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Bladder cancer is a complex disease with known environmental
and genetic risk factors. We performed a genome-wide interac-
tion study (GWAS) of smoking and bladder cancer risk based on
primary scan data from 3002 cases and 4411 controls from the
National Cancer Institute Bladder Cancer GWAS. Alternative
methods were used to evaluate both additive and multiplicative
interactions between individual single nucleotide polymorphisms
(SNPs) and smoking exposure. SNPs with interaction P values <
5 x 1075 were evaluated further in an independent dataset of 2422
bladder cancer cases and 5751 controls. We identified 10 SNPs that
showed association in a consistent manner with the initial dataset
and in the combined dataset, providing evidence of interaction
with tobacco use. Further, two of these novel SNPs showed strong
evidence of association with bladder cancer in tobacco use sub-
groups that approached genome-wide significance. Specifically,
rs1711973 (FOXF2) on 6p25.3 was a susceptibility SNP for never
smokers [combined odds ratio (OR) = 1.34, 95% confidence
interval (CI) = 1.20-1.50, P value = 5.18 x 10~7]; and rs12216499
(RSPH3-TAGAP-EZR) on 6q25.3 was a susceptibility SNP for ever
smokers (combined OR = 0.75,95% CI = 0.67-0.84, P value = 6.35
x 1077). In our analysis of smoking and bladder cancer, the tests
for multiplicative interaction seemed to more commonly identify
susceptibility loci with associations in never smokers, whereas
the additive interaction analysis identified more loci with associa-
tions among smokers—including the known smoking and NAT2
acetylation interaction. Our findings provide additional evidence
of gene—environment interactions for tobacco and bladder cancer.
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Introduction

Bladder cancer is a complex disease with established environmental
and genetic risk factors (1). Bladder cancer provides an ideal setting
in which to study the complex interplay of genes and the environment,
because of the established causal roles of smoking and occupational
exposures to aromatic amines, along with evidence of gene—environ-
ment interactions for these and other exposures (2—8). Although ciga-
rette smoking is the most established risk factor for bladder cancer,
the magnitude of association is not as strong as that for other cancers,
such as lung cancer, suggesting that bladder cancer is a disease which
may provide insights into the interaction between genes and smok-
ing. From the numerous candidate gene studies focusing on enzymes
that metabolize known carcinogens found in tobacco products, data
have consistently shown a modest increased risk of bladder cancer
associated with the NAT2 slow acetylation genotype among smokers
(2,8,9), which is consistent with the role of NAT2 in aromatic amine
metabolism.

The ‘agnostic’ approach, free of candidate hypotheses has been
successfully applied in genome-wide association studies (GWAS)
to identify new bladder cancer susceptibility alleles (6,10-18). The
application of a comparable, agnostic approach to a genome-wide
study of interaction of smoking and bladder cancer risk could iden-
tify new susceptibility loci, previously undetected by single-locus
tests of GWAS, which modify the association between tobacco use
and bladder cancer. We have recently shown that among identified
bladder cancer susceptibility regions, NAT2 shows both multiplica-
tive and additive interactions with tobacco use (19); individuals
with NAT?2 slow acetylation genotypes show higher relative risk (i.e.
multiplicative interaction) and elevated absolute risk difference
(i.e. additive interaction) from smoking, compared with those with
rapid/intermediate acetylation genotypes. Other bladder cancer sus-
ceptibility loci, however, do not appear to modify the relative risk
of smoking. Yet, 10 additional loci besides NAT2 show evidence of
absolute risk difference with smoking (i.e. additive interaction), spe-
cifically, GSTM1 deletion, rs9642880, rs2294008 (PSCA), rs401681
(CLPTMIL-TERT), 1rs798766 (TMEM129-TACC3-FGFR3),
rs1014871 (CBX6, APOBEC3A), 1s8102137 (CCNEI), rs17863783
(UGTI1A6), rs10775480/rs10853535 (SLC14A1) and rs10936599
(TERC-ACTRT3-MYNN-LRRC34) (18,19).

To further explore gene—environment interactions, we performed
a genome-wide interaction study of smoking and bladder cancer risk
based on data from 3002 cases and 4411 controls from the National
Cancer Institute (NCI) Bladder Cancer GWAS (13) and evaluated
promising single nucleotide polymorphisms (SNPs) in an independ-
ent dataset of 2422 bladder cancer cases and 5751 controls (18).

Materials and methods

Study populations and exposure assessment

We conducted our analyses using data from our previously reported primary
scan of 591 637 SNPs in 3002 cases and 4411 controls from four studies that
had enrolled both smokers and non-smokers, and which were included in the
NCI Bladder Cancer GWAS, referred to here as NCI-GWASI (13), i.e. the
Spanish Bladder Cancer Study (SBCS); New England Bladder Cancer Study,
Maine and Vermont components (NEBCS-ME/VT); the American Cancer
Society Cancer Prevention Study II Nutrition Cohort (CPS-II) and the Prostate,
Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) (Supplementary
Table 1, available at Carcinogenesis Online).

NCI-GWAS?2 genotype data has been recently described (18). In brief,
the studies genotyped in this dataset consisted of cases and controls for the
New Hampshire component of the New England Bladder Cancer Study
(NEBCS-NH); cases and controls for four cohort studies, namely the European
Prospective Investigation Into Cancer and Nutrition Study (EPIC), Women’s
Health Initiative (WHI), Health Professionals Follow-up Study (HPFS) and
Nurses” Health Study I and IT (NHS I and II) and cases for four case—control
studies, namely the Los Angeles Bladder Cancer Study (LABCS), the French
Center for Research on Prostate Diseases (CeRePP), the French Bladder Study
(FBCS) and the Brescia Bladder Cancer Study (BBCS). For LABCS, CeRePP,
FBCS and BBCS studies where we genotyped cases only, we created in sil-
ico study groups based on comparable geographic/demographic parameters,
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which resulted in three new ‘study groups’, specifically, Europe (which com-
prised data from EPIC, CeRePP and FBCS), MEC/LA (which comprised
cases from LABCS and controls from the Multiethnic Cohort, MEC) and Italy
(which comprised cases from BBCS and controls from the Environment And
Genetics in Lung cancer Etiology Study, EAGLE). All subjects gave informed
consent and each study was approved by the host institutions’ Institutional
Review Boards.

After removal of SNPs genotyped with <90% completion and SNPs with
minor allele frequencies <5%, 491 011 SNPs were available for analysis.
Cases were defined as patients diagnosed with histologically confirmed pri-
mary carcinoma of the urinary bladder including carcinoma in situ (ICD-
0-2 topography codes C67.0-C67.9 or ICD9 codes 188.0-188.9 and 2337).
Cases and controls were of European background as determined by popula-
tion substructure analyses with STRUCTURE 17 and principal component
analysis as reported previously (13,18). Smoking histories were obtained by
risk factor questionnaires administered at the time of enrollment into the
studies. The primary interaction with smoking was modeled as a binary vari-
able (smoker/never smoker). For case—control studies, data was collected at
the time of diagnosis for cases and time of interview for controls (20,21).
For prospective cohort studies, the time between questionnaire administered
at enrollment and subsequent cancer diagnosis varied depending on how
long after enrollment cases were diagnosed. In the SBCS, NEBCS, CPS-II,
WHI, BBCS and LABCS, ‘never-smokers’ were defined as subjects who had
smoked <100 cigarettes over their lifetime. In the PLCO, EPIC, CeRePP
and FBCS studies, ‘never-smokers’ were defined as subjects who smoked <6
months in their lifetime.

Statistical analysis

We assessed gene—environment interactions on multiplicative and additive
scales, which test two distinct hypotheses (22). Assessment of gene—environ-
ment interactions for both additive and multiplicative models tests whether
the observed joint effects odds ratio (OR) for smoking and the genetic risk are
significantly different than the expected joint effects OR. On a multiplicative
scale, this evaluates whether the relative risk for smoking varies across levels
of genetic risk, the expected joint effects are calculated as ORgyp X OR g o1ine-
On an additive scale, this evaluates whether the risk difference for smoking
varies across levels of genetic risk, the expected joint effects are calculated
as ORgyp + OR i — 1. In particular, when the underlying risk factors have
strong effects, which is the case for smoking and bladder cancer, the additive
and the multiplicative model results can be quite distinct.

Multiplicative and additive interaction methods were tested using two alter-
native methods, with and without assuming independence between a gene
and an environmental exposure in the underlying population. It is known that
assuming gene—environment independence can increase power for detecting
interactions (23-25), but it can lead to bias if the assumption is violated (26).
For each of the four tests considered, we assessed whether we identified a
significant excess number of interactions with P values < 5 x 107> using a
Chi? test.

Multiplicative interactions

Tests for multiplicative interactions assessed whether relative measures of
risk are modified by an exposure for a given genetic factor. The first method
was based on a typical logistic regression analysis, which does not assume
independence between a SNP and the exposure. A likelihood ratio test was
performed by comparing two logistic regression models, one with and one
without an interaction term for a SNP and smoking. The resulting likelihood
ratio test has one degree of freedom as we assumed an additive genetic model
for each SNP. The logistic regression models were adjusted for study, age (5-
year categories) and gender and included an interaction term for smoking and
an indicator variable for the PLCO study to account for stratified sampling of
controls by smoking status.

The second method assumes independence between SNPs and smoking.
Although case-only approaches have been proposed to test for multiplicative
interaction under the independence constraint (23), these only allow infer-
ence on the interaction parameter of a logistic model. We used a more general
approach that can exploit the assumption of gene—environment independence
and yet use cases and controls, for efficient inference on all the parameters of
a logistic regression model (25). A likelihood ratio test (1 df) was performed
using an R package, CGEN, that implements the alternative approaches to anal-
ysis of case—control studies with or without the assumption of gene—environ-
ment independence (http://dceg.cancer.gov/bb/tools/genetanalcasecontdata).

Additive interactions

Tests for additive interaction assessed whether absolute measures of risk asso-
ciated with an exposure are modified by a genetic factor. Our first method is
based on standard prospective likelihood that does not impose any assump-
tion of gene—environment independence. A likelihood ratio test was performed
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using logistic regression models comparing saturated and additive models
(27); under the null hypothesis of the additive model, the OR for the combined
effect of a given SNP and smoking status is constrained so that the risk dif-
ference associated with one exposure (e.g. smoking) is constant across levels
of other exposure (e.g. SNP), or the reverse. All tests for additive interactions
were performed using categorical variables (each SNP was coded as a dichoto-
mous variable indicating the presence of any variant allele) to avoid complex
numerical issues related to non-standard model fitting procedures when using
continuous variables, such as log-additive effects of SNP alleles. The result-
ing likelihood ratio test has one degree of freedom and the logistic regression
models were adjusted for the same set of covariates used for a multiplicative
interaction test.

For testing additive interactions using gene—environment independence
assumption, we used a method based on the retrospective likelihood as recently
proposed by Han et al. (27), which is in the R package CGEN.

In silico replication of top hits from genome-wide interaction study

For the replication study, we selected those SNPs that showed interaction P
values < 5 x 107> based on multiplicative or additive models with or without
assuming gene—environment independence in the original GWAS, referred
to as NCI-GWASI, and tested for the same interaction (i.e. multiplica-
tive or additive interaction) using the same methods in a new set of 2422
bladder cancer cases and 5751 controls from six studies with GWAS data,
referred to as NCI-GWAS2 (18).We performed pooled analysis from the
NCI-GWAS1 and NCI-GWAS2 data to report overall evidence for signifi-
cance for top SNPs.

Associations with bladder cancer risk stratified by smoking status

Logistic regression models were used to estimate ORs and 95% confidence
intervals (CI) for SNPs identified as top hits from the genome-wide interaction
scans and bladder cancer risk, stratified by smoking status (never, ever, former
and current), cigarettes per day, duration of smoking in years and adjusted for
study, age (5-year categories), gender and eigenvectors (EV 1, 2, 3, 4, 6 and
7) as described previously (18).

Results

A total of 3002 cases and 4411 controls from NCI-GWAS1 were used
for our genome-wide interaction study of smoking (Supplementary
Table 1, available at Carcinogenesis Online). Inspection of the quan-
tile—quantile plots for additive and multiplicative interaction tests for
all genome-wide interaction scans of smoking suggests that there was
no evidence for large-scale systematic bias or overdispersion (Figures
1 and 2).

Genome-wide interaction study of smoking and bladder cancer risk
in NCI-GWAS I-multiplicative interaction

In our analysis of multiplicative interaction, while 24 SNPs were
expected by chance, we found 25 SNPs with P value < 5 x 107> with
the independence assumption (Chi P value = 0.86), and 22 without
the independence assumption (Chi? P value = 0.66). After removal
of one of each pair of correlated SNPs with 2 > 0.20, we observed
32 independent SNP interactions based on either multiplicative test
having a P value < 5 x 107 (Supplementary Table 2, available at
Carcinogenesis Online). In our multiplicative interaction genome
scan, the ‘positive control” SNP rs1495741, which tags NAT2 acety-
lation status and interacts with smoking (6), had P values of 0.009
(with independence assumption) and 0.006 (without independence
assumption), ranked 4325 and 2666, based on P values of all tests
conducted.

Genome-wide interaction study of smoking and bladder cancer risk

in NCI-GWASI-additive interaction

We used two tests for additive interaction with and without the SNP—
smoking independence assumption in our genome-wide interaction
study of smoking. Although 24 were expected by chance, we found 20
SNPs with P value < 5 x 107 in additive models with the independ-
ence assumption (Chi? P value = 0.40), and 28 without the independ-
ence assumption (Chi? P value = 0.43). After removal of one of each
pair of correlated SNPs with 2 > 0.20 we observed 29 independent
SNPs with P values < 5 x 107 (Supplementary Table 3, available at
Carcinogenesis Online).

Genome-wide interaction study

Validation of SNPs with evidence of multiplicative interaction in an
independent dataset, NCI-GWAS2

Among the 32 SNPs identified above, we observed six with a multipli-
cative interaction P value < 0.10 (rs1711973, rs2969540, rs3752645,
rs2411843, rs11692793 and rs11206140) in the NCI-GWAS?2 dataset
(Table I). However, two of these SNPs, rs11692793 and rs11206140
showed reverse patterns of interaction in the NCI-GWAS1 and NCI-
GWAS?2 datasets, and therefore, were not evaluated further. The
rs1711973 (FOXF2) variant, was associated with bladder cancer risk
limited to never smokers (combined OR = 1.34, 95% CI = 1.20-1.50,
P value = 5.18 x 1077), with no association with bladder cancer risk
among smokers (combined OR = 1.00, 95% CI = 0.93-1.07, P value
=0.90). The combined P interaction for rs1711973 (FOXF?2) without
independence assumption was 3.42 x 107 and a P interaction with
independence assumption was 7.18 x 107. The 152969540 (HTR5A-
PAXIPI1-INSIG1) variant was associated with bladder cancer risk
among never smokers (combined OR = 1.44, 95% CI = 1.21-1.71, P
value = 3.54 x 107), and in contrast this variant showed a null associ-
ation with bladder cancer risk among smokers (combined OR = 0.91,
95% CI = 0.81-1.01, P value = 0.08). The rs3752645 (PRKAR2B)
variant was also associated with bladder cancer risk in never smok-
ers (combined OR = 1.36, 95% CI = 1.16-1.60, P value = 1.80 x
107*), and in contrast showed a signficant inverse association with
bladder cancer risk among smokers (combined OR = 0.87, 95% CI =
0.79-0.96, P value = 0.01). The rs3752645 (PRKAR2B) had a com-
bined P interaction without independence assumption = 5.65 x 107°
and a P interaction with independence assumption = 1.22 x 1075, The
last notable SNP with some suggestion of multiplicative interaction
particularly without the independence assumption, was rs2411843
(HDAC4), and the variant was associated with bladder cancer risk in
never smokers (combined OR = 1.17, 95% CI = 1.05-1.30, P value =
3.47 x 107%), with a null association among smokers (combined OR =
0.97,95% CI=0.91-1.03, P value = 0.36).

Further analysis by current/former smoking status showed the
rs3752645 SNP to have a stronger inverse association with bladder
cancer risk among current smokers (Supplementary Table 4, avail-
able at Carcinogenesis Online), whereas the other SNPs (rs1711973,
1$2969540 and rs2411843) did not show any notable differences in
association by current/former smoking status. Evaluation by ciga-
rettes/day showed the rs1711973 variant to have a significant inverse
association among subjects smoking 25+ cigarettes/day, and the
1$3752645 variant a significant inverse association with risk in sub-
jects that smoked 15-24 cigarettes/day (Supplementary Table 5, avail-
able at Carcinogenesis Online). Lastly, evaluation of years smoked
showed the rs3752645 SNP to have a stronger inverse association
with 40+ years of smoking, although a clear trend was not evident
(Supplementary Table 6, available at Carcinogenesis Online).

Validation of SNPs with evidence of additive interaction in an
independent dataset, NCI-GWAS2

Among the 28 SNPs identified above, we observed nine SNPs with
additive interaction P values < 0.10 in NCI-GWAS?2 (rs12216499,
1s1495741, rs948798, rs9502305, rs846906, rs2380945, rs1258767,
rs9927752 and rs1090292). However, two of these SNPs, rs9927752
and rs1090292 showed reverse patterns of interaction in the NCI-
GWASI and NCI-GWAS?2 datasets, and therefore, were not evaluated
further (Table I). The rs12216499 (RSPH3-TAGAP-EZR) variant, was
inversely associated with bladder cancer risk limited to ever smok-
ers with a P value just approaching the genome-wide significance
threshold of 5 x 10~® (never smokers, combined OR = 1.10, 95% CI
= 0.91-1.33, P value = 0.33; ever smokers, combined OR = 0.75,
95% CI = 0.67-0.84, P value = 6.35 x 1077). The combined additive
interaction P value for rs12216499 was 1.41 x 107 without assum-
ing independence and 1.35 x 10~ assuming independence (Table I).
The rs1495741 SNP that tags NAT2 acetylation status showed the
expected inverse association between the variant allele and bladder
cancer risk limited to smokers (never smokers, combined OR = 0.98,
95% CI = 0.86-1.11, P value = 0.72; ever smokers, combined OR
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Fig. 1. Quantile—quantile plots for interaction P values from multiplicative models without and with independence assumption. Quantile—quantile plots for
multiplicative interaction P values of smoking—SNP genome scan. P values were computed using two different methods to test for multiplicative interactions.
The first method (A) used a likelihood ratio test performed by comparing two logistic regression models, one with and one without an interaction term for a SNP
and smoking, did not assume independence between a SNP and smoking, and assumed an additive genetic model for each SNP. The logistic regression models
were adjusted for study, age (5-year categories), gender and an interaction term for smoking and an indicator variable for the PLCO study to account for stratified
sampling of controls by smoking status. The second method (B) assumed that SNP and smoking exposure are independent, using a retrospective likelihood,
which exploits the gene—environment independence assumption in a general logistic regression framework.
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Fig. 2. Quantile—quantile plots for interaction P values from additive models without and with independence assumptions. Quantile—quantile plots for additive
interaction P values of smoking—SNP genome scan. P values were computed using two different methods to test for additive interactions. The first method (A)
does not assume gene—environment independence and was calculated using a likelihood ratio test using logistic regression models comparing saturated and
additive models (27); under the null hypothesis of the additive model, the OR for the combined effect of a given SNP and smoking status is constrained so that
the risk difference associated with one exposure (e.g. smoking) is constant across levels of other exposure (e.g. SNP), or the reverse, and models were adjusted
for study, age (5-year categories), gender and an interaction term for smoking and an indicator variable for the PLCO study to account for stratified sampling
of controls by smoking status. All tests for additive interactions were performed using categorical variables (each SNP was coded as a dichotomous variable
indicating the presence of any risk allele) to avoid complex numerical issues related to non-standard model fitting procedures when using continuous variables,
such as log-additive effect of SNP alleles. For testing additive interactions using a gene—environment independence assumption, we used a method proposed by
Han et al. (27), which is based on the retrospective likelihood by Chatterjee et al. (25).

=0.83, 95% CI = 0.77-0.89, P value = 8.55 x 1077), and the com- Analysis by current and former smoking showed rs12216499,
bined additive interaction P value was 5.81 x 10~ without assuming 1r$948798, rs9502305 and rs846906 SNPs to be stronger among for-
independence and 1.36 x 10~ assuming independence. Similar to the mer smokers, whereas the rs1495741 NAT2 tag SNP showed signifi-
1512216499 (RSPH3-TAGAP-EZR) and 151495741 NAT?2 tag SNP, the cant associations among current and former smokers (Supplementary

observed associations between the rs948798, rs9502305, rs846906, Table 4, available at Carcinogenesis Online). Analysis by cigarettes/
rs1258767 and SNPs and bladder cancer risk were limited to smok- day and smoking duration showed rs12216499, rs1495741 and
ers and combined additive interaction P values were stronger when rs1258767 to have associations strongest for subjects who reported
assuming independence (all P values < 5.00 x 107, Table I), except smoking 25+ cigarettes/day (Supplementary Table 5, available at
for the rs12216499. Other notable interactions were rs2380945 and Carcinogenesis Online). Analysis by smoking duration showed
rs1258767. rs948798 as having the strongest association with bladder cancer risk
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are specific for smokers have been identified (e.g. NAT2 acetyla-
tion), it is likely that there are also genetic risk factors for bladder
cancer that are specific to never smokers as compared with smok-
ers. For example, recent work has identified several specific genetic
variants related to lung cancer among never smokers that are distinct
from variants found in smoking-related lung cancer (40), and our
results suggest the rs1711973 (FOXF2) SNP a potential candidate.
Therefore, future work in bladder cancer GWAS could exploit gene—
environment interactions, in order to identify susceptibility factors
for important subgroups of individuals, such as never smokers,
which otherwise may not be found in current GWAS. In particular,
our analysis suggest that the analysis of interaction, could be used
to identify promising candidates for replication in other datasets,
and identifying SNPs associated at the level of genome-wide sig-
nificance is possible for important subgroups such as smokers. It is
estimated that for a 1:2 case to control ratio, over 15 000 cases would
be needed to detect the established NAT2 and smoking interaction
(6,13) at genome-wide significance level using multiplicative models
of interaction with 80% power. Our analysis suggests that additive
interaction might be used to identify promising candidates for repli-
cation in other datasets, and identifying SNPs associated at the level
of genome-wide significance is possible for important subgroups
such as smokers. Regardless, very large sample sets with excellent
exposure data will be required.

Strengths of our study include the use of an array of powerful
statistical methods to explore hypotheses regarding interactions,
the use of an independent dataset to replicate findings. Our results
suggest that genome-wide interaction studies on both the multipli-
cative and additive scale, could provide clues to new regions of
susceptibility for bladder cancer that may have specific effects with
regard to smoking status and that there is no one test/model that is
best for exploring gene—environment interactions. In our analysis
of smoking and bladder cancer, the tests for multiplicative inter-
action seemed to more commonly identify susceptibility loci with
associations in never smokers that were not observed for smokers,
whereas the additive interaction analysis more commonly identi-
fied susceptibility loci with associations among smokers—includ-
ing the known smoking—NAT2 acetylation interaction with bladder
cancer risk. Since it is not yet clear what the standard should be
for genome-wide interaction studies, we believe the application of
novel methods for interaction, as presented in our current manu-
script, and validation of potential loci in an independent dataset,
should serve as an important reference to investigators evaluating
gene—environment interactions. Specifically, our study is one of
the first to explore how various methods for detecting statistical
interaction perform in the context of bladder cancer risk—one of
the few known cancers with established gene—environment inter-
actions. Furthermore, in our analysis we performed additive and
multiplicative tests for interaction with and without the gene—envi-
ronment independence assumption. In theory, methods that assume
gene—environment independence can be more powerful, but also
can lead to false positives when the gene—environment independ-
ence assumption is violated. In practice, we found no single method
could identify all of the SNPs with suggested interaction with
smoking, which we believe to be promising. Thus, our analysis,
which applies an array of different methods for interaction analy-
sis in a GWAS scale, not only identifies promising SNPs for blad-
der cancers, but also provides an empirical demonstration of the
need for application of different types of methods for future GWAS
analysis of gene—environment interactions. Future investigations
should include larger sample sizes, as well as studies in different
populations of individuals with more variation in exposure, which
might provide additional opportunities to detect gene—environment
interactions and new susceptibility loci.

Supplementary material

Supplementary Tables 1-6 can be found at http://carcin.oxfordjour-
nals.org/
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