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The	majority	of	reported	complex	disease	associations	for	
common	genetic	variants	have	been	identified	through	meta-
analysis,	a	powerful	approach	that	enables	the	use	of	large	sample	
sizes	while	protecting	against	common	artifacts	due	to	population	
structure	and	repeated	small-sample	analyses	sharing	individual-
level	data.	As	the	focus	of	genetic	association	studies	shifts	to	
rare	variants,	genes	and	other	functional	units	are	becoming	the	
focus	of	analysis.	Here	we	propose	and	evaluate	new	approaches	
for	performing	meta-analysis	of	rare	variant	association	tests,	
including	burden	tests,	weighted	burden	tests,	variable-threshold	
tests	and	tests	that	allow	variants	with	opposite	effects	to	be	
grouped	together.	We	show	that	our	approach	retains	useful	
features	from	single-variant	meta-analysis	approaches	and	
demonstrate	its	use	in	a	study	of	blood	lipid	levels	in	~18,500	
individuals	genotyped	with	exome	arrays.

Proceeding from the discovery of a genetic association signal to 
mechanistic insight into human biology should be much easier for 
alleles with a clear functional consequence, including nonsynony-
mous, splice-altering and protein-truncating alleles. Most of these 
alleles are very rare, with only one such allele expected to reach minor 
allele frequency (MAF) of >5% in the average human gene1. Recent 
advances in exome sequencing and the development of exome geno-
typing arrays are enabling explorations of the very large reservoir of 
rare coding variants in humans and are expected to accelerate the pace 
of discovery in human genetics2.

Rare variants can be examined using association tests that group 
alleles in a gene or another functional unit3. Compared to tests of 
individual alleles, tests with this grouping can have increased power, 
especially when applied to large samples where several rare variants 
are observed in the same functional unit4. The simplest rare variant 

tests consider the number of potentially functional alleles in each 
individual5, but these tests can be refined to weigh variants according 
to their likely functional impact6, to allow for imputed or uncertain 
genotypes7,8 or to allow variants that increase and decrease risk to 
reside in the same gene9–11 (a feature that is important when the same 
gene harbors hypermorphic and hypomorphic alleles12). The optimal 
strategy for grouping and weighting rare variants—ranging from a 
focus on protein-truncating alleles to consideration of all nonsynony-
mous variants and encompassing strategies that examine all variants 
with a frequency of <5% as well as alternative strategies that examine 
only singletons—depends on the unknown genetic architecture of 
each trait and each locus13.

Here we describe practical approaches for the meta-analysis of rare 
variants. Our approach starts with simple statistics that can be cal-
culated in an individual study (single-site score statistics and their 
covariance matrix, which summarizes linkage disequilibrium infor-
mation and relatedness among sampled individuals). We then show 
that, when these statistics are shared, a wide variety of gene-level 
association tests can be executed centrally—including both weighted 
and unweighted burden tests with a fixed5 or variable6 frequency 
threshold and the sequence kernel association test (SKAT) that 
accommodates alleles with opposite effects in a gene9. Our approach 
generates comparable results to sharing individual-level data (and,  
in fact, identical results when allowing for between-study hetero-
geneity in nuisance parameters, such as trait means, variances and 
covariate effects). To demonstrate our approach, we analyze blood 
lipid levels in >18,500 individuals genotyped with exome genotyp-
ing arrays. Our analysis of blood lipid levels provides examples of 
loci where the signal for gene-level association tests exceeds the sig-
nal for single-variant tests and shows that our approach can recover  
signals driven by very rare variants (with a frequency of <0.05%). 
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Given that very large sample sizes are required for successful rare 
variant association studies, we expect that our methods (and refined 
versions thereof) will be widely useful.

Our approach is based on the insight that analogs of most gene-level 
association tests can be constructed using single-variant test statistics 
and knowledge of their correlation structures. As shown in the Online 
Methods, simple14 and weighted10,15 burden tests, variable-threshold 
tests6 and tests allowing for variants with opposite effects9 can be con-
structed in this manner. We perform meta-analysis of single-variant 
statistics using the Cochran-Mantel-Haenszel method, calculate 
variance-covariance matrices for these statistics and construct gene-
level association tests by combining the two. In the Supplementary 
Note, we show that the rare variant statistics generated in this way 
are identical to those obtained by sharing individual-level data and 
allowing for heterogeneity in nuisance parameters, with no loss of 
power. Notably, rare variant statistics calculated with our approach 
are less vulnerable to artifacts due to population stratification than 
statistics generated by naively pooling individual-level data. As in 
other meta-analysis settings, sharing summary statistics accelerates 
the overall analysis process, mitigates concerns about participant con-
fidentiality and reduces the risk that data will be used for unapproved 
analyses (as always, to avoid violating the trust of research subjects, 
we strongly recommend that investigators sharing summary statis-
tics agree that these will not be used to identify research subjects).  
To evaluate significance, we propose methods for calculating P values 
using asymptotics and also using Monte-Carlo methods that apply 
knowledge of linkage disequilibrium relationships to sample plausible 
combinations of single-variant statistics and then generate empirical 
distributions for gene-level statistics. Because evaluating asymptotic 
P values can be numerically unstable, Monte-Carlo methods can be 
used to verify interesting P values.

RESULTS
We first evaluated our method using simulations. Genes were simu-
lated as stretches of 5,000 bp in length using coalescence16 and a 
demographic model (including an ancient bottleneck, recent expo-
nential growth, differentiation and migration) calibrated to mimic 
a sample of multiple European populations17,18 (Supplementary 
Fig. 1 and Supplementary Note). FST, which measures population 
differentiation, averaged 0.004 between simulated populations, 
as expected when a distribution of rare variants is geographically 
restricted19. The simulations produced samples of 1,000 individu-
als, each drawn from one of several related populations, typically 
including a few shared variants and many population-specific vari-
ants. Half of the simulated variants were randomly set to increase 
trait values by 0.125 s.d. (Supplementary Fig. 2; see Supplementary 
Figs. 3 and 4 for similar results using alternative trait models).

We analyzed each simulated sample with a series of gene-level asso-
ciation tests. Results obtained for 10,000 simulated genes using our 
meta-analysis approach compared to a combined analysis of individual- 
level data across studies are shown in Supplementary Figures 2–4. In 
variable-threshold tests, we found that the P values were sometimes 
slightly different (r2 = 0.995 between the two sets of log-transformed 
P values); in the other two tests, P values and test statistics were indis-
tinguishable. Calculation of analytical P values for variable-threshold 
tests requires the evaluation of high-dimensional integrals that can be 
numerically unstable and is thus very sensitive to small differences in 
the variance-covariance matrix. In practice, it will often be a good idea 
to confirm significant P values using our Monte-Carlo approach.

To evaluate our Monte-Carlo approach, we compared its empiri-
cal P values to those obtained by permuting phenotypes between  

individuals within each study. We implemented adaptive versions of 
both algorithms20, with more simulations carried out when the P value 
was small and fewer simulations carried out when the P value was 
large. Log-transformed P values for the two approaches were highly 
concordant (r2 = 0.996). When small P values were estimated, increas-
ing the number of simulations improved the precision of the estimated  
P values (Supplementary Fig. 5).

We next verified that type I error was well controlled (Supplementary 
Table 1). In all analyses, we first applied an inverse normal transforma-
tion to trait residuals (which helped ensure that our statistics could be 
modeled using a normal distribution, even for very rare variants, as in 
Supplementary Fig. 6). Reassured that type I error was well control-
led, we next explored power to detect associated variants in several 
scenarios (Fig. 1a–c and Supplementary Fig. 7a–c). It is clear that, 
for the effect sizes simulated here, very large samples may be required. 
In some settings, power only reached ~60% in analyses of ~100,000 
individuals. We did not find a method that was most powerful in all 
situations, emphasizing the value of implementing a diverse set of test 
statistics (see also Ladouceur et al.13). Because meta-analysis methods 
that combine P values are popular for common variants and can also be 
implemented for rare variants, we compared power for our method with 
that for analyses based on Fisher’s method or on the minimal P-value 
approach for combining P values (Fig. 1 and Supplementary Fig. 7). 
In all the simulation scenarios considered, our method outperformed 
these alternative methods, especially when information was combined 
across a large number of samples. In addition to power, our approach 
provides three useful features. First, it provides great flexibility in the 
choice of rare variant association test (definition of functional units, 
choice of variants to be grouped and frequency thresholds for analysis); 
approaches based on Fisher’s method would likely require every contrib-
uting study to reanalyze their data when any of these parameters were 
changed. Second, because our approach provides, in addition to P val-
ues, estimates of effect size (in all cases) and allele frequency thresholds 
for candidate variants (in the variable-threshold test), our method pro-
vides rich information that helps in interpretation. Third, our approach 
allows the relationship between multiple association signals in a region 
to be dissected through conditional analysis, as detailed below.

We proceeded to a meta-analysis of blood lipid levels in 18,699 
individuals of European ancestry genotyped with Illumina exome 
arrays and drawn from 7 studies: the Women’s Health Initiative 
(WHI)21, the Ottawa Heart Study22, the Malmö Diet and Cancer 
Study–Cardiovascular Cohort (MDC)23, the Precocious Coronary 
Artery Disease (PROCARDIS) Case Series, the PROCARDIS Control 
series24 and the Nord-Trøndelag Health Study (HUNT) of myocardial 
infraction cases and matched controls25 (see Supplementary Tables 2  
and 3 for summary statistics for each of these samples, including basic 
demographics, summaries of lipid levels, number of nonsynonymous 
and loss-of-function variants per individual and number of vari-
ant sites shared across different studies). Overall, 171,193 variants 
were polymorphic in at least one individual. Of these variants,  
125,702—the vast majority—had a frequency of <1%.

To verify the soundness of our approach, we repeated our power 
and type I error simulations using real genotype data from the HUNT 
and MDC studies but simulated phenotypes. These additional experi-
ments confirmed that our method produces well-calibrated statistics 
and is more robust to stratification than analyses that directly pool 
individual-level data and treat the complete data set as a single study 
without modeling heterogeneity between studies (Supplementary 
Fig. 8). In addition, the power for our method continued to exceed 
that for alternative methods that directly combined P values from 
individual studies (Supplementary Fig. 9).
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We then performed meta-analysis of single-variant association test 
results. The resulting test statistics appeared well calibrated, with a 
genomic control value of <1.05 for all three traits, both for common 
and rare variants (Supplementary Fig. 10). At a significance thresh-
old of P < 3 × 10−7 (corresponding to 0.05/171,193), we found sig-
nificantly associated variants (with MAF < 5%) at LPL26, ANGPTL4 
(ref. 26), LIPG26, CD300LG27, LIPC26, APOB26 and HNF4A26 for high-
density lipoprotein (HDL) levels, at PCSK9 (ref. 26), BCAM-CBLC-
PVR (neighboring APOE)26 and APOB26 for low-density lipoprotein 
(LDL) levels and at ANGPTL4 (ref. 26), LPL26 and APOB26 for trig-
lyceride levels (Supplementary Table 4). Except for the variants in 
LIPC and APOB, all significantly associated variants had a frequency 
of >1%, reflecting the limited power of single-variant association tests 
for rare alleles.

We next carried out gene-level tests. Again, test statistics appeared 
well calibrated, with a genomic control value of <1.05 (Supplementary 
Fig. 11). At a significance threshold of P < 3.1 × 10−6 (corresponding to 
0.05/16,153 and allowing for the number of genes tested), we observed 
association at LIPC, LPL, ANGPTL4, LIPG, HNF4A and CD300LG for 
HDL levels, at the PCSK9, APOE locus (as well as at nearby genes PVR, 
BCAM and CBLC) and at LDLR for LDL levels and at ANGPTL4 and 
LPL for triglyceride levels (Table 1). At these loci, much stronger sig-
nals were identified in the meta-analysis than in any component study 
(Supplementary Table 5). Reassuringly, these signals corresponded 
with the loci identified in previous genome-wide association studies 
and/or resequencing studies. Notably, our approach was able to appro-
priately identify the signal in LDLR, which is driven by several very 
rare variants (each with a frequency of <0.00052) that nearly always 
increase blood LDL-cholesterol levels. Furthermore, at several other 
loci, gene-level P values exceeded the best single-variant P value in 
the gene, illustrating the value of aggregating information across vari-
ants (Supplementary Table 6). We again compared our method with 

conventional methods such as a minimal P-value approach, Fisher’s 
method and an extended Fisher’s method taking into account unequal 
sample sizes (Online Methods). Our method identified a larger number 
of loci (Supplementary Tables 7–9), all known to be associated with 
lipid levels in humans. We also compared the results obtained from 
our meta-analysis method with the results from directly pooling a 
subset of the data (after normal transformation of trait values in each 
sample to avoid artifacts due to stratification). Reassuringly, P values 
from our approach and from joint analysis of pooled data were highly 
concordant, with r2 > 0.99 (Supplementary Fig. 12), in accordance 
with the results obtained using coalescent simulations.

An added convenience of sharing single-variant statistics together 
with their covariance matrices, as we propose, is that this facilitates 
conditional analyses, extending an idea used by Yang et al.28 for the 
analysis of common variants by genome-wide association study meta-
analysis. We demonstrate in Supplementary Figure 13 how, in simu-
lations, common variants can generate shadow rare variant association 
signals at nearby genes and how our method for conditional analy-
sis resolves this problem. Using real data, we reexamined two of the 
LDL-associated loci in detail, LDLR and APOE-BCAM-CBLC-PVR. 
For LDLR, we examined the relationship between rare variant signals 
and three nearby common variants26. Specifically, we conditioned 
on genotypes for three common variants (rs6511720, rs2228671 and 
rs72658855) exhibiting significant association in the region and found 
that the association of the LDLR rare variant remained significant  
(P = 4.6 × 10−7) (Supplementary Table 10). For the APOE-BCAM-
CBLC-PVR locus, after conditioning on the common variant showing 
the strongest association in the region (rs7412), gene-level associa-
tions at BCAM, CLBC and PVR became non-significant, suggesting 
that these rare variant signals were the result of regional linkage dis-
equilibrium with more common and well-described variants in APOE 
(Supplementary Table 11). We also analyzed top single-association 
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Figure 1 Power comparison for our approach, 
Fisher’s method and the minimal P-value 
approach. Three phenotype models were 
simulated: (i) 50% of low-frequency variants 
with MAF < 0.5% are causal, each increasing 
expected trait values by 0.25 s.d.; (ii) 50% of all 
variants are causal, irrespective of frequency, and 
increase trait values by 0.25 s.d.; and (iii) 50% 
of variants are casual, irrespective of frequency, 
and 80% of these increase expected trait values 
by 0.25 s.d., while the remaining 20% decrease 
trait values by the same amount. A total of 2–100 
samples of size 1,000 were simulated for each 
model, with each sample drawn from a randomly 
chosen population. Meta-analysis was performed 
using our approach: RAREMETAL (RM for short) 
or using Fisher’s method or the minimal P-value 
(min-P) approach to combine burden test, 
variable-threshold (VT) and SKAT test statistics 
for variants with MAF < 5%. Power was  
evaluated at the significance threshold of  
α = 2.5 × 10−6 using 10,000 replicates.  
(a–c) Power using model (i) for our approach (a), 
the Fisher approach (b) and the minimal P-value 
approach (c). (d–f) Power using model (ii) for 
our approach (d), the Fisher approach (e) and 
the minimal P-value approach (f). (g–i) Power 
using model (iii) for our approach (g), the Fisher 
approach (h) and the minimal P-value approach (i).  
Note that differences between our approach and 
these alternatives become more marked when 
more studies are used for meta-analysis.
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signal conditional on the genotypes of rare variants (with MAF ≤ 5%) 
that were included in the burden tests. We showed that the top single-
variant signals for both the APOE gene and the LDLR gene remained 
significant (Supplementary Table 12). For completeness, we showed 
that conditional analyses using individual-level data in a subset of 
samples and conditional analyses using our meta-analysis–based 
approach gave highly concordant P values (r2 > 0.99) (Supplementary 
Figs. 14 and 15).

DISCUSSION
In the analysis of each sample, when population stratification is of 
concern, we recommend that principal components of the genotype 
matrix be incorporated in the regression model as covariates29 or 
that linear mixed models with empirically estimated kinship matri-
ces be used30. Linear mixed models can also be used to account for 
relatedness in family studies or other samples that include crypti-
cally related individuals. Our software implementation readily allows 
for both these options, including the correct calculation of kinship 
matrices to allow family samples to be included in meta-analyses  
(Online Methods).

Although we only presented applications of our method to quan-
titative trait meta-analysis, our methods and tools can be applied to 
binary traits as well (Online Methods). For binary traits, assumptions 
about normality of test statistics may be less reliable. Deviations from 
normality could affect the performance of our resampling method for 
empirical P values, meta-analysis results for the rarest variants and 
conditional analysis statistics (see also the work of Lin and Tang9 and 
of Lee et al.31). Because the performance of our method (and other 
similar approaches) for binary traits will depend on factors such as 
sample size and the balance of cases and controls in each sample, we 
recommend careful quality control of the results for such studies, 
including, for example, review of quantile-quantile plots for variants 
of different frequency. Our method is implemented as freely available 
software, including programs for calculating summary statistics, anno-
tating the resulting summary statistics, performing meta-analysis,  

calculating gene-level statistics and executing conditional analyses. 
Our tools work with standard VCF files32 for genotype data and with 
Merlin33 or PLINK34 files for phenotype data.

Meta-analysis has facilitated many discoveries in common variant 
association studies. Here we describe a powerful framework for the 
meta-analysis of rare variants at the level of genes or other functional 
units. Using simulation and empirical evaluation, we demonstrate that 
our approach is well calibrated and provides comparable power to 
more cumbersome analyses that require that all individual-level data 
be pooled. Through the analysis of blood lipid levels across seven 
studies, we show that our approach can detect rare variant association 
signals at known candidate loci. Our method has a variety of unique 
features, which include support for a variety of rare variant association 
tests, allowing for the analysis of family samples and the calculation 
of empirical P values and for conditional analysis that can distinguish 
truly novel rare variant signals from shadows of other nearby common 
or rare associations. We envision that this approach (and continued 
development of related approaches35–37) will facilitate the large sample 
sizes required to accelerate discoveries in complex trait genetics.

URLs. The authors’ website for Rare Variant Analysis and Meta-
Analysis is available at http://genome.sph.umich.edu/wiki/
RAREMETAL-SOFTWARE.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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table 1 results for meta-analysis of gene-level rare variant association tests

Gene Gene positiona Burden-1 Burden-5 SKAT-1 SKAT-5 VT MAF cutoff

Direction of single-
variant association 

statisticsb

Estimates of genetic average  
effect (s.d.) for rare variants under 

different MAFs thresholds

0.01 0.05 VT

hDl

LIPCc Chr. 15: 58.7 Mb 1.4 × 10−12 3.5 × 10−7 1.8 × 10−9 1.4 × 10−2 4.5 × 10−12 3.7 × 10−3 − + + + + − − + − 0.5 0.1 0.5

LPLc Chr. 8: 19.8 Mb 9.7 × 10−1 2.5 × 10−24 3.5 × 10−1 5.0 × 10−13 1.5 × 10−23 2.5 × 10−2 (−) − (−) + − + + – −0.3 −0.3

ANGPTL4 c Chr. 19: 8.4 Mb 2.2 × 10−2 2.9 × 10−19 2.2 × 10−2 3.0 × 10−19 1.8 × 10−18 2.6 × 10−2 (+) − − + + − + + + – 0.3 0.3

LIPG c Chr. 18: 47.1 Mb 2.2 × 10−5 6.4 × 10−19 2.1 × 10−5 2.9 × 10−9 4.4 × 10−18 1.3 × 10−2 − + + − − − − (+) + – 0.4 0.4

HNF4A Chr. 20: 43.0 Mb 7.5 × 10−1 2.8 × 10−7 6.8 × 10−1 2.5 × 10−7 1.5 × 10−6 4.1 × 10−2 (−) − − + − + – −0.1 −0.1

CD300LG Chr. 17: 41.9 Mb 4.9 × 10−1 8.5 × 10−7 5.2 × 10−1 1.0 × 10−5 3.1 × 10−6 3.3 × 10−2 (−) + − (+) – −0.1 –

lDl

PCSK9 c Chr. 1: 55.5 Mb 1.8 × 10−2 7.4 × 10−19 8.1 × 10−2 5.5 × 10−17 2.0 × 10−28 1.3 × 10−2 (−) − − (−) − − + −+ + − – −0.3 −0.5

BCAM Chr. 19: 45.3 Mb 1.7 × 10−1 1.6 × 10−18 1.5 × 10−1 3.0 × 10−5 2.6 × 10−17 3.6 × 10−2 (−) + + + (−) + − + + + − 
− − + (−) + − − + − − + +

– −0.1 −0.1

CBLC Chr. 19: 45.3 Mb 9.4 × 10−1 2.0 × 10−15 4.4 × 10−1 1.5 × 10−4 1.0 × 10−14 4.4 × 10−2 − (−) − − + − (−) (+) – −0.1 −0.1

PVR Chr. 19: 45.2 Mb 6.1 × 10−2 3.0 × 10−10 4.8 × 10−2 6.3 × 10−2 1.1 × 10−9 4.9 × 10−2 (−) + + − − + – −0.1 −0.1

LDLR c Chr. 19: 11.2 Mb 1.8 × 10−3 4.7 × 10−5 3.8 × 10−2 2.5 × 10−1 2.4 × 10−7 5.2 × 10−4 + + + + + + + + + −+ + 
+ + − − +

– – 0.8

triglycerides

ANGPTL4c Chr. 19: 8.4 Mb 2.6 × 10−2 1.2 × 10−24 3.7 × 10−2 3.9 × 10−25 7.1 × 10−24 2.6 × 10−2 (−) + − − − + − − − – −0.3 −0.2

LPLc Chr. 8: 19.8 Mb 6.8 × 10−1 7.7 × 10−20 2.6 × 10−1 1.8 × 10−11 4.6 × 10−19 2.5 × 10−2 (+) + (+) − − + − – 0.2 0.2

Associations that attain exome-wide significance (P < 3.1 × 10−6) are shown. Five gene-level association tests were used to analyze the data: simple burden tests with a frequency cutoff  
of 1% or 5% (Burden-1 and Burden-5), SKAT tests with a frequency cutoff of 1% or 5% (SKAT-1 and SKAT-5) and variable-threshold (VT) tests that analyze variants with MAF < 5%.  
Significant P values for each test are shown in bold. For the associations that are significant, estimates of average genetic effect are also shown.
aGene position is defined according to hg19, GRCh37 (Genome Reference Consortium Human Reference 37. bDirection of single-site statistics for variants with MAF< 5%. Variants in parentheses have frequency  
>1%. cLoci with one or more gene-level association signal exceeding the top single-variant signal.
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ONLINE	METHODS
This section starts with a summary of notation and proceeds to describe the 
statistics to be shared between studies and methods for single-variant meta-
analysis. We then show that the statistics for different gene-level tests can be 
calculated using summary-level data, enabling efficient meta-analysis. In the 
Supplementary Note, we provide additional details and summarize how each 
of the test statistics used here can be derived as a score test using likelihood 
functions that allow for per-sample nuisance parameters.

Notation. For simplicity, we describe our strategy for the analysis of a single 
gene. We let J be the number of variant nucleotide sites genotyped in at least 
one study. For study k, we let nk denote the number of samples phenotyped and 
genotyped, and we let the vector yk = ( , , ), ,Y k Nk k

T
1  Y  denote the quantita-

tive trait residuals (after adjustment for any covariates), with variance of sk
2 .  

Within each study k, we encoded genotype information in matrix Xk, where 
each entry Xi,j,k represented the genotype for individual i at site j, coded as the 
number of alternative alleles. We encoded missing genotypes in the data set 
as the average number of minor alleles in individuals who were genotyped for 
that marker. The multisite genotype for individual i was denoted by the row 
vector xi k, ,• , and the genotypes for all Nk individuals at site j were given by the 
column vector x•, ,j k . For ease of presentation, we define the mean genotype 
matrix Xk , where the (i,j)th element was ( )/, ,Σi i j k kX N .

Summary statistics to be shared. For each study, we first calculated and shared 
a vector of score statistics u yk k= −( )X Xk k

T , a corresponding variance- 
covariance matrix ̂ ˆ cov( ) ˆ ( ) ( )aV X X X X Xk k k k k k= = − −s sk k k

TN2 2  and 
allele frequencies for each marker p X Nj k i i j k k, , , /= Σ 2 . Note that Vk effec-
tively describes linkage disequilibrium relationships between the variants 
being examined. To perform quality control, we also shared mean and vari-
ance values for the quantitative trait residuals, genotype call rates and Hardy-
Weinberg equilibrium P values at each variant site.

Meta-analysis of single-variant association test statistics. We first combined 
single-variant association test statistics across studies using the Cochran-Mantel-
Haenszel method. Specifically, we calculated a score statistic at each site as

t U Vj j j j, , , ,• • •=

where U Uj k j k, ,• = Σ  and V Vj j k j j k, , , ,• = Σ . For ease of presentation, we denote 
the vector of single-variant association tests after meta-analysis as u uk= Σk .  
Under the null hypothesis of no gene-phenotype associations, this vector 
was distributed as multivariate normal with mean vector 0 and covariance  
matrix Σk kV .

Burden tests that assume variants have similar effect sizes. For a simple 
burden test in study k, the impact of multiple rare variants in a region can be 
modeled using a shared regression coefficient in a model that takes the form

Y Ci k k i k, , ,( )= + +•b b e0 burden burden xi k, ,

where e si k k, ~ ( , )Ν 0 2 . Cburden( )xi k, ,•  is a function that takes genotypes for a 
single individual as input and returns the count of rare alleles (the ‘rare variant 
burden’) in the gene being examined. When individual-level data are available 
and nuisance parameters β0,k and sk

2 are allowed to vary between studies,  
the score statistic for a rare variant burden test becomes

U U k
kk

burden burden= = =∑∑ ,  T
k

Tu u

which is equal to a linear sum of (weighted) single-variant score statistics.
Under the null, this statistic is approximately normally distributed with 

mean of 0 and variance of V T
kburden =  ( )Σ Vk , enabling significance tests. 

Here v is the vector of weights, which is  = ( , , )w w1 J , with each element ωj 
representing the weight assigned to variant j according to its allele frequency or 
its computationally predicted functional impact10,15. The formula above makes 
it clear that, when nuisance parameters are allowed to vary between studies, 
the same burden score statistics that could be calculated by sharing individual-
level data can be equivalently calculated using shared summary statistics.

(1)(1)

(2)(2)

(3)(3)

Variable-threshold tests with an adaptive frequency threshold. In the  
variable-threshold test, rare variant burden statistics were calculated for 
each observed variant MAF threshold, and significance was evaluated for the  
maximum of these statistics. Given a specific variant frequency threshold F, 
we defined the resulting burden score statistic as

U UFburden( ) = vF
T 

Here VF was a vector of indicators, where the jth element was equal to 1 
if the pooled MAF at variant site j was less than F and 0 otherwise. For 
convenience, we also defined a matrix of indicators for MAF thresholds 
 = ( , , , )v v vF1 F2 FJ . After a burden statistic was calculated for each poten-
tial frequency threshold, these were standardized, dividing each statistic by its 
corresponding variance, and the maximum statistic was identified as

T TF FVT burden= { }max ( )

where

T UF F F
T

k
Fburden burden( ) ( )= ∑v vVk

Significance for this statistic can be evaluated using the cumulative distribu-
tion function for the multivariate normal distribution38. Specifically, given 
the definition of the covariance between burden statistics calculated using 
different allele frequency thresholds, we generated

T TF FM
k

burden burden MVN( ) ( ), , ~ ,1 ( ) 





















∑0  Vk

T

The P value for the variable-threshold test statistic was given by

p T t

T t T t

F
F FM

= − ≤( )
= − ≤ ≤( )
= −

1

1

1
1

Pr

Pr , ,( ) ( )

VT VT

burden burden

MVN



(( , , )t t

where FMVN was the distribution function for the multivariate normal distri-
bution MVN( , ( ) )0  ΣkVk

T .

Burden tests that assume a distribution of variant effect sizes (for example, 
SKAT tests). The simple burden test and variable-threshold test described 
above can be underpowered when variants with opposite phenotypic effects 
reside in the same gene and are grouped together, as the shared regression 
coefficient can average close to zero in that situation9–12. To accommodate 
this situation, we considered an underlying distribution of rare variance effect 
sizes with a mean of zero and tested whether the variance of this distribution 
τ was greater than zero.

When individual-level data were available, association analysis in study k 
was performed using the following model

Y Xi k k j i j k i k
j

, , , , ,= + +∑b b e0

where e si k k, ~ ( , )Ν 0 2 . We made inferences about rare variant effect sizes 
 = ( , , , )b b b1 2  J  by assuming these followed a common distribution with 
mean of zero and variance of τ. Under the null, τ was zero. Following the 
example of Wu et al.9, in the Supplementary Note we derive the score statistic 
for this model and show that it can be calculated on the basis of per-study 
summary statistics as

Q
k

T

k
=























∑ ∑u uk kK

Here, K is the kernel matrix that compares multisite genotypes. A default 
choice9 is a diagonal matrix K = diag( , , , )w w w1 2  J , with ωj being the 
weight assigned to variant site j. The statistic Q follows a mixture χ2 distribu-
tion31, which means that Q is equivalent in distribution to a weighted sum of  

(4)(4)

(5)(5)

(6)(6)

(7)(7)

(8)(8)

(9)(9)
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independent χ2 random variables. The weights (or mixture proportions) are 
given by the eigenvalues for the matrix ( ) ( )/ /Σ Σk kV K Vk k

1 2 1 2.

Monte-Carlo method for empirical assessment of significance. The previous 
sections describe how a series of gene-level test statistics can be calculated and, 
for each one, propose a strategy for evaluating significance using asymptotic 
distributions. In practice, evaluating the required numerical integrals can be 
challenging because variance-covariance matrices are sometimes singular or 
nearly singular.

Note that single-variant test statistics are distributed as

uk
k kk
∑ ∑∑= −( )











y 0k

T X X Vk k k~ ,MVN

Then, to evaluate significance empirically, one can sample random vectors 
from the distribution MVN( , )0 ΣkVk  and calculate gene-level rare variant test 
statistics for each of these sampled random vectors, resulting in an empiri-
cal distribution for any gene-level statistic39. As usual, P values can then be 
evaluated by comparing the test statistics for the original data with those in 
the empirical distribution. For computational efficiency, we used an adaptive 
algorithm where a larger number of vectors were sampled when assessing small 
P values and fewer vectors were sampled when assessing larger P values20.

Conditional analyses. It is well known that, owing to linkage disequilibrium, 
one or more common causal variants can result in shadow association signals 
at other nearby common variants. For common variants, Yang et al.28 have 
shown that linkage disequilibrium relationships between variants, estimated 
from external reference panels, can be used to enable conditional analysis 
in meta-analysis settings. For rare variants and gene-level tests, accurately 
describing relationships between variants is crucial, and we advise against 
the use of external reference panels. Instead, in the Supplementary Note, we 
describe how conditional analysis statistics can be derived for different gene-
level tests in our meta-analysis setting.

Analysis of samples of known or hidden relatedness. Our methods and 
tools can also be used when samples in a study are related to each other. 
Detailed formulae for the score statistics and their covariance matrices when 
linear mixed models are used to account for relatedness are described in the 
Supplementary Note.

Analysis of dichotomous traits. Our approach extends naturally to the analy-
sis of binary traits. Specifically, when single-variant score statistics and their 

(10)(10)

covariance matrices are shared, meta-analysis test statistics can be calculated in 
the same manner as for continuous traits. Detailed definitions of test statistics 
for binary traits are given in the Supplementary Note. A limitation is that, 
when variant counts in a gene or analysis unit are very small or the number 
of cases and controls in each study is very unbalanced, the asymptotic distri-
butions for burden statistics may not hold, and P values obtained using our 
approach may not be accurate. In practice, we recommend careful review of 
quantile-quantile plots for meta-analysis statistics (as is standard in genome-
wide association studies).

Weighted Fisher’s methods, incorporating unequal sample sizes. To accom-
modate the scenario where meta-analysis is performed on samples of different 
size, we used a modified version of Fisher’s method that incorporates sam-
ple sizes as weights for each study. Specifically, our test statistic was defined 
by T N pk k kweighted-Fisher = −2Σ log . The weighted Fisher’s test statistic  
follows a mixture χ2 distribution with mixture proportions given by N1, N1,  
N2, N2, …, Nk, Nk.

Simulation of population genetic data. We simulated haplotypes using a 
coalescent model and the program ms16. We chose a demographic model con-
sistent with European demographic history4, including an ancestral bottleneck 
followed by more recent population differentiation and exponential growth. 
Model parameters were based on estimates from large-scale sequencing  
studies40, as detailed in the Supplementary Note.

Meta-analysis of lipid traits. Summary statistics were calculated for each par-
ticipating study and shared to enable a central meta-analysis. In single-variant 
and gene-based rare variant association analysis, age, age2, sex and cohort-
specific covariates, such as principal components of ancestry, were included 
in the analysis. Trait residuals were standardized using inverse normal trans-
formation. More detailed descriptions for each participating cohort are given 
in the Supplementary Note. This research was approved by the institutional 
review boards of the University of Michigan and the Broad Institute. Informed 
consent was obtained from all study subjects. In addition, all participating 
studies received approvals from their local ethics committees.

38. Genz, A. Numerical computation of multivariate normal probabilities. J. Comput. 
Graph. Statist. 1, 141–149 (1992).

39. Zou, F., Fine, J.P., Hu, J. & Lin, D.Y. An efficient resampling method for assessing 
genome-wide statistical significance in mapping quantitative trait loci. Genetics 
168, 2307–2316 (2004).

40. Coventry, A. et al. Deep resequencing reveals excess rare recent variants consistent 
with explosive population growth. Nat. Commun. 1, 131 (2010).
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