OR=1.22; 95% CI 1.03 to
1.45; p=0.024), Asian (OR=1.28; 95% CI 1.09 to 1.51;
p=3.06×10−3), and European ancestry populations (OR=1.10;
95% CI 1.04 to 1.17; p=1.91×10−3). Additionally, we
observed generally similar directions of association in colon and
rectal tumours (see online supplementary table S6). Nominal
evidence of heterogeneity in associations by anatomical subsite
was observed for rs11155133 at chromosome 6q24
(phet=0.03), where a stronger inverse association was observed
for rectal cancer (meta-analysis OR=0.60; p=5.58×10−4) than
colon cancer (meta-analysis OR=0.87; p=0.059).

Figure 2 Forest plot of the association between rs4242382 at Region 1 of chromosome 8q24 and colorectal cancer risk. Study specific and
meta-analysis associations are plotted, modelling the A risk allele for prostate cancer.

Cheng I, et al. Gut 2014;63:800–807. doi:10.1136/gutjnl-2013-305189 803

Colon

 group.bmj.com on April 11, 2014 - Published by gut.bmj.comDownloaded from 

http://gut.bmj.com/
http://gut.bmj.com/
http://group.bmj.com/
http://group.bmj.com/


DISCUSSION
In this large meta-analysis of 54 305 CRC cases and controls,
we examined GWAS-identified risk variants of other cancers for
their effects on CRC risk. To our knowledge, this is the first sys-
tematic analysis of pleiotropic associations of risk variants for
other cancers with CRC. We identified two correlated SNPs—
rs10090154 and rs4242382—at Region 1 of chromosome
8q24, a well-established prostate cancer susceptibility locus that
demonstrated robust associations with CRC and reached a con-
servative criterion of statistical significance. We also observed a
notable association at TERT, a key susceptibility locus for several
cancers.

Chromosome 8q24 has been identified as an important risk
locus for multiple cancers,2–6 39–43 including CRC.44–48 Distinct
regions within this locus defined by their linkage disequilibrium
structure have been associated with various cancers. SNPs
within Region 3, initially identified as a 60 kb region from
128.48 to 128.54 Mb at 8q24,38 have been consistently asso-
ciated with CRC in GWAS44–48 and subsequent follow-up
studies.11 49–53 Although associations between Region 3 of
chromosome 8q24 and CRC risk are well established, our find-
ings appear to be the first demonstration of highly significant
associations with Region 1. Prior candidate gene
studies,49 52 54–56 all of smaller size, have not shown a statistic-
ally significant association between Region 1 and CRC perhaps
due to their limited statistical power. Early GWAS of CRC may
also have been limited in their study power and by45–48 57–60

stringent thresholds for genome-wide significance. Substantially
large sample sizes are needed to have sufficient power to iden-
tify these small genetic associations, as seen here with the
Region 1 variant rs4242382. While our study observed a
modest increase in CRC risk (OR=1.12) in 54 305 CRC cases

and controls, the original finding for this SNP and prostate
cancer observed a larger increase in risk (OR=1.66) in 10 234
prostate cancer cases and controls.6 By comparison, the largest
pooled GWAS of CRC published to date included 27 809 CRC
cases and controls.61 Importantly, we were able to demonstrate
that our most statistically significant associations at Region 1 of
chromosome 8q24 were independent of the established Region
3 CRC risk variant, while maintaining a conservative threshold
of statistical significance (p<5.7×10−5). Although not residing
within a known gene, recent functional work indicates that
these 8q24 regions contain long-range tissue-specific enhancers
that physically interact with the MYC oncogene,62 potentially
influencing tumorigenesis. Furthermore, a recent study found
that mice deficient in Myc-355, a putative regulatory element
that contains the Region 3 rs6983267 variant, were resistant to
induced intestinal tumours.63

TERT, which encodes for telomerase reverse transcriptase, has
been identified by GWAS as a susceptibility gene for several
cancers.4 5 8 10 64–67 For example, the G allele of rs2736100,
located in intron 2 of TERT, has been associated with an
increased risk of lung adenocarcinoma and glioma, and a
decreased risk of testicular cancer in prior GWAS.5 8 9 66 These
different directions of association across cancer sites may be due
to context-specific differences in regulation of nearby genes, just
as transcription factors can serve as both oncogenes and tumour
suppressors.68 Our findings of an association between rs2736100
and CRC corroborates a recent study by Kinnersley et al69 that
reported a 7% increased risk of CRC with the T allele
(p=2.49×10−5), using genotype data from six CRC cancer
GWAS and an additional replication series. As genotype data
from the CCFR were used in both our study and this report,69

we further examined the association between rs2736100 and

Figure 3 Forest plot of the association between rs2736100 at the telomerase reverse transcriptase (TERT) locus at 5p15 and colorectal cancer risk.
Study specific and meta-analysis associations are plotted, modelling the G risk allele for glioma.
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CRC without the CCFR: a similar nominally significant positive
association was observed (meta-analysis OR for the T
allele=1.05; 95% CI 1.01 to 1.09; p=0.007). This provides
further data for the involvement of TERT in CRC susceptibility.
Additionally, an overall meta-analysis between our findings and
those of Kinnersley et al resulted in a more significant association
between rs2736100 and CRC (meta-analysis OR for the T
allele=1.06; 95% CI 1.04 to 1.09; p=7.99×10−7).

The numerous risk loci identified by GWAS of cancer provide a
valuable opportunity to assess similarities in the genetic susceptibil-
ity of different malignancies. Pleiotropic associations can underscore
established etiologic links, as well as uncover novel connections that
provide new clues to shared molecular pathways.12 Although cancer
is a complex and heterogeneous disease with more than 200 differ-
ent types, our findings identify shared genetic susceptibility variants
between CRC and other cancers of the prostate, lung, breast, testis
and glioma. While the magnitudes of these associations are small,
the cumulative effect of many such CRC risk variants may help
explain the heritability of CRC.70 Furthermore, these pleiotropic
associations may indicate the biological importance of such shared
genetic regions, and suggest they should be prioritised for future
functional and fine-mapping efforts. Specifically, our findings
provide additional evidence for Region 1 of chromosome 8q24 and
TERTas two such priority regions.

Our study is strengthened by the large number of subjects
from well-designed CRC studies and the inclusion of multiple
racial/ethnic populations. Limitations of this study include
reduced study power for 6 SNPs that were not available across
all studies. Additionally, the smaller number of non-European
ancestry participants limits our ability to fully explore generalis-
ability across race/ethnicity. Finally, as more recent GWAS have
identified several hundred new cancer risk loci, these variants
remain to be evaluated for their pleiotropic effects with CRC.

In summary, our study indicates that several risk variants iden-
tified for other cancers also contribute to CRC risk. For the first
time, these findings clearly demonstrate the importance of
Region 1 at chromosome 8q24 in CRC susceptibility, and
further bolster the evidence of this region as a multicancer risk
locus. Further replication and future research into the biological
mechanisms by which inherited differences in shared cancer risk
loci influence CRC will expand our understanding of the key
contributors to CRC development.
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