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Abstract

Background: Esophageal adenocarcinoma (EA) is among the leading causes of cancer mortality, especially in
developed countries. A high level of somatic copy number alterations (CNAs) accumulates over the decades in the
progression from Barrett’s esophagus, the precursor lesion, to EA. Accurate identification of somatic CNAs is
essential to understand cancer development. Many studies have been conducted for the detection of CNA in EA
using microarrays. Next-generation sequencing (NGS) technologies are believed to have advantages in sensitivity
and accuracy to detect CNA, yet no NGS-based CNA detection in EA has been reported.

Results: In this study, we analyzed whole-exome (WES) and whole-genome sequencing (WGS) data for detecting
CNA from a published large-scale genomic study of EA. Two specific comparisons were conducted. First, the
recurrent CNAs based on WGS and WES data from 145 EA samples were compared to those found in five previous
microarray-based studies. We found that the majority of the previously identified regions were also detected in this
study. Interestingly, some novel amplifications and deletions were discovered using the NGS data. In particular, SKI
and PRKCZ detected in a deletion region are involved in transforming growth factor-β pathway, suggesting the
potential utility of novel biomarkers for EA. Second, we compared CNAs detected in WGS and WES data from the
same 15 EA samples. No large-scale CNA was identified statistically more frequently by WES or WGS, while more
focal-scale CNAs were detected by WGS than by WES.

Conclusions: Our results suggest that NGS can replace microarrays to detect CNA in EA. WGS is superior to WES in
that it can offer finer resolution for the detection, though if the interest is on recurrent CNAs, WES can be
preferable to WGS for its cost-effectiveness.
Background
Cancer arises from gradual accumulation of somatic
genomic instability and alterations, which eventually lead
to carcinogenesis and cancer progression [1, 2]. Copy
number alterations (CNAs), one form of somatic gen-
ome alterations, refer to somatic changes in chromo-
some structure that result in gains or losses of copies of
DNA segments. Detection of CNA is important to
understand cancer development and identify key driver
events [3, 4]. Microarray technologies have been widely
used in CNA detection [5–7], including array comparative
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genomic hybridization (array CGH) and single nucleotide
polymorphisms (SNP) microarrays. In array CGH, refer-
ence and test DNAs are fluorescence-labeled and hybrid-
ized to arrays, which are composed of bacterial artificial
chromosome (BAC) clones, cDNA clones, or oligonucleo-
tides. The signal ratio is used as an estimate of the copy
number ratio. SNP microarrays are also based on
hybridization, but a single sample is processed on each
microarray and intensity ratios are formed by comparing
the intensity of the sample under investigation to a collec-
tion of reference samples, or all other samples that are
studied. Compared to array CGH, SNP arrays can have
better resolution and produce B allele frequency so that
loss of heterozygosity (LOH) can be detected [7]. Reso-
lution of these arrays is typically greater than 1 kb,
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depending on the density, distribution, and response char-
acteristics of their probes. More recently, next-generation
sequencing (NGS) technologies offer single-nucleotide
resolution and absolute counts of read numbers and
therefore can provide more sensitive and accurate CNA
results. Moreover, direct sequencing enables substantial
increases in discoveries of smaller structural variation
events [8, 9]. It is believed that, with its ever-decreasing
cost, NGS will ultimately replace microarrays in copy
number analyses [10].
In this paper, we conduct CNA analyses using pub-

lished NGS data from [11], which contains 145 esopha-
geal adenocarcinoma (EA) samples, as no CNA analyses
were reported in the paper. The incidence of EA has
strikingly increased over the past 30–40 years, and it is
the seventh leading cause of cancer death among men in
the USA [12]. Many studies of CNA detection in EA
have been carried out using microarrays. Paulson et al.
detected 19 most frequent CNAs in 15 EA patients
using BAC array data [13]. Beroukhim et al. created the
Tumorscape Copy Number Portal, where they collected
more than 3000 copy number profiles from 26 cancer
types using Affymetrix 250K StyI (Affymetrix, Santa
Clara, CA) arrays [3]. They identified 33 recurrent CNAs
(RCNAs), which appear in 44 EA samples more fre-
quently than expected by chance. Dulak et al. detected
46 regions of significant recurrent events of gain and
loss in 186 EA samples using 250K StyI arrays and SNP
Fig. 1 Segmented copy number ratio profiles in WES and WGS. The x-axis
data. b WGS data
Array 6.0 arrays (Affymetrix) [14]. Zack et al. created the
TCGA Copy Number Portal and identified RCNAs across
multiple cancer types; they detected 88 RCNAS across
184 EA samples using Affymetrix SNP6 arrays [4, 15].
Frankel et al. detected 52 RCNAs in 54 EA samples using
Illumina CytoSNP-12 arrays [16]. However, there has not
been any published CNA detection study using NGS tech-
nologies. In this study, we plan to fill the gap by analyzing
the NGS data from [11] and compare the result to the
findings of the aforementioned papers.
Indeed, microarray-based CNA analyses are still a

common approach to detect CNAs, possibly due to the
following reasons: microarray technologies have been
developed for a longer time and corresponding CNA de-
tection methods were well established and accurate de-
tection of CNA in NGS can be a challenging task due to
the complexities of sequencing data processing [17]. To
the best of our knowledge, only a few CNA studies have
been conducted to compare the performance of microar-
rays and NGS side-by-side. Koboldt et al. detected CNAs
on coding regions of five ovarian tumors using both a
SNP array and two NGS platforms—whole-genome
(WGS) and whole-exome sequencing (WES) [18]. They
found the majority of CNA events were consistently de-
tected by the three platforms. More CNAs were detected
by the WGS platform than those by the array. In another
study, the authors detected germline copy number varia-
tions (CNVs) in 16 breast cancer cell lines using both
represents the samples. The y-axis represents the chromosomes. a WES



Fig. 2 Genomic positions of RCNAs detected in 145 WES data. The x-axis represents the normalized amplification signals (top) and significance by
q value (bottom). The green line indicates the significance cutoff at q = 0.25. a Amplification regions. b Deletion regions
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array CGH and WES [19]. Four WES-based CNV detec-
tion methods were compared, and the regions detected
by the array were used to form the gold standard. They
detected a greater number of focal-scale CNVs using the
array. These studies were conducted on the individual
sample level. In this study, we are interested to detect
and compare regions frequently appearing among mul-
tiple samples between NGS data and previous findings
derived from microarrays-based studies. The detected
recurrent regions may contain real driver events that
contribute to the cancer development.
Furthermore, there were 15 samples (patients) sub-

jected to both WGS and WES in [11], providing a great
opportunity to compare CNA detection by WES and
WGS. Not much work has been conducted to address
this question. Koboldt et al. found that a significant por-
tion (79.53 %) of focal-scale CNAs detected by WES
were also supported by WGS, and they recommended
the use of WES-based approach, by which it is likely to
detect more platform-specific focal copy number
changes missed by WGS and microarray [18]. WES is an
increasingly popular platform for studying tumor genomics
because of itscost-effectiveness and the immediate inter-
pretation of mutations in coding regions. It has been shown
that WES data can be used to study CNA [19]. However,
the uniformity of WES coverage is worse than that of WGS
mostly due to exome capturing, and exons are not evenly
placed within the genome so that it is difficult to detect
CNAs over a long intergenic region using WES. On the
other hand, if the interest is long CNA segments spanning
over genes, it is not clear whether CNAs inferred by WES
will lose a substantial amount of information when com-
pared to WGS. It is quite possible that this comparison
may depend on cancer site and the length of CNAs, since
longer segment should be reliably detected by exome
sequencing.
A number of bioinformatics and statistical methods

have been developed for CNA detection using NGS data
[17, 20–22]. These methods can be classified in several
ways. Most methods were developed to detect CNAs on
the individual sample level, and they usually detect
CNAs based on read count ratios between a tumor sam-
ple and its matched normal sample. These methods can
be further categorized according to the study design.



Fig. 3 Genomic positions of RCNAs detected in 15 WGS data. The x-axis represents the normalized amplification signals (top) and significance by
q value (bottom). The green line indicates the significance cutoff at q = 0.25. a Amplification regions. b Deletion regions
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Some commonly used ones are as follows. (a)
CNVnator [23], RDXplorer [24], and ReadDepth [25]
detect CNAs on a single tumor sample. (b) CNAseg
[26], Segseq [27], ExomeCNV [28], HMMcopy [29],
and VarScan2 [18] identify CNAs on matched tumor-
normal samples. Control-FREEC [30, 31] can be cate-
gorized both into classes (a) and (b), as it can either
work with tumor-normal pairs or with tumor-only
samples. Depending on the NGS platforms, CNVna-
tor, Segseq, RDXplorer, ReadDepth, and HMMcopy
work for WGS data; ExomeCNV and VarScan work
for WES data; and Control-FREEC can work for both
types of the sequencing data. In addition to the above
methods detecting CNA in individual samples, other
methods have been developed to detect RCNAs from
multiple samples. These methods take segments from
all the individual samples as input and identify the
(merged) segments which appear more frequently
across the population than expected by chance. Only
a few RCNA methods have been developed for NGS
data, including JointSLM [32] and cn.MOPS [33].
They conduct copy number analyses based on read
counts of segments of multiple tumor samples and
usually are applied for CNV detection. On the other
hand, many RCNA detection methods that were ori-
ginally developed for microarray platforms [34] can
also be adapted to work on NGS data. These methods
include STAC [35], CMDS [36], and GISTIC2.0 [37].
In this study, Control-FREEC is selected to detect

CNAs on the individual sample level using WGS and
WES data from [11], and the results are compared be-
tween the two sequencing platforms. Control-FREEC is
a flexible and powerful tool in that it performs multiple
types of bias corrections considering GC-content, mapp-
ability, and matched normal sample, and it is among the
most sensitive tools on both WGS and WES platforms
[22]. GISTIC2.0, likely the most popular RCNA detec-
tion method, is chosen to detect RCNAs using both
WGS and WES data. The identified RCNAs are then
compared with those reported previously using microar-
rays. We compare our results with those from five previ-
ous studies, and four of which (all except [13]) used
GISTIC2.0. By choosing GISTIC2.0, we hope to alleviate
the concern that potential differences generated in the
NGS data are due to different software and analytical
methods being applied.



Table 1 Amplification RCNAs detected by 145 WES data and 15 WGS data

Cytoband Peak boundary (Mb) Width (Mb) Platform Residual q value D F P B Z

1p36.33 chr1:0.99-3.16 2.174 WES 1.16E−04

1q21.3 chr1:149.94-156.69 6.751 WES 2.14E−05 Y

3q26.1 chr3:164.71-164.76 0.047 WES and WGS 9.75E−02

3q26.2 chr3:169.43-170.59 1.158 WES 4.18E−02 Y Y Y

6p21.32 chr6:32.56-32.58 0.016 WGS 2.35E−02

6p21.1 chr6:42.79-43.97 1.178 WES and WGS 2.00E−13 Y Y Y

6q23.3 chr6:135.29-135.71 0.421 WES and WGS 4.98E−04 Y Y

7p22.1 chr7:4.29-6.89 2.609 WES 6.42E−02 Y

7p11.2 chr7:55.00-55.46 0.455 WES 5.48E−14 Y Y Y Y Y

7q21.2 chr7:91.98-92.76 0.779 WES and WGS 5.07E−12 Y Y Y Y

7q22.1 chr7:98.46-100.674 2.217 WES 7.81E−07 Y Y Y

7q31.2 chr7:115.61-117.83 2.211 WES 1.71E−02 Y

8p23.1 chr8:6.97-7.16 0.182 WES 5.08E−02 Y Y Y

8p23.1 chr8:7.37-7.63 0.263 WES 1.79E−03 Y Y Y

8p23.1 chr8:11.28-11.68 0.402 WES 4.25E−13 Y Y Y

8q24.21 chr8:126.45-129.02 2.572 WES and WGS 1.79E−10 Y Y Y Y Y

8q24.3 chr8:141.9-146.36 4.464 WES and WGS 1.19E−03

9p13.3 chr9:35.4-35.97 0.571 WES 5.60E−06 Y Y

9q33.3 chr9:124.98-141.21 16.234 WES 6.22E−03 Y

10p11.22 chr10:31.61-33.62 2.015 WES 9.75E−02

11p11.2 chr11:46.1-47.18 1.076 WES 1.30E−06 Y

11q13.3 chr11:68.86-69.63 0.775 WES 5.25E−16 Y Y Y Y

11q14.1 chr11:77.73-77.88 0.157 WES 8.70E−05 Y

12p13.31 chr12:9.63-9.72 0.082 WES 7.09E−03

12p12.1 chr12:25.34-25.67 0.328 WES and WGS 2.63E−32 Y Y Y Y

12q13.3 chr12:56.14-57.32 1.181 WES 8.56E−02

12q15 chr12:67.07-70.19 3.116 WES 3.88E−02 Y Y Y Y

13q13.2 chr13:33.28-35.25 1.972 WES 8.76E−04 Y

13q14.11 chr13:39.36-43.16 3.798 WES 1.99E−02 Y

13q14.13 chr13:44.73-46.64 1.906 WGS 7.11E−02

13q22.1 chr13:72.13-78.67 6.54 WGS 5.39E−02 Y Y Y

15q26.1 chr15:90.03-91.79 1.765 WES 4.45E−03 Y Y

16p13.13 chr16:11.37-12.01 0.64 WES 3.88E−02

17q12 chr17:37.83-37.9 0.072 WES 1.04E−24 Y Y Y Y Y

17q21.2 chr17:38.82-39.02 0.2 WES and WGS 4.35E−02 Y

17q21.2 chr17:39.85-39.99 0.146 WES and WGS 1.90E−08 Y

17q21.33 chr17:48.68-49.12 0.442 WGS 9.71E−02

17q25.3 chr17:68.13-81.20 13.067 WES 5.04E−02

18p11.21 chr18:12.25-13.44 1.184 WES 9.23E−03

18q11.2 chr18:19.75-20.52 0.766 WES 5.94E−11 Y Y Y Y

19q12 chr19:30.19-30.48 0.282 WES 6.69E−15 Y Y Y Y Y

20q13.12 chr20:42.98-43.56 0.584 WES and WGS 8.36E−02 Y

20q13.2 chr20:47.90-52.77 4.877 WES 1.00E−02 Y Y

20q13.33 chr20:58.42-58.51 0.099 WES 1.75E−03 Y
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Table 1 Amplification RCNAs detected by 145 WES data and 15 WGS data (Continued)

22q11.23 chr22:24.39-24.41 0.016 WGS 7.11E−02

Xp11.1 chrX:58.52-58.53 0.014 WGS 8.53E−02 Y

Xq28 chrX:152.11-153.91 1.793 WES 5.53E−04 Y

A region may span multiple cytobands, in which case the longest one was listed. The regions were verified by checking if they were identified in any of the five
previous microarray-based studies
D Dulak et al. 2012 [14], F Frankel et al. 2014 [16], P Paulson et al. 2009 [13], B Beroukhim et al. 2010 [3], Z Zack et al. 2013 [4], Y indicates a region was identified
in a study
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Results
RCNA analysis
The estimated copy ratios of segments among 145 WES
and 15 WGS data are shown in Fig. 1. We used GIS-
TIC2.0 on the copy ratio profiles to perform a
permutation-based significance analysis and identify sig-
nificantly amplified/deleted regions. The recurrent amp-
lification/deletion regions for WES data are shown in
Fig. 2. The results of WGS data are shown in Fig. 3 ac-
cordingly. The threshold for the residual q value was set
as 0.1, resulting in 41/16 amplifications and 67/19 dele-
tions in WES/WGS data, respectively. We further com-
bined the results from WES and WGS, and resulted in
47 amplification and 74 deletion events.
These newly identified genomic regions were verified

with all the five microarray-based studies (Tables 1 and
2). It was found that the majority of the regions (68 % of
deletions and 74 % of amplifications) detected in our
study were also identified in those previous studies.
Known cancer genes within these regions were identified
according to the Cancer Gene Census [38], and the
results are shown in the supplementary document
(Additional file 1: Tables S1 and S2). Among all these
detected regions, 13 amplification events were not re-
ported in any of the previous studies; four of them
(1p36.33, 12p13.31, 18p11.21, 8q24.3) had a residual q
value less than 0.01. Twenty-nine deletion events were
not identified previously, and ten of them (Xp22.33,
3p26.3, 6q22.31, 14q32.2, 1p21.1, 3p12.3, 6q12, Yq12,
6p12.3, 14p11.2) had a residual q value less than 0.01.
We also examined the regions identified from the five
previous studies to see whether they were also identified
using the NGS data. We extracted the amplification re-
gions (from Additional file 1: Table S2-C) and deletion
regions (from Additional file 1: Table S4-B) in [14], for
example. We checked if these regions were detected
using the sequencing data and listed the q value for each
region in Table 3. The genomic location for each region
was converted from hg18 to hg19 using the University
of California, Santa Cruz (UCSC) liftOver tool. The ma-
jority of those regions overlapped with our results, ex-
cept for four amplifications and four deletions. The
comparisons with other four studies are listed in the
supplementary document (Additional file 1: Tables S3–
S6), from which it can be seen that 58 % of regions in
[16], 95 % of regions in [13], 64 % of regions in [3], and
57 % of regions in [4] were detected in our study. From
these comparisons, we observed that the majority of re-
gions in previous microarray studies were detected using
NGS data.
To generate a consensus list of regions, we investi-

gated all the genomic regions in terms of cytobands
across all the results from the six studies including ours
and listed the regions appearing in at least three of them.
The results are shown in Tables 4 and 5. Only two am-
plifications and six deletions were not found in our
study, and our result is the one that is most consistent
with the consensus regions, which suggests that NGS
may be a more powerful approach for detecting RCNAs.
Comparison of CNAs on WGS and WES
We detected CNAs in 15 normal-tumor sample pairs
based on both WGS data and WES data using Control-
FREEC and compared the results from the two plat-
forms. The comparisons were made on different lengths
of segments, including large-scale and focal-scale, where
large-scale CNAs refer to those spanning more than
25 % of a chromosome arm and focal-scale CNAs refer
to those shorter than 25 % of a chromosome arm. The
size span of large-scale CNAs is [18.32 161.22] Mb, with
a standard deviation of 37.39 Mb. The size span of
small-scale CNAs is [0.001 50.65] Mb, with a standard
deviation of 2.50 Mb. More than 83 % of focal-scale
CNAs are shorter than 1 Mb. For each detected CNA,
we used Kolmogorov-Smirnov (KS) test to assess the
possibility that it was generated just by chance; further-
more, we searched the WGS and WES data of each sam-
ple to see if it contained an event that overlapped the
detected CNA with at least 10 % of bases, i.e., we
counted how many times it appeared in WGS data and
WES data. We then applied Fisher’s exact test to com-
pare the detection frequency of each CNA by the two
platforms.
The results of large-scale CNAs are shown in Table 6.

Totally, 19 regions were detected from the 15 EA sam-
ples. We then counted how many times these CNAs
were detected by WGS and WES and found none of
them was more frequently detected by one platform
than the other. In addition, we used KS test and found



Table 2 Deletion RCNAs detected by 145 WES data and 15 WGS data

Cytoband Boundary (Mb) Width (Mb) Platform Residual q value D F P B Z

1p36.11 chr1:19.53-31.73 12.21 WES 9.12E−04 Y Y Y

1p31.1 chr1:45.53-100.32 54.79 WES 5.89E−02

1p21.1 chr1:104.12-107.60 3.48 WES 2.86E−04

1p13.2 chr1:115.32-115.58 0.26 WES 5.65E−04 Y

1q31.3 chr1:186.41-200.18 13.77 WES 1.16E−02

2q22.1 chr2:136.87-149.40 12.53 WES 8.62E−02 Y Y

2q32.1 chr2:179.23-190.43 11.20 WES 6.27E−02

3p26.3 chr3:0.00-2.61 2.61 WES 3.97E−08

3p24.3 chr3:12.79-69.03 56.24 WES and WGS 3.19E−02 Y Y Y Y

3p12.3 chr3:75.71-88.10 12.39 WES 2.29E−03

4p16.1 chr4:0.00-15.97 15.97 WES and WGS 2.81E−02

4p15.31 chr4:17.84-24.53 6.69 WES 9.06E−03 Y

4p12 chr4:42.15-47.45 5.30 WES 5.30E−02

4q13.2 chr4:69.34-71.25 1.91 WES 2.49E−02

4q22.1 chr4:90.88-93.23 2.35 WGS 9.73E−02 Y Y Y

4q28.3 chr4:129.78-139.98 10.20 WES 3.52E−02

4q32.1 chr4:154.56-159.59 5.03 WES 9.27E−02 Y

4q32.3 chr4:164.44-165.88 1.44 WES 1.84E−02

4q34.3 chr4:174.30-191.15 16.86 WES 2.50E−03 Y Y Y

5q12.1 chr5:58.15-59.79 1.64 WGS 4.42E−02 Y Y Y Y Y

5q13.1 chr5:66.46-68.46 2.00 WES 3.52E−06 Y

5q14.3 chr5:79.47-130.52 51.04 WES 1.41E−03 Y

6p25.3 chr6:0.00-2.62 2.62 WES 3.97E−07 Y Y Y

6p12.3 chr6:49.82-50.79 0.97 WES 8.30E−03

6p22.2 chr6:24.98-25.73 0.75 WES 1.97E−02

6p21.33 chr6:31.17-31.32 0.15 WGS 3.97E−03

6q12 chr6:64.42-71.14 6.72 WES 3.62E−03

6q16.1 chr6:90.58-97.25 6.67 WES 2.08E−02 Y

6q16.3 chr6:100.06-105.41 5.35 WES 4.82E−02 Y

6q22.31 chr6:123.37-124.60 1.23 WES 1.21E−04

6q27 chr6:151.79-171.12 19.33 WES 2.27E−02 Y Y Y

7q31.1 chr7:105.14-128.47 23.33 WES and WGS 8.30E−03 Y Y Y

7q34 chr7:141.64-141.95 0.31 WES 2.45E−06 Y Y

8p23.2 chr8:0.00-6.26 6.27 WES 9.89E−05 Y Y Y Y

8p23.1 chr8:7.83-10.39 2.55 WES 2.59E−02

8p21.2 chr8:23.42-24.77 1.35 WES 1.73E−05 Y

8p11.22 chr8:38.85-39.78 0.92 WES 5.30E−02 Y

9p23 chr9:6.64-15.17 8.53 WES 1.10E−06 Y Y Y Y

9p21.3 chr9:21.86-23.69 1.83 WES and WGS 1.35E−34 Y Y Y Y Y

9q12 chr9:43.13-66.51 23.38 WES 3.52E−02

9q31.1 chr9:70.49-123.15 52.66 WES 2.49E−02

10q23.31 chr10:89.55-94.21 4.67 WES 2.63E−05 Y

11p15.4 chr11:0.00-8.94 8.94 WES 1.05E−02 Y

11p11.12 chr11:49.00-57.07 8.07 WES 8.36E−02
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Table 2 Deletion RCNAs detected by 145 WES data and 15 WGS data (Continued)

11q14.1 chr11:77.96-111.96 33.99 WES 6.27E−02 Y

11q25 chr11:126.13-135.01 8.88 WES 4.23E−03 Y Y Y

12p13.31 chr12:9.47-9.75 0.29 WES 4.82E−02

12q12 chr12:33.56-48.13 14.57 WES 5.89E−02

12q21.31 chr12:70.76-93.77 23.01 WES 4.23E−03 Y

13q31.1 chr13:61.10-95.23 34.12 WES 2.38E−02

14p11.2 chr14:0.00-20.48 20.48 WES 8.69E−03

14q13.3 chr14:36.79-37.64 0.86 WES 5.30E−02 Y

14q32.13 chr14:94.16-96.85 2.69 WES 1.39E−02

14q32.2 chr14:97.03-107.35 10.32 WES 2.37E−04

15q11.2 chr15:20.78-22.69 1.91 WES 2.59E−02 Y Y Y

15q24.2 chr15:74.01-77.71 3.71 WGS 6.84E−02

16p13.3 chr16:0.00-4.90 4.90 WES 2.10E−05 Y

16q21 chr16:29.48-90.35 60.88 WES and WGS 7.29E−02 Y Y Y Y

17p12 chr17:0.00-18.02 18.02 WES 3.43E−03 Y

17p11.2 chr17:18.42-18.54 0.12 WES 2.20E−13 Y Y

18q12.1 chr18:24.60-28.65 4.04 WES and WGS 6.80E−03 Y Y

18q12.3 chr18:35.15-42.28 7.14 WES and WGS 5.53E−07 Y Y

18q21.2 chr18:48.59-50.28 1.69 WES and WGS 2.87E−13 Y Y Y Y

18q23 chr18:67.87-78.08 10.21 WES and WGS 8.67E−05 Y Y Y

19p13.3 chr19:0.00-10.66 10.65 WES 6.47E−04 Y

20p12.1 chr20:13.97-16.04 2.06 WGS 2.93E−02 Y Y Y

21p11.2 chr21:0.00-15.32 15.32 WGS 1.77E−02 Y

21q21.1 chr21:19.63-27.01 7.38 WES 4.49E−05 Y Y

21q22.3 chr21:47.86-48.13 0.27 WES and WGS 2.64E−04 Y

22q11.23 chr22:24.33-24.37 0.05 WGS 3.83E−02 Y

Xp22.33 chrX:0.00-2.67 2.67 WES 8.13E−33

Xp21.1 chrX:30.87-32.66 1.79 WES and WGS 2.99E−04 Y Y

Xq28 chrX:154.75-155.27 0.52 WES 2.55E−17 Y

Yq12 chrY:20.89-59.22 38.33 WES and WGS 4.08E−03

A region may span multiple cytobands, in which case the longest one was listed. The regions were verified by checking if they were identified in any of the five
previous microarray-based studies
D Dulak et al. 2012 [14], F Frankel et al. 2014 [16], P Paulson et al. 2009 [13], B Beroukhim et al. 2010 [3], Z Zack et al. 2013 [4], O our study, Y indicates a region
was identified in a study
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the false-positive detection rate of each identified CNA
was 0.
The results of focal-scale CNAs are shown in Table 7.

WGS identified 21,197 focal-scale CNAs from the 15
samples; among them, 3675 were statistically more fre-
quently detected by WGS than by WES. WES identified
4371 focal-scale CNAs, and 144 of them were identified
more frequently by the platform. We checked the false-
positive detection rates of the detected CNAs using the
KS test and found 19,694/3655 CNAs on WGS/WES
with p values < 0.05; these CNAs are less likely to be
spurious discoveries, and we only worked on these
CNAs afterwards. Among them, about 18 % of CNAs
detected by WGS were statistically more frequently
identified by WGS than by WES, while only about 3 %
of CNAs detected by WES were more frequently identi-
fied on the platform. We further investigated if the false-
positive detection rates of small CNAs (<200 k) detected
on the two platforms were different using one-tailed t
test, which resulted in a p value of 2.2E−16 (with means
0.004 vs. 0.009), and it indicates that the false-positive
detection rate of those small CNAs is significantly
smaller using WGS. One possible explanation is that
WGS does not contain the exome-capturing process as
in WES, and the local variation/bias of sequence read
coverage is smaller [39]. Compared to WGS, WES does
not cover intron regions, and it only covers 2.76 % of
the whole genome. So finally, we investigated the effect



Table 3 Comparison of results of Dulak et al. [14] to our results

Cytoband Boundary (Mb) Width (Mb) Our study Residual q value Type

12p12.1 chr12:25.34-25.45 0.11 Y 2.63E−32 amp

18q11.2 chr18:19.70-19.91 0.21 Y 5.94E−11 amp

8p23.1 chr8:11.37-11.67 0.30 Y 4.25E−13 amp

19q12 chr19:30.25-30.41 0.16 Y 6.69E−15 amp

7q21.2 chr7:92.48-92.66 0.18 Y 5.07E−12 amp

11q13.3 chr11:69.26-69.81 0.55 Y 5.25E−16 amp

17q12 chr17:37.72-38.02 0.30 Y 1.04E−24 amp

17q21.2 chr17:39.77-39.96 0.19 Y 1.90E−08 amp

7p11.2 chr7:54.95-55.43 0.48 Y 5.48E−14 amp

8q24.21 chr8:128.40-128.84 0.44 Y 1.79E−10 amp

6p21.1 chr6:43.21-43.35 0.14 Y 2.00E−13 amp

9p13.3 chr9:35.48-35.94 0.46 Y 5.60E−06 amp

13q13.1 chr13:33.38-34.43 1.05 Y 8.76E−04 amp

7q22.1 chr7:99.29-100.00 0.71 Y 7.81E−07 amp

7q31.2 chr7:116.13-116.63 0.50 Y 1.71E−02 amp

12q15 chr12:67.27-70.21 2.94 Y 3.88E−02 amp

6q23.3 chr6:135.28-135.83 0.55 Y 4.98E−04 amp

10q22.2 chr10:75.33-76.13 0.80 amp

1q21.3 chr1:147.76-154.10 6.34 Y 2.14E−05 amp

10q26.13 chr10:122.76-123.92 1.16 amp

3q26.2 chr3:168.72-172.28 3.56 Y 4.18E−02 amp

18q11.2 chr18:23.45-24.21 0.76 Y 5.94E−11 amp

13q14.11 chr13:41.37-41.93 0.56 Y 1.99E−02 amp

11p14.1 chr11:27.08-27.61 0.53 amp

7q34a chr7:141.92-142.26 0.34 amp

3p14.2 chr3:58.98-61.54 2.56 Y 3.19E−02 del

16q23.1 chr16:78.13-79.65 1.52 Y 7.29E−02 del

9p21.3 chr9:21.86-22.02 0.16 Y 1.35E−34 del

5q12.1 chr5:58.26-59.79 1.53 Y 4.42E−02 del

6p25.3 chr6:1.60-2.63 1.03 Y 3.97E−07 del

20p12.1 chr20:14.26-16.04 1.78 Y 2.93E−02 del

4q22.1 chr4:91.15-93.27 2.12 Y 9.73E−02 del

18q21.2 chr18:48.52-48.72 0.20 Y 2.87E−13 del

21q22.12 chr21:36.11-36.43 0.32 del

9p23 chr9:7.79-12.72 4.93 Y 1.10E−06 del

6q26 chr6:161.69-163.21 1.52 Y 2.27E−02 del

2q33.3 chr2:204.82-206.56 1.74 del

1q44 chr1:245.85-246.71 0.86 del

8p23.3 chr8:1.01-1.46 0.45 Y 9.89E−05 del

7q33 chr7:123.66-142.53 18.87 Y 8.30E−03 del

7q36.1 chr7:148.11-159.13 11.02 del

1p36.11 chr1:25.77-31.25 5.48 Y 9.12E−04 del

4q34.3 chr4:178.82-185.31 6.49 Y 2.50E−03 del
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Table 3 Comparison of results of Dulak et al. [14] to our results (Continued)

11q22.3 chr11:105.95-112.83 6.88 Y 6.27E−02 del

11q25 chr11:121.03-134.94 13.91 Y 4.23E−03 del

21p11.2a chr21:1.00-16.26 15.26 Y 1.77E−02 del

Regions detected in Dulak et al., 2012 [14] were verified in our study
aIn cytoband indicates that the coordinate is based on hg18
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of non-coverage to CNA detection and dealt with small
CNAs that only reside in intron regions. As the result,
no CNAs detected by WES spanned only on introns,
and more than 7000 of such CNAs were identified by
WGS, but only 22 % of these intron CNAs were statisti-
cally more frequently detected by WGS.

Discussion
In this study, we detected RCNAs using NGS data from
145 EA samples and compared them with those from
the five microarray studies. We found that the majority
of the regions detected by microarrays overlapped the
regions identified by NGS and vise versa. Furthermore,
based on all these six studies, we identified 22/51
Table 4 Consensus amplification RCNAs in 6 studies

Cytoband Boundary (Mb) D F P B Z O

3q26.2 chr3:167.60-170.90 Y Y Y Y

6p21.1 chr6:40.50-46.20 Y Y Y Y

6q23.3 chr6:135.20-139.00 Y Y Y

7p11.2 chr7:54.00-58.00 Y Y Y Y Y Y

7q21.2 chr7:91.10-92.80 Y Y Y Y Y

7q21.3 chr7:92.80-98.00 Y Y Y

7q22.1 chr7:98.00-103.80 Y Y Y Y

8p23.1 chr8:6.20-12.70 Y Y Y Y

8q24.13 chr8:122.50-127.30 Y Y Y

8q24.21 chr8:127.30-131.50 Y Y Y Y Y Y

9p13.3 chr9:33.20-36.30 Y Y Y

11q13.3 chr11:68.40-70.40 Y Y Y Y Y

12p12.1 chr12:21.30-26.50 Y Y Y Y Y

12q14.3 chr12:65.10-67.70 Y Y Y

12q15 chr12:67.70-71.50 Y Y Y Y Y

13q22.1 chr13:73.30-75.40 Y Y Y Y

15q26.1 chr15:89.10-94.30 Y Y Y

15q26.2 chr15:94.30-98.50 Y Y Y

17q12 chr17:31.80-38.10 Y Y Y Y Y Y

18q 11.2 chr18:19.00-25.00 Y Y Y Y Y

19q12 chr19:28.60-32.40 Y Y Y Y Y Y

20q13.2 chr20:49.80-55.00 Y Y Y

These regions are those that appear in at least three studies
D Dulak et al. 2012 [14], F Frankel et al. 2014 [16], P Paulson et al. 2009 [13], B
Beroukhim et al. 2010 [3], Z Zack et al. 2013 [4], O our study, Y indicates a
region was identified in a study
consensus amplification/deletion regions, and our result
was found to be the one that is most concordant with
the consensus events. From the above observations, we
suggest that NGS can replace microarrays to detect
RCNAs in EA.
However, discrepancy generally exists when comparing

each specific region from all the studies. Even for the
largest detected events, they are not consistent across
the platforms and across the different microarray stud-
ies. The largest recurrent deletions detected by microar-
rays are not consistent. Two of them [3, 14] identified
the largest recurrent deletions on chr7:123.66-142.52
(Mb), which corresponds to chr7:105.14-128.47 (Mb) de-
tected both by WGS and WES in our study. The largest
deletion detected by WGS and WES is on Chr16:29.48-
90.35 (Mb), while only part of the region—chr16:78.13–
79.65 (Mb) (in [4, 14, 16]) and chr16:31.93–33.39 (Mb)
(in [16])—were detected in the microarray studies. Part
of these discrepancies may just be caused by different
technologies used in these platforms, such as different
hybridization and scanning methods applied in these
microarray studies, target-enrichment strategies applied
in WES, and bias due to the effect of GC-content and
uneven mappability across genome in NGS. Although
our study indicates a significant overlap between RCNAs
detected using microarray data and NGS data, it is still a
challenge to rigorously compare these RCNA calling
methods. To further compare these approaches, a well-
controlled study design such as a spike-in experiment
should be applied in the future.
GISTIC analysis is often used to identify driver genes

that contribute to cancer development. In this study, we
found several potential driver genes in the detected re-
gions that were reported in previous studies, and the re-
sults are listed in Table 8. We detected oncogenes such
as EGFR, ERBB2, GATA6, KRAS, MYC, and tumor sup-
pressor genes such as APC, ARID1A, ATM, CDKN2A,
CDKN2B, CDK6, MCL1, MET, MYB, PDE4D, PRCKI,
and PTPRD. Those were also identified in the various
previous microarray studies. In another study [11], the
authors identified 26 significantly mutated genes based
on the 145 WES data used in our study. Among them,
ten genes such as TP53, CDKN2A, EYS, ARID1A, TLR4,
ARID2, SYNE1, C6orf118, ACTL7B, and SCN10A were
also identified in our study, and three of the rest
(SMAD4, TLL1, and SMARCA4) are located within



Table 5 Consensus deletion RCNAs in six studies

Cytoband Boundary (Mb) D F P B Z O

1p36.11 chr1:23.90-28.00 Y Y Y Y

1p35.3 chr1:28.00-30.20 Y Y Y

1p35.2 chr1:30.20-32.40 Y Y Y

1q44 chr1:243.70-249.25 Y Y Y

2q22.1 chr2:136.80-142.20 Y Y Y

2q22.2 chr2:142.20-144.10 Y Y Y

2q33.3 chr2:204.90-209.00 Y Y Y

3p14.2 chr3:58.60-63.70 Y Y Y Y Y

4q22.1 chr4:88.00-93.70 Y Y Y Y

4q34.1 chr4:171.90-176.30 Y Y Y

4q34.2 chr4:176.30-177.50 Y Y Y

4q34.3 chr4:177.50-183.20 Y Y Y Y

4q35.1 chr4:183.20-187.10 Y Y Y Y

5q11.2 chr5:50.70-58.90 Y Y Y Y Y Y

5q12.1 chr5:58.90-62.90 Y Y Y Y Y Y

6p25.3 chr6:0.00-2.30 Y Y Y Y

6p25.2 chr6:2.30-4.20 Y Y Y

6q26 chr6:161.00-164.50 Y Y Y Y

7q31.1 chr7:107.40-114.60 Y Y Y

7q31.32 chr7:121.10-123.80 Y Y Y

7q31.33 chr7:123.80-127.10 Y Y Y

7q32.1 chr7:127.10-129.20 Y Y Y

7q34 chr7:138.20-143.10 Y Y Y

7q36.3 chr7:155.10-159.14 Y Y Y

8p23.3 chr8:0.00-2.20 Y Y Y Y Y

8p23.2 chr8:2.20-6.20 Y Y Y

8p23.1 chr8:6.20-12.70 Y Y Y

9p24.1 chr9:4.60-9.00 Y Y Y Y Y

9p23 chr9:9.00-14.20 Y Y Y Y Y

9p21.3 chr9:19.90-25.60 Y Y Y Y Y Y

11q24.2 chr11:123.90-127.80 Y Y Y

11q24.3 chr11:127.80-130.80 Y Y Y Y

11q25 chr11:130.80-135.01 Y Y Y Y

16q23.1 chr16:74.10-79.20 Y Y Y Y Y

16q23.2 chr16:79.20-81.70 Y Y Y Y

17p11.2 chr17:16.00-22.20 Y Y Y

18q12.2 chr18:32.70-37.20 Y Y Y

18q12.3 chr18:37.20-43.50 Y Y Y

18q21.2 chr18:48.20-53.80 Y Y Y Y Y

18q21.33 chr18:59.00-61.60 Y Y Y

18q22.1 chr18:61.60-66.80 Y Y Y

18q22.2 chr18:66.80-68.70 Y Y Y Y

18q22.3 chr18:68.70-73.10 Y Y Y Y

18q23 chr18:73.10-78.077 Y Y Y Y

Table 5 Consensus deletion RCNAs in six studies (Continued)

20p12.1 chr20:12.10-17.90 Y Y Y Y

21q11.2 chr21:14.30-16.40 Y Y Y Y

21q21.1 chr21:16.40-24.00 Y Y Y

21q21.2 chr21:24.00-26.80 Y Y Y

21q22.12 chr21:35.80-37.80 Y Y Y Y

Xp21.2 chrX:29.30-31.50 Y Y Y

Xp21.1 chrX:31.50-37.60 Y Y Y

These regions are those that appear in at least three studies
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1 Mb of the detected regions of this study. It is worth to
point out that some of the potential driver genes such as
ERBB2 and TP53 were reported as implicated in the
progression of esophageal Barrett to EA [13]. However,
CNA regions are usually large and contain many genes.
It is difficult to distinguish driver genes from passengers
by just studying copy numbers [40]. Although more
common driver genes were detected in this study than
those found in [16], the discrepancy still implies the
need of an integrated approach to identify driver genes
of EA, which can consider CNA, mutation, gene expres-
sion, and methylation altogether.
In addition to the common regions, we found some

novel ones, including four amplification regions and ten
deletion regions with statistically high frequency of ap-
pearance in the population. These regions may provide
Table 6 Large-scale CNAs detected in WGS and WES

Boundary (Mb) Width (Mb) Type WGS count WES count p value

chrX: 2.70-44.00 41 Gain 0 1 1.00

chr12:58.34-110.00 52.05 Gain 1 3 0.60

chr8:87.08-126.00 39.3 Gain 0 1 1.00

chr14:37.15-65.00 27.5 Gain 0 1 1.00

chr20:36.79-55.00 18.32 Gain 0 1 1.00

chr4:20.88-69.00 48.46 Gain 0 1 1.00

chrX:46.95-139.00 91.93 Loss 1 4 0.33

chr8:0.12-86.00 86.27 Loss 1 2 1.00

chr13:35.76-115.00 79.35 Loss 2 5 0.39

chr4:75.26-178.00 103.1 Loss 1 3 0.60

chr5:19.47-181.00 161.22 Loss 2 4 0.65

chrY:10.01-29.00 18.71 Loss 0 5 0.04

chr17:0.00-21.00 21.19 Loss 2 1 1.00

chr18:19.84-78.00 58.18 Loss 5 4 1.00

chr15:32.02-60.00 28.39 Loss 1 0 1.00

chr19:0.25-25.00 24.26 Loss 3 0 0.22

chr19:36.81-55.00 18.42 Loss 1 0 1.00

chr7:93.74-152.00 58.36 Loss 2 1 1.00

chr21:15.00-45.00 29.63 Loss 1 1 1.00

p value is used to assess if the detected CNA is more frequently identified by
WGS or WES



Table 7 Focal-scale CNAs detected in WGS and WES

WGS WES

All CNAs 21,197/3675 4371/144

Filtered CNAs 19,694/3456 3655/121

Small CNAs (<200 k) 11,480/2175 1201/36

Small and intron CNAs 7452/1603 0/0

A number before/indicates how many CNAs detected in the specific platform;
a number after/indicates how many CNAs are more frequently detected in the
platform. Filtered CNAs represent detected CNAs with p-value < 0.05. Small
and Intron CNAs are CNAs with width < 200 k and only cover introns

Table 8 Potential driver genes reported in previous studies and
corresponding RCNAs detected in this study

Genes Cytoband Boundary (Mb)

ARID1A 1p36.11 chr1:19.53-31.73

SKI.PRKCZ 1p36.33 chr1:0.99-3.16

MCL1 1q21.3 chr1:149.94-156.69

SCN10A 3p24.3 chr3:12.79-69.03

PRCKI 3q26.2 chr3:169.43-170.59

PDE4D 5q12.1 chr5:58.15-59.79

APC 5q14.3 chr5:79.47-130.52

EYS 6q12 chr6:64.42-71.14

MYB 6q23.3 chr6:135.29-135.71

C6orf118, SYNE1 6q27 chr6:151.79-171.12

EGFR 7p11.2 chr7:55.00-55.46

CDK6 7q21.2 chr7:91.98-92.76

MET 7q31.2 chr7:115.61-117.83

MYC 8q24.21 chr8:126.45-129.02

CDKN2A, CDKN2B 9p21.3 chr9:21.86-23.69

PTPRD 9p23 chr9:6.64-15.17

TLR4 9q31.1 chr9:70.49-123.15

ATM 11q14.1 chr11:77.96-111.96

KRAS 12p12.1 chr12:25.34-25.67

ARID2 12q12 chr12:33.56-48.13

GATA6 18q11.2 chr18:19.75-20.52

DMD Xp21.1 chrX:30.87-32.66
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more clues to understand the cancer genomics of EA. In
particular, SKI and PRKCZ in 1p36.33 have been re-
ported to contribute to the loss function of TGFBR2 and
SMAD4 in cancer [41]. TGFBR2 and SMAD4 are in-
volved in the transforming growth factor (TGF)-β path-
way and were identified as driver genes in gastric cancer
[42] and colorectal cancer [43]. The novel deletion event
identified on Yq12 in our study, along with previously
found deletion events on X chromosome (e.g., Xp21.1
and Xp21.2) may help to understand the greater inci-
dence of EA in males over the past three decades. For
example, the DMD gene in Xp21.1 was identified as a
driver gene in gastric cancer [42], and our result sug-
gests that it may also contribute to EA development.
The recurrently detected regions are likely to harbor

“common mutations” that are of great interest in can-
cer studies. However, each tumor sample can contain
private driver mutations for that individual patient’s
tumor. To verify it, we compared the CNAs detected
at individual sample level (Tables 6 and 7) with the
recurrent events (Tables 1 and 2). We found only
about 25.2 % of individual deletions overlapped iden-
tified deletion RCNAs. More extremely, only 10.2 %
of amplifications detected at individual sample level
overlapped those amplification RCNAs. Even for
large-scale events, we found 88.0 % of individual dele-
tions overlapped the recurrent deletion events, and
only 35 % of individual amplifications overlapped the
recurrent amplification events. The above observation
implies that a considerable amount of driver muta-
tions in a specific tumor sample is not located in the
recurrent regions and personalized studies are re-
quired to identify these rare events.
In our study, the medians of spans of recurrent

amplification/deletion events are 1.0/6.6 Mb for
WES (and possibly WGS) and 0.2/2.1 Mb for those
identified only from WGS (Tables 1 and 2). Also, we
detected more individual small CNAs by WGS
(Table 7). Compared to WES, WGS appears more power-
ful to detect small events, especially for those that mostly
reside in non-coding regions. The limitation of this
comparison is that only 15 WGS/WES samples were
available. For future studies, a larger sample size
should provide more precision to calibrate the per-
formance of WES relative to WGS.
Conclusions
In this study, we detected RCNAs in EA using the NGS
data from [11] and compared the results with those from
the previous microarray studies. The majority of the
events detected in our study also were detected in those
previous studies. Furthermore, novel regions and genes
were found using NGS technologies. We also compared
carefully WGS and WES in detecting CNA on an indi-
vidual level. We found large-scale segments can be more
consistently detected by both platforms, whereas WGS
does detect more focal events. Importantly, the recurrent
events on the population level appear to be successfully
identified by WES. Given that the cost of WES is much
less than that of WGS, and the mutations in WES is
much more interpretable, our study suggests that WES
may be the viable platform to detect recurrent copy
number events in EA research.
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Methods
Esophageal adenocarcinoma cancer data
The NGS data, including both WGS and WES data,
were generated in [11] and stored in the database of Ge-
notypes and Phenotypes (dbGaP) (study accession:
phs000598.v1.p1). The dataset is comprised of 145
matched tumor-normal samples. Among them, 15 sam-
ples both have WGS and WES data, and the rest 130
samples have only WES data. The EA samples include
those from the gastric-esophageal junction, not treated
with chemotherapy or radiation before surgery. The
tumor samples were examined by a board-certified path-
ologist and ensured that their carcinoma content >70 %.
The samples were sequenced on multiple Illumina HiSeq
flow cells to have the average target exome coverage of
~80× in WES data, and sequenced on the Illumina Gen-
ome Analyzer Iix or the Illumina HiSeq sequencer with
an average of ~30× coverage depth in WGS data. The
details of the sample collection, DNA extraction, and se-
quencing procedures can be found in [11].
The raw sequence data were extracted from dbGaP

using the NCBI SRA Toolkit; the sequences were aligned
to the NCBI build 37 (hg19) reference using BWA [44]
and processed following GATK best practices. The base
score re-calibrated bam files were used for CNA
detection.

CNA detection methods
Control-FREEC was applied in this study on both WGS
and WES data. It divided the genome into small contigu-
ous regions using sliding windows. The read count pro-
files in each region for normal and tumor samples were
computed and normalized accounting for GC-content
and mappability. The read count ratios of tumors to
matched normal samples were calculated and used as
the proxy of the copy number ratios. A LASSO-based al-
gorithm was used to segment the data. LASSO is a
widely used generalized linear regression method that
involves penalizing the absolute size of its regression co-
efficients [45]. Using LASSO, a piecewise constant
smoothed step profile was used to model the copy num-
ber ratios, and the positions with nonzero coefficients
were considered as change points. For WES data, the
window size was set to 500, and the step size was set to
250, which were recommended by the authors. For
WGS data, those parameters were set as 2000 and 1000,
respectively. Control-FREEC estimates the normal cell
contamination in tumor samples by comparing the ob-
served and predicted copy numbers. It uses the
Kolmogorov-Smirnov test to assess the false-positive rate
of each detected CNA. Control-FREEC can predict abso-
lute copy numbers if the ploidy information is provided.
We used ABSOLUTE [46] to estimate the ploidy of the
15 EA samples using WES data, and the results are
listed in the supplement. In this study we classified the
identified CNAs based on their status (amplification or
deletion) instead of their absolute copy numbers.
Control-FREEC ignored genomic regions with mappabil-
ity less than 0.85 by default, and hence, we did not con-
sider the effect of unmappable regions in this study.
GISTIC2.0 was used to identify regions with a statisti-

cally high frequency of copy number aberrations over
background aberrations. It evaluated both the frequency
and the significance to identify regions of interest. The
G score measured both the frequency of aberrations,
and the magnitude of the copy number changes (log ra-
tio intensity) in each sample. Each location was scored
separately for gains and losses. Then locations in each
sample were permuted to simulate random aberrations.
This random distribution was compared to the observed
statistic to identify scores that are statistically significant.
A false discovery rate (FDR) multiple testing correction
was applied to calculate a q-bound significance score.
Within each statistically significant region, a peak region
was identified so that the region with a maximal G score
and a minimal q value is most likely to contain affected
genes. In addition to the q value, it also computed the
residual q value, which measured the q value of a peak
region after removing events that overlap with other
more significant peak regions in the same chromosome.
The 145 WES data were segmented using circular binary
segmentation (CBS) algorithm [47] and combined to
form the segmentation file, while the 15 WGS data were
segmented using Control-FREEC as described above.
The parameter settings were as follows: amplification
threshold = 0.1, deletion threshold = 0.1, broad length
cutoff = 0.98, remove X-chromosome = 0, and confidence
level = 0.95.
Whenever possible, default parameters and recom-

mended settings were used in the implementation of
these tools.
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