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Research Article

Association of Cancer Susceptibility Variants with Risk of
Multiple Primary Cancers: The Population Architecture using
Genomics and Epidemiology Study

S. Lani Park1, Christian P. Caberto2, Yi Lin3, Robert J. Goodloe4, Logan Dumitrescu4,5, Shelly-Ann Love6,
Tara C. Matise7, Lucia A. Hindorff8, Jay H. Fowke9, Fredrick R. Schumacher1, Jennifer Beebe-Dimmer10,11,
Chu Chen3, Lifang Hou12, Fridtjof Thomas13, Ewa Deelman14, Ying Han1, Ulrike Peters3, Kari E. North6,15,
Gerardo Heiss6, Dana C. Crawford16, Christopher A. Haiman1, Lynne R. Wilkens2, William S. Bush16,
Charles Kooperberg3, Iona Cheng17, and Loïc Le Marchand2

Abstract
Background:Multiple primary cancers account for approximately 16% of all incident cancers in the United

States. Although genome-wide association studies (GWAS) have identified many common genetic variants

associatedwith various cancer sites, no studyhas examined the association of these genetic variantswith risk of

multiple primary cancers (MPC).

Methods: As part of the National Human Genome Research Institute (NHGRI) Population Architecture

using Genomics and Epidemiology (PAGE) study, we used data from the Multiethnic Cohort (MEC) and

Women’s Health Initiative (WHI). Incident MPC (IMPC) cases (n ¼ 1,385) were defined as participants

diagnosedwithmore thanone incident cancer after cohort entry. Participants diagnosedwith only one incident

cancer after cohort entry with follow-up equal to or longer than IMPC cases served as controls (single-index

cancer controls; n¼ 9,626). Fixed-effectsmeta-analyses of unconditional logistic regression analyseswere used

to evaluate the associations between 188 cancer risk variants and IMPC risk. To account for multiple

comparisons, we used the false-positive report probability (FPRP) to determine statistical significance.

Results: A nicotine dependence–associated and lung cancer variant, CHRNA3 rs578776 [OR, 1.16; 95%

confidence interval (CI), 1.05–1.26; P ¼ 0.004], and two breast cancer variants, EMBP1 rs11249433 and TOX3

rs3803662 (OR, 1.16; 95% CI, 1.04–1.28; P¼ 0.005 and OR, 1.13; 95% CI, 1.03–1.23; P¼ 0.006), were significantly

associated with risk of IMPC. The associations for rs578776 and rs11249433 remained (P < 0.05) after removing

subjects who had lung or breast cancers, respectively (P � 0.046). These associations did not show significant

heterogeneity by smoking status (Pheterogeneity � 0.53).

Conclusions: Our study has identified rs578776 and rs11249433 as risk variants for IMPC.

Impact: These findings may help to identify genetic regions associated with IMPC risk. Cancer Epidemiol

Biomarkers Prev; 23(11); 2568–78. �2014 AACR.

Introduction
In the past 50 years, the 5-year relative survival rate for

all cancers has dramatically increased from 49% to 67%

(1). As a result, the number of cancer survivors is growing
by 2% per year (2). Compared with the general popula-
tion, cancer survivors are at a greater risk for a number of
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comorbidities, including the occurrence of subsequent
primary cancers (3), which is one of the leading causes
of death for long-term cancer survivors (>5 years; refs. 4,
5). In 2002, Surveillance Epidemiology and End Results
(SEER) data indicated that approximately 16% of all new
cancers in the United States were second or higher-order
primary cancers (1). Risk factors for developing multiple
primary cancers (MPC) include younger age at index
(first) cancer, treatment modality for the index cancer,
shared etiologic factors (e.g., smoking), and genetic sus-
ceptibility (3).
Genome-wide association studies (GWAS) have iden-

tified several hundred genetic variants associated with
various types of cancers (6). Pleiotropy, defined aswhen a
single variant is associated with more than one pheno-
type, has been identified for some of these cancer risk loci
(7, 8). For instance, variants in the chromosome 8q24 locus
have been associated with risk of prostate, breast, colo-
rectal, and other cancers (8) and those near the telomerase
reverse transcriptase gene (TERT) have been associated
with many cancer sites (9–13), including lung (14–16),
estrogen receptor (ER)–negative breast (17), ovary (18),
and pancreatic (19) cancers. Given that some cancer risk
variants are associatedwithmore than one cancer site, it is
possible that they may also be associated with risk of
developing MPC. Identification of such risk variants may
elucidate common cancer etiologies and pathways,
improve our understanding of treatment-related effects
or identify populations at risk for developing multiple
cancers.
With the exception of familial cancer syndromes, the

literature examining genetic variants and risk of MPC is
sparse, and is usually limited to risk after a specific index
cancer site. Furthermore, prior studies are rarely based on
prospective data and there has been no systematic inves-
tigation of the relationship between common cancer sus-
ceptibility variants andMPC risk. Thus, we used prospec-
tive data from the Population Architecture using Geno-
mics and Epidemiology (PAGE) study to investigate the
associations of 188 cancer risk variants with risk of inci-
dent MPC (IMPC).

Materials and Methods
Study populations
The PAGE study (20) was initiated in 2008 by the

National Human Genome Research Institute (NHGRI).
Two PAGE studies in collaboration with the NHGRI and
the coordinating center (20) participated in this analysis,
the Multiethnic Cohort (MEC; ref. 21) and the Women’s
Health Initiative (WHI; ref. 22). Informed consent was
obtained from all study participants. This investigation
was approved by each study’s respective Institutional
Review Boards.
Briefly, theMECwas initiated in 1993 to investigate the

impact of dietary and environmental factors on major
chronic diseases, particularly cancer, in ethnically diverse
populations in Hawaii and California (21). The study

recruited 96,810 men and 118,441 women of ages 45 to
75years between1993and1996.MECsubjects recontacted
mostly from 1995 to 2001 for blood collection included
incident cases with breast, prostate, or colorectal cancers,
as well as a random sample of cohort participants to serve
as controls in genomic nested case–control studies (par-
ticipation rate 72% and 63%, respectively). The median
interval between diagnosis and blood draw was 14
months (interquartile range, 10–19 months). From 2001
to 2006, blood was also collected, prospectively, without
regard for cancer diagnosis, from willing cohort partici-
pants (participation rate 43%). Incident cancers are iden-
tified through annual linkage to the Hawaii Tumor Reg-
istry, the Los Angeles County Cancer Surveillance Pro-
gram, and the California Cancer Registry. All three reg-
istries are members of SEER (23). At the time of case
selection for this analysis, follow-up was complete as to
December 31, 2007.

The WHI is a long-term health study that recruited
161,808 postmenopausal women of ages 50 to 79 years
between 1992 and 1998 at 40 clinical centers throughout
the United States. WHI comprises a clinical trial arm, an
observational study arm, and several extension studies,
which are studieswith continued follow-up of consenting
participants from the original two study arms. The details
of WHI have been previously described (22, 24), and are
available online (25). Blood draw was taken at time of
study recruitment on all study participants. During the
follow-upperiodof January 1, 1992, to September 30, 2013,
incident cancerswere identified amongparticipants in the
observational study and clinical trial arm. Potential cancer
status was identified from self-reported and/or hospital
record data and confirmation of status was determined
through review of the participant’s medical records and
pathology reports by trained cancer coders.

Case and control definitions
Details regarding the study design and case–control

definitions are presented in Supplementary Table S1. All
subjects for this analysis were cancer-free at baseline and
had to have developed at least one cancer during study
follow-up. MPC cases were defined as those who were
diagnosed with more than one invasive primary cancer
(nonmelanoma skin cancers were excluded) during study
follow-up (26), and are referred herein as IMPC cases.
Controls were defined as subjects who developed only
one invasive primary cancer during study follow-up and
are referred to as incident single-index cancer (ISC) con-
trols. To test the association of cancer risk variants with
risk of subsequent cancers, cancer-free controls were not
used in this analysis. In the MEC, which identifies cancer
cases by linkage to the SEER registries, IMPC cases could
have a subsequent primary cancer of the same site, pro-
vided that the subsequent cancer met the SEER definition
for same site MPCs [e.g., a subsequent breast cancer
following a first breast cancer defined as primary given
the following conditions: (i) contralateral breast cancer
that did not result from metastases, (ii) breast cancer of a
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different histologic cell type, or (iii) breast cancer 5þ years
after initial diagnosis; ref. 26). No second primaries were
allowed for prostate cancer, leukemia, and non-Hodgkin
lymphoma, also based on the SEER rules. In the WHI,
which adjudicated cancer cases bymedical record review,
it was not possible to systematically determine whether
the cancer of the same site was a subsequent primary
cancer or metastases. Thus, a repeat diagnosis of the same
cancer site during follow-up was not counted as IMPC in
WHI. IMPC cases for each studywere frequency-matched
to all eligible ISC controls by age of index cancer diagnosis
(within 5-year intervals), length of follow-up (where con-
trols had follow-up time that was equal to or greater than
that of the cases), race, and sex. This analysis included a
total of 1,385 IMPC cases and 9,626 ISC controls. In
preliminary analyses, we had additionally matched for
first cancer site. As the findings were similar, wematched
only onage, sex, and race/ethnicity to increase our sample
size and adjusted for index cancer in the statistical model.

SNP selection and genotyping
A total of 188 cancer risk variants associated with 18

cancers and nicotine dependence (nicotine dependence
SNPs were considered herein as cancer risk variants
given that smoking is a major risk factor for several
cancer sites; ref. 27) were identified from the NHGRI
catalog of GWAS studies (6) as of January 2010, fol-
lowed by a review of the original reports and the fine
mapping literature (12, 13–16, 19, 28–83). The risk allele
for each SNP was determined on the basis of the prior
literature and was defined as the allele associated with
an increased risk of cancer in the first GWAS report.

Genotyping for the 188 cancer variants (175 SNPs in
WHI and 156 SNPs in MEC; 143 SNPs with overlap)
was performed using the TaqMan OpenArray platform
(MEC) and Illumina BeadXpress (WHI). To control for
population stratification, a panel of 128 ancestry informa-
tive markers (84) were genotyped. Principal components
analysis (85) was performed and the main principal com-
ponents were included in the regression model to adjust
for genetic ancestry in each study.

Standard quality-assurance and quality-control mea-
sures were applied to ensure genotyping quality (20).
Samples and SNPs were included on the basis of call
rates (�90%), concordance of blinded replicates (>98%),
and no clear departure from Hardy–Weinberg equilib-
rium (P > 0.001).

Statistical analysis
For each study, we tested the association between each

SNP and risk of IMPCusing unconditional logistic regres-
sion. SNPs were coded additively, with 0, 1, and 2 refer-
ring to the number of risk alleles. Models were adjusted
for age at diagnosis for the index cancer (continuous), sex
(MEC only), study design (WHI only: clinical trial vs.
observational study), the most significant principal com-
ponents of genetic ancestry [to account for race/ethnicity
(five principal components for the MEC and three prin-

cipal components for WHI)], and index cancer site (17
categories), stage (local, regional, and distant), and diag-
nosis year (to account for treatment cohort effects). We
adjusted for index cancer site and stage to account for
differences in cancer survival.

The regression estimates were combined across studies
using inverse-variance weighted, fixed-effect meta-anal-
ysis as implemented in METAL (http://www.sph.umich.
edu/csg/abecasis/Metal/). We calculated the cross-
study and cross-race heterogeneity P values based on
Cochran Q statistic. Stratified analysis by race/ethnicity
was conducted for SNP associations with P < 0.05. To
account for the multiple testing of 188 SNPs, we used the
false-positive report probability (FPRP) introduced by
Wacholder and colleagues (86). We set a stringent FPRP
threshold of 0.20 and assigned a prior probability range of
0.01 to 0.10 todetect anORof 1.2 or 0.83.Variants thatwere
found to be significantly associated with IMPC after
correction for multiple comparisons were further inves-
tigated in sensitivity analyses in which subjects with the
cancer site (either as index cancer or IMPC) corresponding
to the variant’s first known GWAS association were
removed, as well as after adjusting for or stratifying by
smoking status, obtained by self-report at baseline.

Results
The main characteristics of the 1,385 IMPC cases and

9,626 ISC controls are presented in Table 1. Subjects were
of six different ethnic/racial populations: European
American, African American, Hispanic, Asian, Pacific
Islander, and Native American. Forty-three percent of
subjects were European American and 59% were female
(the MEC ascertained both sexes, while WHI ascertained
only women). The most common index cancer sites were
prostate and breast for the MEC and colorectal and breast
for WHI. In both studies, among all IMPC cases, breast
cancer was the most common incident second cancer
(for the MEC, n ¼ 164 and for WHI, n ¼ 133). The
distribution of index and second (subsequent) incident
cancers by study is presented in Table 2 and Supplemen-
tary Table S2 (which includes latency intervals between
cancer sites). The most common index and subsequent
cancer combination in theMEC studywas an index breast
and subsequent breast cancers and in the WHI study
index endometrial and subsequent breast cancers. Less
common cancers were collapsed as "other"; the enumer-
ation of these cancer sites can be found in Supplementary
Table S3 (WHI) and Supplementary Table S4 (MEC).
There were 115MEC IMPC cases and 15WHI IMPC cases
with three or more cancers (Supplementary Table S5).

We examined a total of 188 cancer risk variants (Table 3
for associationswith P < 0.05 and Supplementary Table S6
for associations with P� 0.05). Prostate and breast cancer
risk variants represented the greatest proportions of var-
iants (28% and 15%, respectively). Among the 188 SNPs,
12 were found to be associated with risk of IMPC at P <
0.05 (Table 3). These 12 associations were with three
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prostate cancer variants, three lung cancer or nicotine
dependence variants, two breast cancer variants, one pan-
creatic cancer variant, one melanoma variant, one thyroid
variant, and one colorectal variant. These associations
were not found to be heterogeneous by study or race/
ethnicity (P � 0.05; Table 3 and Supplementary Table S7).

After correction for multiple comparisons, we found
that the associations of CHRNA3 rs578776, EMBP1
rs11249433, and TOX3 rs3803662 with IMPC remained
statistically significant at a FPRP threshold of 0.20 and a
prior probability of 0.01 (Table 4). The CHRNA3 rs578776
risk allele "C" previously associated with nicotine

Table 1. Study characteristics for IMPC cases and first index cancer controls

MEC WHI

Cases Controls Cases Controls

(n ¼ 965) (n ¼ 6,969) (n ¼ 420) (n ¼ 2,657)

Age of index cancer; mean (SD) 68.3 (7.8) 68.0 (8.3) 70.1 (7.0) 69.7 (9.0)
Age of second cancer; mean (SD) 72.6 (8.0) NA 74.2 (7.3) NA
Follow-up time, y; mean (SD) 9.4 (3.3) 13.7 (1.9) 9.6 (3.7) 12.7 (2.3)
Sex; n (%)
Male 549 (56.9) 3,930 (56.4)
Female 416 (43.1) 3,039 (43.6) 420 (100) 2,657 (100)

Race/ethnicity; n (%)
European American 254 (26.3) 1,534 (22.0) 372 (88.6) 2,088 (78.6)
African American 235 (24.4) 1,419 (20.4) 37 (8.8) 412 (15.5)
Hispanic 194 (20.1) 1,581 (22.7) 6 (1.4) 96 (3.6)
Asian 232 (24.0) 2,045 (29.3)

4 (0.95)
b

58 (2.2)
b

Pacific Islander 50 (5.2) 390 (5.6)
Indian/Native American NA NA 1 (0.24) 3 (0.11)

Smoking status; n (%)
Never 352 (36.9) 2,843 (41.4) 174 (41.4) 1,292 (48.6)
Former 421 (44.1) 3,064 (44.6) 200 (47.6) 1,123 (42.3)
Current 182 (19.1) 959 (14.0) 42 (10.0) 212 (8.0)
Missing, n 10 103 4 30

Pack-yearsa; mean (SD) 21.9 (17.0) 18.0 (15.7) 15.3 (22.0) 11.0 (19.1)
Missing, n 31 260 14 90

Index cancer site; n (%)
Breast 265 (27.5) 1,970 (28.3) 82 (19.5) 906 (34.1)
Prostate 278 (28.8) 2,906 (41.7) NA NA
Colorectal 164 (17.0) 987 (14.2) 67 (16.0) 433 (16.3)
Lung 24 (2.5) 175 (2.5) 43 (10.2) 291 (11.0)
Otherc 234 (24.2) 931 (13.4) 228 (54.3) 1,027 (38.7)

Secondary cancer site; n (%)
Breast 164 (17.0) NA 133 (31.7) NA
Prostate 111 (11.5) NA NA NA
Colorectal 158 (16.4) NA 49 (11.7) NA
Lung 120 (12.4) NA 65 (15.5) NA
Otherc 412 (42.7) NA 173 (41.2) NA

Stage of index cancer; n (%)
Localized 683 (70.8) 5,153 (73.9) 288 (68.6) 1,651 (61.1)
Regional 215 (22.3) 1,346 (19.3) 86 (20.1) 640 (24.1)
Distant 67 (6.9) 470 (6.7) 46 (11.0) 366 (13.8)

Diagnosis year for index cancer, mean (SD) 1998 (3.4) 2000 (3.7) 2002 (3.5) 2003 (3.7)
Diagnosis year for second cancer, mean (SD) 2002 (3.2) NA 2006 (3.7) NA

Abbreviation: NA, not applicable.
aPack-years for ever smokers only.
bCounts for Asian and Pacific Islanders.
cThe four most common other cancer sites include bladder, endometrium, leukemia, melanoma, and non-Hodgkin lymphoma;
enumeration for these sites can be found in Table 2.
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dependence and lung cancer was associated with an
increased risk of IMPC [OR, 1.15; 95% confidence interval
(CI)¼ 1.05–1.26; P¼ 0.004; Table 2]. The risk allele "C" for
the breast cancer variant EMBP1 rs11249433 was also
associated with an increased risk of IMPC (OR, 1.16;
95% CI, 1.04–1.28; P ¼ 0.005). The risk allele "T" for the
breast cancer variantTOX3 rs11249433, located at 16q12.1,
was also associated with an increased risk of IMPC (OR,
1.13; 95% CI, 1.03–1.23; P ¼ 0.006).

When removing from the analysis all subjects with lung
cancer for the CHRNA3 variant andwith breast cancer for
the EMBP1 and TOX3 variants, either as index cancer or
IMPC, the associations forCHRNA3 rs578776 and EMBP1
rs11249433 remained significant (P � 0.046; Table 5). The
association for rs3803662 had a similar OR as its main
effects; however, the association did not quite reach sta-
tistically significant (OR, 1.13; P ¼ 0.005 vs. OR, 1.11; P ¼
0.063, respectively).

Because smoking is a risk factor for many cancers, we
additionally adjusted our models for smoking status and
pack-years and found similar associations (data not
shown). In our analyses stratified by smoking status, no
heterogeneity in the effects of the genetic variants was
detected between never and ever smokers (Pheterogeneity �
0.53; Table 5). Because of a limitation in sample size, we
were unable to restrict this analysis to cancers that are
unrelated to smoking.

Discussion
To our knowledge, this is the first study to examine the

association of cancer risk variants with risk of IMPC. We
tested 188 established cancer risk variants among 1,385
IMPC cases and 9,626 ISC controls and found that the lung
cancer/nicotine dependence risk allele "C" of CHRNA3
rs578776 and the breast cancer risk alleles "C" of EMBP1
rs11249433 and "T" of TOX3 of rs3803662 were associated
with an increased risk of IMPC. The associations for
rs578776 and rs11249433 remained after accounting for
multiple hypothesis testing, were not restricted to parti-
cipants with the cancer previously associated with those
variants, and were consistent with regard to smoking
status.

The 15q25.1 region includes the CHRNA5–CHRNA3–
CHRNB4 cluster of cholinergic nicotine receptor subunit
genes. Variants within this region have been associated
with increased risk of lung cancer primarily due to their
relationships with smoking behavior and nicotine depen-
dence (14, 80, 81, 87). In addition, risk variants in the
CHRNA5–CHRNA3–CHRNB4 region have been positive-
ly associated with chronic obstructive pulmonary disease
(88), serum albumin levels (89), pulmonary function (90),
and childhood obesity–related traits in Hispanics (91). In
our study, we found that both rs578776 and rs8042374,
which are in high linkage disequilibrium (LD) in whites
and Asians [Utah residents with ancestry from northern
and western Europe (CEU): r2 ¼ 0.83, Yoruba in Ibadan,
Nigeria (YRI): r2¼ 0.16, Japanese in Tokyo, Japan andHan
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Chinese in Beijing, China (JPTþCHB): r2 ¼ 0.72], were
positively associated with risk of IMPCs when compared
with those with only one incident cancer. Only the asso-
ciationwith rs578776 remained significant after correction
for multiple testing. Smoking is an established risk factor
for at least 10 different cancer sites (27); therefore, a
reasonable explanation for the association of these var-
iants with IMPC would be the result of their known
association with smoking. However, when stratifying by
smoking status, we found that the association was some-
what stronger, albeit not significantly (Pheterogeneity by

smoking � 0.47), in never smokers (OR, 1.21; P ¼ 0.01)
than in ever smokers (OR, 1.13; P¼ 0.05). This association
in never smokers is unexpected and could be due to
chance. Further study of this risk variant with IMPC in
never smokers is warranted.

The rs11249433 variant is located in the pericentromeric
region at 1p11.2 and within the embigin pseudogene,
EMBP1. This SNP maps near many other pseudogenes
in a SNP desert region. EMBP1 rs11249433 was originally
found to be associated with breast cancer (P ¼ 7 � 10�10;
ref. 68). Additional studies found that rs11249433 was

Table 5. Associations of two cancer risk variants with IMPC risk, after subjects with the cancer site
corresponding to the known association have been removed, or after stratifying by smoking status

Breast cancer SNP

rs11249433

Breast cancer SNP

rs3803662 Lung cancer SNP rs578776

SNP Cases Control

OR

(95% CI)b P Cases Control

OR

(95% CI)b P Cases Control

OR

(95% CI)b P

Cancer site

removeda
822 6,596 1.15 (1.00–1.31) 0.046 841 6,712 1.11 (0.99–1.24) 0.063 1,117 9,072 1.18 (1.06–1.30) 0.0015

Stratify by smokingc

Never smokers 509 4,027 1.11 (0.94–1.32) 0.20 523 4,111 1.10 (0.95–1.26) 0.20 524 4,118 1.16 (1.00–1.36) 0.049

Ever smokers 796 5,034 1.19 (1.04–1.36) 0.01 809 5,117 1.15 (1.03–1.29) 0.02 808 5,093 1.12 (0.99–1.26) 0.06

Pheterogeneity by

smoking status

0.53 0.63 0.73

aSubjects with the cancer site corresponding to the known association with cancer have been removed.
bModels were adjusted for age at diagnosis for the index cancer (continuous), sex (MEC only), study design (WHI only: clinical trial vs. observational study), the most significant

principal components.
cAdditionally adjusted for pack-years.

Table 4. FPRP values for the 10 SNPs associated with IMPC risk

FPRP based on prior:

SNP First GWAS site Meta-OR (95% CI)a Powerb Reported P 0.10 0.01 0.001

rs578776 Nicotine dependence 1.15 (1.05–1.26) 0.82 0.004 0.03 0.25 0.77
rs11249433 Breast cancer 1.16 (1.04–1.28) 0.75 0.005 0.04 0.29 0.81
rs3803662 Breast cancer 1.13 (1.03–1.23) 0.92 0.006 0.44 0.34 0.84
rs4975616 Lung cancer 0.89 (0.82–0.98) 0.93 0.014 0.15 0.66 0.95
rs8042374 Lung cancer 1.12 (1.02–1.24) 0.91 0.015 0.12 0.61 0.94
rs4857841 Prostate cancer 0.90 (0.82–0.98) 0.96 0.020 0.13 0.61 0.94
rs4785763 Melanoma 1.11 (1.01–1.22) 0.95 0.023 0.22 0.76 0.97
rs965513 Thyroid cancer 0.89 (0.80–0.99) 0.89 0.026 0.24 0.78 0.95
rs5945619 Prostate cancer 1.09 (1.01–1.18) 0.99 0.035 0.21 0.75 0.97
rs3790844 Pancreatic cancer 1.23 (1.01–1.49) 0.40 0.035 0.44 0.89 0.99
rs10086908 Prostate cancer 1.13 (1.01–1.27) 0.84 0.040 0.30 0.83 0.98
rs4939827 Colorectal cancer 1.09 (1.00–1.19) 0.98 0.047 0.33 0.85 0.98

NOTE:Thevalues inbold indicate that theassociations remainedsignificant at anFPRP thresholdof 0.20andapriorprobability rangeof
0.1 through 0.001 of detecting an OR of 1.2 or 0.83.
aORs fromTable 2,modelswere adjusted for ageat diagnosis for the indexcancer (continuous), sex (MEConly), studydesign (WHIonly:
clinical trial vs. observational study), the most significant principal components of genetic ancestry (five principal components for the
MEC and three principal components for WHI), index cancer site, stage, and diagnosis year (to account for treatment cohort effects).
bStatistical power calculated using the recessive model, except where noted, is the power to detect an OR of 1.2 or 0.83 at a level of
0.05.
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specifically associated with ER-positive breast cancer
(68, 92) and lower-grade breast tumors (92), two charac-
teristics that are associated with improved breast cancer
survival (93). It is possible that the association for
rs11249433 with increased risk of MPC may be related to
survivorship such that a longer survival after breast
cancer diagnosis may lead to a higher likelihood of devel-
oping a subsequent primary cancer. When removing
subjectswith breast cancer as the index cancer or an IMPC
from our analysis, the association of rs11249433 with
IMPC persisted, although not as significant, suggesting
that this association was not exclusively due to a better
breast cancer survival. This SNP may play a role in
increased overall cancer survival or risk of cancer devel-
opment. The closest located genes to rs11249433 are a
transmembrane coding gene, NOTCH2, and highly para-
logous low-affinity Fc gamma receptor family 1B gene,
FCGR1B. SNPs in NOTCH2 have been associated with
type II diabetes (94), a condition that has been associated
with an increased risk of breast, colorectal, pancreatic,
liver, urinary tract, and endometrial cancers (95, 96). In
addition, a study that investigated the expression of five
genes within 1 Mb of rs11249433 found an increased
expression ofNOTCH2 in patientswithER-positive breast
cancerwithout TP53mutations comparedwith thosewith
TP53 mutations (97). NOTCH2 receptors are involved in
regulation of cell communication, proliferation, differen-
tiation, and death (98), processes that are all influential in
cancer development.
The rs3803662 variant is located at 16q12.1 in theCancer

Susceptibility Candidate 16 gene, CASC16, which is an
RNA gene. TOX3 and LOC643714 are other genes located
close to this polymorphism. This variant has been previ-
ously associatedwith breast cancer (P¼ 6� 10�19; ref. 64),
with slightly stronger associations in ER-positive breast
cancer than ER-negative disease (99). A prior study found
that the risk allele for rs3803662 is correlated with lower
mRNA expression of TOX3 in ER-positive tumors (100).
Increased TOX3 mRNA expression has been previously
found to be predictive of breast cancer metastases (101)
and lower overall survival among patients with breast
cancer (100). It is possible that the association for
rs3803662 with increased risk of MPC may be related to
survival frombreast cancer.When removing subjectswith
breast cancer, the association was not quite statistically
significant, suggesting that this association may be due to
the risk variants prior association with breast cancer.
This study had a number of strengths, including the

prospective design that allowed us to focus on incident
cancers and minimize survival bias, while investigating
MPC risk in an adult population. We also had a long
follow-up period to assess subsequent cancers (MEC, 14
years and WHI, 19 years), a large sample size, and well-
characterized study populations enabling adjustment for
multiple potential confounders. Study limitations include
limited power to detect effects for rare SNPs and the lack
of detailed information on treatment, especially, on radio-
therapy, a known risk factor for multiple primaries (102).

In the MEC, where information on first course of cancer
therapy was available, similar results were observed after
adjusting for radiation treatment (yes/no). In addition,
our meta-analyzed findings did not change when adjust-
ing for index cancer stage, suggesting that our findings are
not strongly dependent on the treatment received,
because treatment is relativelywell standardizedby stage.
Our study oversampled the more common cancer sites as
a result of the blood collectiondesign in the earlier years of
the MEC. Also, for WHI, the study undersampled breast
and colorectal cancer cases to be genotyped for the PAGE
analysis. Therefore, the more common cancer sites, with
the exception of lung cancer, may have been overrepre-
sented in the MEC and endometrial cancer was overrep-
resented in WHI. In addition, cases with subsequent
primary cancers of the same site were not available in the
WHI study and were, thus, underrepresented in that
study.

In conclusion, our findings, if reproduced, may con-
tribute toward identifying common cancer etiologic path-
ways, common treatment-related effects, or populations
at risk for developingmore than one cancer.We found the
cancer risk variant rs578776 in CHRNA3 to be associated
with occurrence of MPCs. Our analysis suggests that the
associations for TOX3 rs3803662may have been driven by
the variants known association with breast cancer. How-
ever, the association for EMBP1 rs11249433 and CHRNA3
rs578776 appears to be independent of their known cancer
association. These findings should be confirmed in other
study populations.
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