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SUMMARY

In the genomic era, group association tests are of great interest. Due to the overwhelming number of
individual genomic features, the power of testing for association of a single genomic feature at a time
is often very small, as are the effect sizes for most features. Many methods have been proposed to test
association of a trait with a group of features within a functional unit as a whole, e.g. all SNPs in a gene,
yet few of these methods account for the fact that generally a substantial proportion of the features are not
associated with the trait. In this paper, we propose to model the association for each feature in the group
as a mixture of features with no association and features with non-zero associations to explicitly account
for the possibility that a fraction of features may not be associated with the trait while other features in the
group are. The feature-level associations are first estimated by generalized linear models; the sequence
of these estimated associations is then modeled by a hidden Markov chain. To test for global association,
we develop a modified likelihood ratio test based on a log-likelihood function that ignores higher order
dependency plus a penalty term. We derive the asymptotic distribution of the likelihood ratio test under
the null hypothesis. Furthermore, we obtain the posterior probability of association for each feature, which
provides evidence of feature-level association and is useful for potential follow-up studies. In simulations
and data application, we show that our proposed method performs well when compared with existing group
association tests especially when there are only few features associated with the outcome.

Keywords: Finite mixture model; Genome-wide association study; Modified likelihood ratio test.

1. INTRODUCTION

With the fast growth in high-throughput sequencing technologies, identifying important features that are
associated with a disease trait in a genome-wide study has become possible. Notable examples include rare
variant association in human genome sequencing studies (Morgenthaler and Thilly, 2007; Morris and Pan,
2010; Wu and others, 2009), and sieve analyses in HIV vaccine trials comparing viral sequences between
vaccines and placebo recipients (Rolland and others, 2012). Due to the overwhelming burden of multiple
testing, testing for association between disease and individual features often lack power. To aggregate
individual weak associations and reduce the number of tests, numerous methods have been proposed to
perform a global association test within a functional unit, e.g. a gene or a pathway. Motivated by, though
certainly not limited to, rare-variant association testing, we propose in this paper a novel group association
test named “hidden Markov model variable detection method” (HMVD).
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Existing association detection methods belong to two general classes: one class is to aggregate
individual summary statistics like p-values or Z statistics for each feature. For example, Fisher (1932)
construct test statistics based on sum of the p-value for the each feature. Tippett (1931) tests based on
minimum of the p-value’s for all features. More recent work along includes Chen and others (2012) and
Cheung and others (2012) among others. For example, SigmaP (Cheung and others, 2012) tests for asso-
ciation by constructing test statistics using a weighted linear combination of the individual p-values.

The other class involves multiple regression models for the trait and all features together, with differ-
ent levels of constraints to curb the number of parameters. One group of such tests, called Burden tests,
simply collapses multiple features into one explanatory variable. For example, the cohort allelic sum test
(Morgenthaler and Thilly, 2007) collapses variants within one region to a new indicator variable, which
is one if a subject has at least one rare variant among that region, and zero otherwise. Along this line,
Morris and Pan (2010) proposed to count the number of rare variants within a region and Li and Leal
(2008) proposed the combined multivariate and collapsing test. These burden tests usually works well if a
large portion of the variants are associated with the outcome. Wu and others (2009) proposed the sequence
kernel association test (SKAT) by testing for the heterogeneity of single-nucleotide polymorphism (SNP)
associations. They assumed that the SNP associations follow a normal distribution with zero mean, and
tested for whether the distribution of associations has zero variance. SKAT is more powerful than the Bur-
den tests when a small portion of variants are associated with the outcome or when the association of the
SNPs go in both directions. Lee and others (2013) combined SKAT and Burden tests and introduced an
“optimal” test that works well under both of the two aforementioned settings.

One limitation of those aforementioned methods is that they do not explicitly distinguish associated
features from functionally neutral features. Thus, in settings with a substantial portion of neutral features,
they may not be optimal in power performance. Recently, Logsdon and others (2014) proposed a vari-
ational Bayes discrete mixture (VBDM) method that incorporates the mixture of associated and neutral
variants in the modeling. However, due to the approximation nature of the variational Bayes method, it does
not work for dichotomous traits and logistic regression. Other authors have explored model selection tech-
niques in group association tests, including a stepwise variable-selection method (Hoffmann and others,
2010) and Bayesian model selection (Capanu and Begg, 2011; Liang and Xiong, 2013).

In this paper, we propose a two-step procedure to conduct group association tests: first we summarize
evidence of individual associations using Z statistics or, equivalently, the observed association in a gener-
alized linear model. We next model each feature-level association by a latent indicator variable indexing
whether the feature is associated with the outcome. The sequence of estimated individual associations are
described probabilistically by a hidden Markov model (HMM). This HMM allows for a flexible structure
on the sequence of hidden states yet it is computationally manageable through a modified Baum—Welsh
algorithm.

The primary goal of the proposed method is to test the global null hypothesis that there is no association
between the set of features and the outcome. Under the alternative hypothesis, each Z statistic or estimated
association follows a mixture of two normal distributions: one is centered at zero (the null), the other is
centered at the alternative. The mixture reduces to a single normal distribution under the null, and therefore
we aim to test whether the number of mixture components is one. A common issue when testing for the
number of mixture components is that the model is non-identifiable under the null (Lo and others, 2001).
Let p be the proportion of the second components and 0 be the parameter for the second component. Then
under the null when p =0, 6 will be non-identifiable. As a result, the standard likelihood ratio test does
not have the usual chi-square distribution. Chernoff and Lander (1995) and Sen and Ghosh (1985) among
others find that the asymptotic distribution of the LRT involves the supremum of a Gaussian process.
Recently, Chen and others (2001) proposed to add a C log(p) + Clog(1l — p) term to the log-likelihood
function to keep p away from 0 or 1, where C is a user defined positive constant. They show that the param-
eters are consistently estimated under the null. In our method, we apply a similar approach by adding a
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Clog(p) term to the log-likelihood function, so the support of p is limited to (0, 1]. Correlated Z statistics
are modelled by a hidden Markov chain, so that the proportion of null features and posterior probabilities
can be computed by a extension of the Baum—Welsh algorithm. For hypothesis testing, we propose a mod-
ified likelihood ratio test ignoring the higher order correlation between features with the aforementioned
penalty term. We show that the asymptotic distribution under the null hypothesis follows a 7 distribution.

Another contribution of our method is its “model selection” feature. On top of its ability to test for
overall association, HMVD also provides a posterior probability for each feature, summarizing how likely
it is marginally associated with the outcome. This property is desirable since it allows one to iden-
tify important features amongst a pool of candidate features, thereby providing guidance for follow-up
studies.

2. METHODS

In this paper, we focus on testing whether a set of m predictors (or features) (G) is related to an outcome
variable ¥ while being adjusted for extra confounding variables (covariates) X. For n independent subjects,
let ¥ be ann x 1 vector, X be an n x ¢ matrix, and let G'be an n x m matrix. We assume that our samples
are obtained either from a case—control study or a cohort study; ¥ can be either a dichotomized disease
variable or a continuous response. The traditional way to test association of a group of features is to fit a
multiple regression model, g{£(Y)} = XB + GO, where B is the coefficient for X, 6 is the coefficient for
G. The usual F/x? statistic to test # = 0 will have limited power when m is large.

Rather than fitting one model for all m features, which can be cumbersome when m is large, we fit a
separate model for each feature:

EXW)) =Bk + XBr + Gib, k=1,....,m, (2.1)

where Gy, is the kth column of G. For the kth feature, the estimated association ék and its estimated variance
67 can be obtained through model (2.1). We assume that within a set of features, only some of these features
are associated with the outcome. Let W, k=1, ..., m, be an indicator whether feature & is associated with
the outcome, and assume all associated features share the same effect size 6, we have

O=Wib +er, k=1,....m, (2.2)

where ¢, ~ N (0, a,f). Note that without any rescaling of the features, akz — 0 as n increases. The assump-
tion that all associated features have the same effect size may seem restrictive. However, we note that in
many applications where all features are jointly tested these features are “similar”, e.g. they are all sequence
variants within the same gene that may disrupt the function of that gene in a similar manner. As such, we
believe that this assumption can be a reasonable approximation. We note that it is also possible to a priori
rescale some of the features G, for example to give them the same variance, or to incorporate some prior
believes about effect sizes. In our simulation study, we will see that our method maintains correct control
of the type I error and has good power, even if the assumption of the same effect size is not satisfied.
Our testing procedure has two parts: the “generic” regression model that relates ¥ to G and X (2.1), and
the HMM that relates the sequence of estimated association 6 (2.2). The goal here is to develop a test for
association of a group of features using the second model. For this test to be valid, the actual form of (2.1)
can be flexible: we require only an estimate 6. for k features and their estimated covariance matrix. We can
also apply our procedure to a set of test statistics Zx, k =1, ..., m, specifying se(é,i) =l1,fork=1,...,m.
Such “weighted version”, can be obtained when each feature G is divided by the (unweighted) se(6;). For
the weighted version, model (2.2) gets replaced by Z;, = Wy Z +€;, k=1, ..., m, where the covariance
matrix of the €; equals the correlation matrix for €. In the remainder of this section, we show results for the
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unweighted version of our procedure. The derivations for the weighted version are completely analogous
and therefore omitted.
Set ¥ = (Bok, By, Ok) and let the corresponding estimating equation be S, which is a function of ¥,.
Then the joint distribution of (0| W1, . .., 0, | W,,) is
é1|w1 w10 0'12,...,0'1,,,
~N[| -], . ,

A 2
9,,,|wm wme Omls -0

where oy is the last diagonal element of E[{ EXYS /oY k}_IS‘kS‘kT, {8.§'kr /3% ,,}~']. Denote the variance by ¥;
its estimate 3 can be estimated from the data.

2.1 Hidden Markov model

To describe the likelihood of observed data, we need to impose some structure on the sequence of latent
variables W}’s to use (2.2) for group testing. The simplest structure is to assume that the W;’s are inde-
pendent, and that each follows a Bernoulli distribution with P(W; = 1) = p: that is, each feature has an
equal “chance” of being associated with Y, independent of the other features. In this paper, we assume that
the W follow a stationary Markov chain with transition matrix 4 = (ay,), s, t =0, 1, where a0 + a;; = 1
and a;, = P (W41 = t| W, =s). We assume that the features can be ordered in a meaningful way, and that
whether one feature is associated with the response may be informative on whether the next feature is
associated with the response. For example, for genetic data, there is a natural order of variants along the
chromosome. The Markovian structure implies that for neighboring SNPs, if one is associated with the
outcome the other one is more likely to be associated with the outcome. We note that when agy = a;, the
Markov chain model is equivalent to the simple Bernoulli model with p = ay;.

We define the emission probabilities, i.e. the copdiAtional (Aiistribution of 0, givenA O, ...,0—
and the hidden states up to kA Wi, u W) as p(Bklbr, ... 01, Wi, ..., W) 2 b(6)). Let © =
@1,...,0,) and ®@ = (6, ...,6,). When n is sufficiently large, ® is a multivariate Gaussian distri-

bution given all the hidden states. We obtain the likelihood of (:)Aby summing over all hidden states:
PO|p,6)=> PO, W|p,6)=>", mubi(0) [} duw, , uwbi(6k), where m,, = P(W; =w;). Con-
trary to the usual first-order HMMs, the emission probability of a feature depends on the hidden states of
the feature itself and all prior features. Therefore, the full likelihood of él e, ém involves summation over
all possible combinations of the prior hidden states for each W}, which is computationally infeasible. Some
simplification is needed. We consider two strategies for accounting for the dependency between features:
for the hypothesis testing purpose, we develop a modified likelihood ratio test that ignores the higher order
dependency and we prove that the resulting test is still valid. For estimating the posterior probability of
an individual feature, we use a modified Baum—Welsh algorithm that reduced the dependency in emission
probabilities to the first order only, thereby substantially reducing the burden of computation.

We formulate a model similar to the standard hidden Markov model (HMM) with one key difference.
In the standard HMM, all observations ék are assumed to be conditionally independent, that is, it is assumed
that p(ék|4§1, R ék, LWL W) = p(ékl W;). These assumptions are usually not satisfied in our set-
ting, since the effects from neighboring features (e.g. SNPs) are likely to be correlated. We generalize
the HMM by allowing first-order conditional dependence between neighboring features and ignoring any
higher order correlations.
A In particular, we assume that p(ék|é1, e, ékfl, Wi,..., Wp) = p(éﬂé\k,], Wi, Wy) = (ﬁ(ék — By
Qkfl, (Wk — Bkafl)Q, O-k2|k71)7 where Bk = O‘k,k*l/odszla szlk71 = 0‘13 — BkO'kfl,k and ¢(X, M, 0'2) =
Qro?) 2 exp{—(x — n)?/202}. For simplicity, we define bu, | w, (Or) = pOrlOr—1, Wi_1 = wi_1,
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Wi =wy), for k=2,...,m, b, ) =¢(,w,of) and 1, = P(W; = w,). Then the likelihood func-
tion, by ignoring higher order conditional correlations, can be expressed as

m

POI|p.0)=> PO.W(p.0)=> ubu, @) [ [ @\ w1 0. (23)
w w k=2

2.2 Hypothesis testing

The primary goal of this paper is group testing for association. Assume that the Markov chain Wy is
stationary, then p L2PW=1)=ay /(a0 + ap1). Testing for association between outcome and features
is equivalent to testing for the composite null hypothesis

Hy:9=0 or p=0.

This set-up has two complications. First, the parameters are not identifiable under Hy; when p =0,
6 vanishes in the likelihood, and when 6 = 0, p vanishes. Second, there are no existing results about the
distribution for the likelihood ratio test statistics under the HMM setting described here. To eliminate the
identifiability problem, one approach is to add a small penalty term, that pushes one component of the
null parameters away from its boundary value (e.g. Chen and others, 2001; Fu and others, 2009). In the
HMM setting, tests based on the marginal distribution of @, ignoring dependency, have been proposed
(Dannemann and Holzmann, 2008). The rational for this approximation is that the number of states in the
HMM is equivalent to the number of components for each ék. Under Hj, when the HMM only has one
state, marginally 6. follows a normal distribution with mean 0. Under the alternative, when the HMM has
two states, marginally ék |9Ak,1 follows a mixture of four normal distributions, with the mixture probabilities
being poo = (1 — p)ago, por = (1 — p)aoi, pio = paio, and p11 = pai.

In our method, n; = 0; — B;0_; has a distribution that is a mixture of four normal distributions:

Fonix @k10k—1) = pood (110, 0 )) + por1d (16, 0_)) + pro¢ (1l — Bib. o)
+ pud (il (1 = Bo)b, oy ). (2.4)

Here ¢ (x|, 0%) denotes the normal probability density function evaluated with mean  and variance o2
Then the likelihood function for @, ignoring higher order dependency, is

m

1 (P, 6) = 108 funix Brl0-1). 2.5)

k=1

We propose the following modified log-likelihood function:

PO, 4)="_10g fuix(@cl0k1) + Clog(ag) + C log(an), (2.6)
k=1

and we construct a likelihood ratio test based on this expression.

As discussed in Chen and others (2001), the best choice of the tuning parameter C depends on the
model. In our simulation study we find that the value of C affects both the type I error and the power:
setting C too large will reduce the power while setting C too small will lead to some inflation of the type
I error. We found that C = 1 yields a good balance between type I error and power.
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Interestingly, maximizing (2.6) will still give us a consistent estimator of 6. Related results on the
consistency for MLEs while assuming independence have been discussed in Chandler and Bate (2007)
and Zhou and others (2001).

Note both §; and oy, are of order n~'/2, it is natural to make the following transformation and
rewrite the log-likelihood function. Define 7; = /nnk, 6 = /n6, and 6f = na,?l «—1- Then equation (2.4)
can be written as fiix(iix) = poo (ix10. 67) + pord (7|0, 62) + prod (x| — Bx6. 67) + puiop (el (1 —
By, 5kz) and the modified log-likelihood function can be rewritten as

@, 4) =" " log fuix(ix) + Clog(ag) + C log(ar), 2.7)
k=1

Now define the modified likelihood ratio test (MLRT) statistics as

diag(2¢)

_21’9A —11®=0,4 27, 2.8
= 21140, ) — I N5, 2.8)
where €, is the covariance matrix for (1 — Bk)ﬁk/t}kz, k=1,...,m.> diag(2y) is the sum of all diagonal

elements of €4 and > Ry is th~e sum of all elements in 4. Then the following two theorems show the
consistency of the estimator of 6 and the asymptotic distribution of R,, under the null hypothesis.

THEOREM 2.1 If Conditions 1-5 (given in Supplementary material available at Biostatistics online) hold,
the maximum modified likelihood estimator is consistent under the null.

THEOREM 2.2 If Conditions 1-5 hold, then under the null hypothesis the modified likelihood ratio test
statistics defined in equation (2.8) follows a x? distribution as n — oo and m — oo.

The proofs of the theorems are given in Supplementary material available at Biostatistics online.
For data with limited sample size and small number of features, we observed small inflation of type I errors.
We refer to the p-values that are obtained using Theorem 2.2 as approximate p-values. In cases where accu-
rate p-values are needed, we propose the following adaptive permutatlon strategy. For each test, we obtain
© and ¥ as described in Section 2 and the approximate p-value p°. Under the null hypothesis, © follows
a multivariate normal distribution with mean 0 and covariance 3, denoted by MVN(0, $). Givena signif-
icance level «, the adaptive permutation tests proceeds as follows. The first step is to determine whether a
permutation test is needed. If p° is large enough compared with «, then there is no need to conduct a per-
mutation test. In both the power comparison and type I error calculation in Section 3, we do not initiate the
permutation test if p° > Sa. Otherwise, we set the number of permutations nperm = min([N/p°], [N /«]),
where [a] is the greatest integer that is less than ¢ and N > 1 is a user defined parameter. Throughout the
paper, we set N to be 10. For permutation i, we generate @' from MVN(0, %) and calculate the corre-
sponding approximate p-value p’, i =1, ..., nperm. Then a test is claimed to be significant at level o
if (Zi(p0 < p') +1)/(nperm + 1) < «. The proposed adaptive permutation procedure is similar to the
method introduced in Besag and Clifford (1991).

2.3 Estimation

Recall that the likelihood function based on the HMM structure, while ignoring higher order dependency, is
PO|p, )=, PO, W|p,0)=>", 7w buw 01) [ 11— @w, ,uibu 1. k). To deal with the composite
null issue discussed in the previous section, we add a penalty term to the above likelihood function and
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obtain the following penalized version:

PP((:)|pﬂ 9) - Z nwlbw] (él) H all)k,|,u}kbll)k,|,ll)k (ék)a(?]alcl (2'9)
w k=2

We can estimate 6 by maximizing expression (2.9). Maximization can be done using a modified Baum—
Welsh algorithm. A detailed description of this algorithm is given in Supplementary material available at
Biostatistics online.

3. SIMULATION STUDY

In this section, we conduct simulation study to evaluate the performance of the proposed HMVD method
in settings with continuous and binary features and in settings with continuous and binary outcomes.

3.1 Type I error control for finite sample

We perform HMVD tests under the null hypothesis and calculate type I error rates in various settings. For
each setting, the empirical type I error rate is obtained based on independent simulated datasets. Sample
sizes are n = 2000 and n = 4000. The outcome Y is generated either from a standard normal distribution
or from a Bernoulli distribution with p = 0.5.

For continuous features, we generated 20 and 40 features with two different covariance matrix struc-
tures: independent features or features with an “AR1” correlation structure cor(Gy, Gy,q) = 0.259!. The
marginal variance of each feature was one for all simulations.

For discrete features, we generate genetic data mimicking real SNP data. We use HAPGEN2
(Spencer and others, 2009) and the CEU sample from the Hapmap project (data release #24) to gener-
ate genotypes of the Von Willebrand Factor (VWF') gene on chromosome 12. To generate rare variants, we
only select those variants with minor allele frequency (MAF) < 0.05. We select the first 20 or 40 variants
to be consistent with the setting for continuous features.

For each simulation, we calculate the proportion of times the group of features is declared as signif-
icantly associated with the outcome at three thresholds (¢ = 0.01, 0.001, and 0.0001). For « = 0.01, we
generated 10° simulated datasets and for @ = 0.001 and o = 0.0001, we generated 10° simulated datasets to
test for the type I error rates. Results for independent features and discrete features are given in Tables 1-2.
Overall, the type I error rates are well controlled. The p-values are conservative for small sample size when
outcome is binary and features are generated based on VWF gene. This is due to the conservative standard
error obtained using logistic regression for small sample size when MAFs are small. Results for features
generated from “AR1” correlation structure are given in Supplementary material available at Biostatistics
online. The type I error rates are also well controlled.

3.2 Power comparison

To study the power of our proposed approach, we compare HMVD with other popular group testing meth-
ods: SKAT (Wu and others, 2009), SKAT-O (Lee and others, 2013), VBDM (Logsdon and others, 2014),
SigmaP (Cheung and others, 2012), and the Burden test (Morris and Pan, 2010). We examine the power
for the different methods across a variety of settings. The features that are associated with the response
are selected independently with probability p = 0.1 (sparse signal) or 0.2 (denser signal). The number of
features is again set to be either 20 or 40. Note that for m =20 and p = 0.1 in ~12% of the simulations
there is no signal, so for this setting the maximum power is around 88%. The sample size is set to be 4000
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Table 1. Empirical type I error rates for continuous features with identity covariance matrix

Outcome m n a=10"2 a=10"3 a=10"*

Continuous 20 2000 1.00 x 1072 1.04 x 103 1.06 x 1074
Continuous 20 4000 1.00 x 1072 1.00 x 1073 0.87 x 1074
Continuous 40 2000 0.95 x 1072 0.98 x 1073 1.01 x 1074
Continuous 40 4000 1.02 x 1072 0.99 x 103 1.11 x 1074
Binary 20 2000 1.04 x 1072 1.13 x 1073 0.94 x 1074
Binary 20 4000 1.11 x 1072 1.11 x 1073 0.96 x 1074
Binary 40 2000 0.98 x 1072 1.01 x 1073 1.08 x 1074
Binary 40 4000 1.06 x 1072 1.06 x 1073 0.91 x 1074

Table 2. Empirical type I error rates for discrete features generated from the VWF gene

Outcome m n a=10"2 a=10"3 a=10"*

Continuous 20 2000 0.95 x 1072 0.96 x 103 0.93 x 1074
Continuous 20 4000 1.00 x 1072 0.99 x 103 1.13 x 1074
Continuous 40 2000 0.97 x 1072 0.98 x 1073 0.98 x 1074
Continuous 40 4000 0.97 x 1072 0.96 x 103 1.08 x 10~
Binary 20 2000 0.84 x 1072 0.66 x 1073 0.60 x 10~*
Binary 20 4000 0.90 x 1072 0.81 x 1073 0.76 x 1074
Binary 40 2000 0.82 x 1072 0.71 x 1073 0.66 x 1074
Binary 40 4000 0.89 x 1072 0.81 x 1073 0.82 x 1074

for all simulations. Comparisons are made for both continuous and ordinal features, and for continuous
and binary outcomes Y.

For continuous outcomes, the data are generated from the model ¥ = " 6, G + €, where ¢, are taken
iid normal with mean 0 and variance 4. For binary outcomes, the data are generated from the model
logit{ P(Y = 1)} =>_ 6, Gy.

The effect sizes 6; are generated under two scenarios: In the first scenario, we assume that the features
associated with the outcome share the same effect size, i.e., 6y = 0 or ; = 6 (when our model is correct);
In the second scenario we assume that the associated features have different effect sizes, such that 6, = 0 or
Or ~ 6 x N (1, 2). This scenario is used to study the robustness of HMVD against model misspecification.
We note that in the second scenario on average 31% of the truly associated 6, will have effects that are in
the opposite direction from the other ;. Under each scenario, the associated features are chosen randomly
and we report the percentages of tests that are significant at level « = 0.005 over 1000 runs.

We generate continuous features G using the same covariance matrix structures as we used for the
simulations for evaluating type I error. The effect size 6 take the value 0.04, 0.08, 0.12, or 0.16. These effect
sizes are chosen such that the resulting powers cover a reasonable range. Figure 1 shows the comparison
for the independent covariance structure. The top 2 panels are for continuous outcomes. All associated
features share the common effect in the first panel and have different effect sizes in the second panel.
The bottom 2 panels are for binary outcomes with common and different effect sizes. Results for features
generated from “AR1” correlation structure are given in Supplementary material available at Biostatistics
online.

For ordinal features, we compare power based on data generated using the VWF gene, as described
in previous subsection. The MAF spectrum for selected SNPs in VIWF gene is given in Appendix of
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Fig. 1. Power comparison for continuous features with independent covariance structure. Top 2 panels are for contin-
uous outcomes and bottom 2 panels are for binary outcomes.

Supplementary material available at Biostatistics online. The effect size 6 takes value 0.3, 0.6, 0.9, and
1.2. Results for ordinal features are given in Figure 2 with the same layout as Figure 1.

The proposed method and VBDM yield the greatest power for the continuous outcome binary predictor
case (Figure 2). For all other set ups, HMVD has the best power, even for settings with model misspeci-
fication. The setting with “m =20, p =0.2” and the setting with “m =40, p =0.1” provide equivalent
numbers of truly associated predictors but with different numbers of noise features (predictors that are
not associated with the outcome). The effect of more noise features can be observed by comparing col-
umn 2 and column 3 in each figure. Noise features have the strongest effect on the Burden test: the power
is greatly reduced when the number of noise features increases. Noise features have some effect on all
other methods, though the effect on HMVD is minimal in many cases, suggesting that HMVD has the
ability to better discern signals from noise. As mentioned earlier, model misspecification does not affect
the performance of the proposed method. Another interesting observation is that our method show sub-
stantial advantages when the features are generated independently. This is plausible since we first conduct
a variable by variable regression for each feature. The correlation structure is not explicitly modeled in
the likelihood ratio test. We observe a slightly smaller advantage when all features are correlated. This is
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Fig. 2. Power comparison for simulations based on simulated rare variants (MAF < 0.05) of VWF gene. Top 2 panels
are for continuous outcomes and bottom 2 panels are for binary outcomes.

Table 3. Aggregate association test results for association between imputed mis-
sense variants within the VWF gene and log-transformed VWF levels in African
Americans in the CARe consortium

Burden SKAT SKAT-O VBDM HMVD
Unweighted 0.56 28x 1074 6.9x107* 0.60 <1x1077
Weighted 0.58 1.6 x 1077 1.1x107 <1x1077 <1x107°

expected since we are conducting tests based on estimated effects: when all features are positively corre-
lated, the effective sample size is reduced, which affects the power.

4. DATA ANALYSIS

We apply our method to the same dataset from the Exome Sequencing Project (ESP) African American
(AA) participants as studied in Logsdon and others (2014) and Johnsen and others (2013), which study the
relationship between variants in the Von Willebrand Factor (V'WF) gene and Von Willebrand Factor level.
The Von Willebrand Factor (VWF) is a blood glycoprotein. It plays important roles in platelet adhesion.
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Table 4. VWF variants statistics and posterior probabilities. Variants with posterior
probabilities greater than 0.5 are highlighted in bold face

Variant Position Annotation MAF PP

rs143743709 chr12:6058245 Val2793Ala 0.0069 4.0e—7
1s7962217 chr12:6061559 Gly2705Arg 0.016 6.4¢—8
rs151129435 chr12:6061636 Asn2679Ser 0.002 1.5e-7
rs35335161 chr12:6078424 Phe2561Tyr 0.025 5.9¢—5
rs145697622 chr12:6091089 Arg2384Trp 0.0023 1.7e-2
rs112319661 chr12:6092338 Glu2353Asp 0.0066 4.7e—6
rs61750625 chr12:6094771 Arg2287Trp 0.0076 1.00

rs34230288 chr12:6103094 Ala2178Ser 0.0038 1.4e—3
rs61750615 chr12:6103650 Pro2063Ser 0.0022 1.3e—6
rs146729537 chr12:6125326 Alal795Val 0.0017 5.7¢—4
rs78302129 chr12:6125820 Pro1725Ser 0.023 1.6e—6
rs149424724 chr12:6128127 Ser1486Leu 0.0080 1.00

rs150077670 chr12:6128269 Val1439Met 0.0046 1.00

rs141211612 chr12:6128454 Alal377Val 0.0023 1.00

rs138900040 chr12:6128716 Glul290Lys 0.0011 1.6e—3
— chr12:6128898 Val1229Gly 0.0018 4.1e—-5
rs145125264 chr12:6135091 GIn1030Arg 0.0077 3.05e—5
rs141087261 chr12:6138575 Gly967Asp 0.027 6.7¢—6
rs143762054 chr12:6143913 Leu876Phe 0.00118 4.3e—6
rs143904314 chr12:6153559 Asn780Lys 0.0035 6.5e—9
— chr12:6166076 Ala631Val 0.0013 7.4e—6
— chr12:6166151 Arg606GlIn 0.0023 7.7¢—6
rs144817575 chr12:6172190 Ala488Gly 0.0032 5.5¢—6
rs111971143 chr12:6181569 Thr346lle 0.013 3.3e-7
rs71582882 chr12:6219663 Vall37Leu 0.0031 1.5¢—6
rs76505074 chr12:6219681 Gly131Ser 0.020 3.7e-2
rs61753991 chr12:6219687 Leul29Met 0.0089 1.5e—6
rs147514785 chr12:6220051 Vall02Met 0.0056 3.6e—7

Low levels of VWF are associated with higher risk of Von Willebrand disease (VWD), a type of bleeding
disorder. Johnsen and others (2013) and Logsdon and others (2014) showed that VWF missense variants
are associated with VWF levels within the AA population.

The dataset consists of 2487 AA subjects from the CARe consortium who were imputed using the
1000-genomes reference panel as part of the ESP. Details of the imputation are in Auer and others (2012).
There are a total of 30 imputed missense VWF variants. Two pairs of the variants are highly correlated with
correlation > 0.9; we remove one from each pair to reduce the collinearity and end up with 28 imputed
missense VWF variants. We apply our method to study the association between 28 imputed missense VWF
variants and log-transformed VWF level. In this section, we apply both weighted and unweighted version
of our method for testing association. We obtain strong evidence of association with a x2 p-value of 9.1 x
10~% and 4.2 x 10~ and permutation based p-value < 107% and < 10~ for the weighted and unweighted
procedures, respectively. SKAT and SKAT-O also yield significant results, but the significance levels are
not as strong as those for HMVD. For the VBDM method of Logsdon and others (2014), the weighted
version found a significant association; however, the unweighted version failed to establish association. In
Table 3, p-values using different methods are summarized for comparison. It should also be noted that all
other methods seem to be sensitive to the choice of weights.
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Our method identifies four low-frequency variants that have a strong association with the outcome
(with posterior probabilities >0.99) and all the other variants seems to contribute little to the associa-
tion (with posterior probabilities close to 0); see Table 4. Three of the four variants selected by HMVD
are Arg2287Trp, Serl486Leu, and Vall439Met, which concord perfectly with the results reported in
Johnsen and others (2013). Interestingly, in Johnsen and others’s report, the effects of these three variants
are of similar size, so it is not surprising that the unweighted version of our test establishes a significant
effect (the weighted version provided similar results). The variants that show strong evidence of association
are shown in bold.

5. DisCUSSION

In this paper, we propose HMVD, a general group association test. By introducing a hidden indicator
variable, our method explicitly accounts for the fact that a portion of variables might not be associated
with the outcome. Compared with other group association tests HMVD yields increased power in a variety
of scenarios. Our method is especially powerful when only a small fraction of all candidate features are
associated with the outcome. Under both the HMM framework and the marginal independent likelihood
framework, we obtain a posterior probability for each predictor being associated with the outcome. These
probabilities serve as evidence of association for follow-up studies. We establish asymptotic distribution
results of the HMVD test statistics for any generalized linear model.

As is evident from our example, HMVD is not very sensitive to the choice of weighting scheme, while
other methods may provide different conclusions based on the choices of weights. This property is desirable
since the “true” weight is never known, and ideally choice of weights should not affect the conclusions.

There are several possible extensions of our approach. First, in this paper, we assume all the associated
features to have effects in one direction. Extensions can be made to allow both features with positive
association and features with negative association. Second, although we focus on group-wise association
test, our framework can be easily extended to other settings such as the identification of gene—environment
interaction, or group-wise testing when features have entirely different scales.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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