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Summary. Under suitable assumptions and by exploiting the independence between inherited genetic susceptibility and
treatment assignment, the case-only design yields efficient estimates for subgroup treatment effects and gene-treatment inter-
action in a Cox model. However it cannot provide estimates of the genetic main effect and baseline hazards, that are necessary
to compute the absolute disease risk. For two-arm, placebo-controlled trials with rare failure time endpoints, we consider
augmenting the case-only design with random samples of controls from both arms, as in the classical case-cohort sampling
scheme, or with a random sample of controls from the active treatment arm only. The latter design is motivated by vaccine
trials for cost-effective use of resources and specimens so that host genetics and vaccine-induced immune responses can be
studied simultaneously in a bigger set of participants. We show that these designs can identify all parameters in a Cox model
and that the efficient case-only estimator can be incorporated in a two-step plug-in procedure. Results in simulations and a
data example suggest that incorporating case-only estimators in the classical case-cohort design improves the precision of all
estimated parameters; sampling controls only in the active treatment arm attains a similar level of efficiency.
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1. Introduction
Individuals respond differently to treatment or prevention
modalities, depending on their genetic background, environ-
mental exposures, and clinical characteristics (Charlab and
Zhang, 2013). In clinical trials, there is a growing interest
to discover and characterize individual or subgroup treat-
ment responses, supplementing primary intent-to-treat anal-
yses. For instance, the emerging pharmacogenetics research
aims to identify genetic susceptibility that contributes to
inter-individual variability of treatment efficacy and safety,
in scales ranging from several candidate genes to the whole
genome (Evans and McLeod, 2003; Weinshilboum and Wang,
2004). These studies underscore the potential of personalized
medicine, and may also elucidate mechanisms of treatment
effect.

To this end, this article pertains to sampling designs for
characterizing the influence of pre-treatment biomarkers, e.g.,
a panel of genetic variants, on treatment effects in randomized
clinical trials. Ancillary studies of this nature are increasingly
common in the genomic era. However, biomakers can be
expensive to measure. To study the association of biomarkers
with relatively uncommon study outcomes, including HIV
infection, most cancers, and some cardiovascular events, it
is cost-effective to adopt some form of outcome-dependent
sampling. Popular outcome-dependent sampling schemes
in cohort studies include the nested case-control design

and the case-cohort design (Thomas, 1977; Prentice and
Breslow, 1978; Prentice, 1986). Stratified versions of the two
sampling designs to oversample certain groups have also
been developed for better efficiency (Borgan et al., 2000;
Langholz and Borgan, 1995). The properties and utilities of
the two designs in cohort studies have been discussed (Self
and Prentice, 1988; Langholz and Thomas, 1990).

Consider a two-arm, placebo-controlled randomized pre-
vention trial with a rare failure event. The unique feature
is that there is unequivocal design-imposed independence be-
tween the treatment assignment and pre-treatment biomark-
ers, e.g., germline genotypes. Exploiting this independence
and assuming censoring being non-informative and indepen-
dent of randomization arms, case-only methods are more ef-
ficient than the two aforementioned designs for estimating
gene-treatment interactions and subgroup treatment effects
on a rare disease endpoint (Vittinghoff and Bauer, 2006; Dai
et al., 2012). These assumptions are better suited for phase
III prevention trials where adverse effect is not of concern.
Though computed from a logistic model, case-only estima-
tors have the interpretation of hazard ratios in the Cox pro-
portional hazards models. Sensitivity of case-only estimators
toward violations of these assumptions has been investigated
(Vittinghoff and Bauer, 2006). In recent years, use of case-
only methods has started to permeate in prevention trials.
See, e.g., trials in the Women’s Health Initiative and the HIV
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Vaccine Trial Network (Prentice et al., 2010; Dai et al., 2014;
Li et al., 2014).

The case-only design, however, does not allow estimation of
the full set of parameters in a Cox model. Specifically, neither
the genotype main effect nor the cumulative baseline hazard
function is estimable from cases alone. These parameters are
needed to study the absolute risk of the endpoint for geno-
type groups in each arm. This limitation hinders interpreta-
tion and utility of the estimated gene-treatment interaction,
because the estimate of individual absolute risk when treated
or when not treated will inform medical counseling and guide
treatment selection (Gail et al., 1989; Janes et al., 2011). On
the other hand, the traditional case-cohort or nested case-
control sampling provides estimates of the baseline hazard
and absolute risk, but does not incorporate gene-treatment
independence. Leveraging the strengths of both types of de-
signs, we consider augmenting the case-only design to enable
estimation of the full set of Cox model parameters. In partic-
ular, we focus on variations of the case-cohort design in this
article, because it is easy to plan ahead a random subcohort
for time-invariant genotypes in clinical trials, and because it
has the advantage of accommodating multiple outcomes that
may arise in an ancillary study.

Specifically, we consider two scenarios of adding controls
to the case-only design, for both of which we can incorpo-
rate the case-only estimators in two-step plug-in estimation
procedures:

Scenario I: Classical case-cohort design with controls
drawn from both arms. In essence, this is
one way of adding controls to the case-only
design. In this scenario, we essentially propose
a novel two-step estimation procedure for
the classical case-cohort design: the case-only
estimator is first used to estimate gene-
treatment interaction and treatment main
effect, these estimators will then be plugged
into established case-cohort estimation meth-
ods as offsets. This method allows widely used
case-cohort sampling to take advantage of ef-
ficient case-only estimators. Our contributions
also include an explicit formula of variance
estimates for this two-step procedure.

Scenario II: Augmented case-only (ACO) design with
controls drawn from the active treatment arm
only. This is a novel design motivated by vac-
cine trials, as we will elaborate next. Although
primarily driven by scientific rationale, this
design is of statistical interest, since only
three of the four strata formed by case-control
status and randomization arm are sampled. It
violates the critical identifiability assumption
of non-zero sampling probability for all strata
in two-phase sampling (Robins et al., 1994;
Breslow et al., 2003). The orthogonality be-
tween genotype and randomization arm has to
be exploited in order to remedy this anomaly.
We show that a similar two-step estimation
procedure as for Scenario I will identify all
parameters in a Cox model, and we show in

the simulations that the estimators are nearly
as efficient as those in Scenario I.

Scientifically, the motivation for selecting controls only
from the active treatment arm (the ACO design in Sce-
nario II) comes from studies on host genetics and immune
correlates in HIV vaccine trials. It is common to study
vaccine-specific immune responses in a pre-specified sample
of trial participants in the vaccine arm, as no vaccine-induced
immune responses are generated in the placebo arm. Case-
cohort sampling is commonly used in this setting (McElrath
et al., 2008). Take Li et al. (2014), e.g., if a genotype in the
FcγR gene is associated with varying vaccine protection in
the RV144 trial, it is useful to investigate whether specific
vaccine-induced immune responses are associated with such
genotype, in order to understand functionally why the vac-
cine effect varies by host genetics. Such relationship can only
be studied in the vaccine arm. In this sense, concentrating
controls in the vaccine arm is cost-effective when a pharma-
cogenetic study is a component of a systematic approach for
understanding treatment effect. Similar rationale applies to
high-throughput biomarker studies for better understanding
hormone effect in clinical trials in the Women’s Health Initia-
tive (Pitteri et al., 2009).

This article is organized as follows. In Section 2.1 and Sec-
tion 2.2, we review case-cohort sampling and case-only esti-
mators, respectively. The latter section brings new insights on
assumptions required for case-only estimators. In Section 2.3,
we show that case-only estimators can be built into a two-step
estimation procedure for the case-cohort design. The main
parameter of interest we illustrate throughout the article is
the genetic main effect. The asymptotic covariance matrix of
estimators resulting from the two-step procedure is derived.
Extending the results from Section 2.3, we show in Section 2.4
that sampling controls only in the active treatment arm is ade-
quate to estimate all Cox model parameters. For completeness
we briefly address the alternative ACO design and the nested
case-control sampling in Section 2.5. In Section 3 we compare
the efficiency of the proposed designs and estimation methods
in simulations, where the standard estimation procedure for
a case-cohort design with the same sample size is treated as
the benchmark. We present in Section 4 a data example with
the standard case-cohort sampling, and we compare standard
error estimates resulted from the proposed estimation proce-
dures to the original case-cohort methods. We close with a
discussion of the utility of the ACO design and some future
work.

2. Method

Consider a two-arm, placebo-controlled randomized preven-
tion trial in which participants were followed for evaluating
treatment effect on time to certain failure event. Let Z de-
note a binary treatment indicator taking the value 1 if the
participant is assigned to the active treatment arm, and 0
if assigned to the placebo arm. Let G denote the baseline
biomarker of interest, say an inherited genetic variant, and
let V be a set of pre-treatment variables to be adjusted in
risk association. Denote Y and C as the failure time and the
right-censoring time since randomization, respectively. Given
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Z, G, and V , C is assumed to be independent of Y . Data con-
sist of independent and identically distributed (iid) vectors
(Ti, �i, Zi, Gi, Vi), where Ti = min(Yi, Ci), �i = I(Yi ≤ Ci) for
i = 1 . . . n, and I(·) is the indicator function. Cases are de-
fined to be the participants who experienced the failure event
(� = 1) during follow-up. Using the usual counting process
notation, we define Ni(t) = I(Ti ≤ t) and Ri(t) = I(Ti ≥ t).

Let λ(t;G, Z, V ) denote the hazard of the failure event
occurring at time t for a subject with covariates (G, Z, V ).

Consider a proportional hazards model with gene-treatment
interaction (Cox, 1972)

λ(t;G, Z, V ) = λ0(t) exp(β1Gi + β2Zi + β3GiZi + β4Vi), (1)

where λ0(t) is a baseline hazard function. Denote by Xi =
(Gi, Zi, GiZi, Vi)

T the vector of baseline covariates included in
the regression model and by β = (β1, β2, β3, β4)

T the vector
of regression coefficients of interest. For the full cohort data,
an estimate of β can be obtained by solving the usual Cox
model score function (Cox, 1975),

U(β, t) =
n∑

i=1

t∫
0

{Xi − X̄(β, t)}dNi(t), (2)

where X̄(β, t) is the weighted mean of covariates at t, ex-
pressed as

X̄(β, t) =
∑n

i=1
Ri(t) exp(βTXi)Xi∑n

i=1
Ri(t) exp(βTXi)

. (3)

2.1. Standard Case-Cohort Sampling Design and
Estimation

The originally described case-cohort sampling design draws a
random subcohort and all additional participants who experi-
enced the clinical outcome (Prentice, 1986; Self and Prentice,
1988). With little loss of efficiency, the estimation procedures
for the case-cohort design modify (3) using a subset of the
entire cohort. Denote by S the random subcohort in the case-
cohort design. The Self-Prentice estimator used at-risk par-
ticipants in the subcohort (Self and Prentice, 1988),

X̂(β, t) =
∑

i∈S Ri(t) exp(βTXi)Xi∑
i∈S Ri(t) exp(βTXi)

, (4)

while the original Prentice estimator included one more ob-
servation, the event occurring at t. The difference of the two
estimators is negligible when the sample size is large. More
choices of (3) are available, such as the inverse-probability
weighting (IPW) method in survey data to improve efficiency

of case-cohort estimators (Binder, 1992; Barlow, 1994; Borgan
et al., 2000).

2.2. Case-Only Estimator for Gene-Treatment
Interaction and Subgroup Effects

The treatment effect parameters β2 and β3 in model (1) can
be estimated from data in cases only (Vittinghoff and Bauer,
2006; Dai et al., 2012), under suitable assumptions about
event rate and censoring mechanism. In our notation, the
probability of the treatment being z given an event occurring
at time t conditional on covariates (G, V ) can be expressed as

Pr(Z = z|T = t, � = 1, G, V ) = λ(t|Z = z, G, V )Pr(T ≥ t|Z = z, G, V )Pr(C ≥ t|Z = z, G, V )Pr(Z = z)∑
l
λ(t|Z = l, G, V )Pr(T ≥ t|Z = l, G, V )Pr(C ≥ t|Z = l, G, V )Pr(Z = l)

. (5)

Detailed derivation can be found in Dai et al. (2012). Equa-
tion (5) holds because of the independent censorship and the
orthogonality between Z and (G, V ). If the event is rare, i.e.,
Pr(T ≥ t|Z, G, V ) ≈ 1 for all t, and if the censoring time C is
independent of treatment Z given (G, V ), it follows that a sim-
ple logistic regression with an offset can estimate treatment
effect parameters,

log

{
Pr(Z = 1|T = t, � = 1, G, V )

Pr(Z = 0|T = t, � = 1, G, V )

}

= log

(
p

1 − p

)
+ γ1 + γ2G, (6)

where γ1 ≈ β2, γ2 ≈ β3, and p is the probability of a trial
participant being randomized to the treatment arm.

The models (1) and (6) can be more general than what is
presented here. For example, the interaction between Z and
V can be added into (1), perhaps also the interaction between
Z and t, a time-varying hazard ratio. Similar derivations will
lead to addition of V and t into (6) correspondingly.

Inspection of (5) and (6) sheds new insights on the assump-
tions. Arguably, the disease endpoint being rare and censoring
being independent of treatment can be restrictive. The former
assumption requires the cumulative probability of the event,
not just the event probability in any given risk set, is nearly
zero. In the context of binary outcomes and logistic regression,
analysis of asymptotic bias suggested that the disease preva-
lence needs to be smaller than the order of n−1/2 (Tchetgen
and Robins, 2010). This may work for prevention trials with
endpoints such as HIV infections and most cancers, but per-
haps not for therapeutic endpoints such as tumor response
rates. In the failure time setting, the cumulative disease prob-
ability is gradually increasing over time, and so the rare dis-
ease assumption is perhaps not as stringent as in the setting
of binary outcomes. This may explain that in the extensive
simulations conducted by Vittinghoff and Bauer (2006), case-
only estimators perform surprisingly well even with 20% cu-
mulative event probability. Strictly speaking, what is truly
required for derivation of (6) is

Pr(T ≥ t|Z = 1, G, V )

Pr(T ≥ t|Z = 0, G, V )
≈ 1,
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which is indeed less restrictive than the rare disease assump-
tion. Moreover, if G has no association with the failure time T

and Pr(T ≥ t|Z = 1, G, V )/Pr(T ≥ t|Z = 0, G, V ) is a function
of Z but not G, then estimation of the interaction will still
work even if the disease is not so rare, because the intercept
of (6) is affected in this case but not the slope.

Violation of censoring being independent of treatment
given covariates is more amenable. One can directly esti-
mate Pr(C ≥ t|Z = 1, G, V )/Pr(C ≥ t|Z = 0, G, V ) as a func-
tion of (t, G, V ) from the data, assuming independent censor-
ship. This quantity can be plugged into (6) as an offset to
remove any bias induced by differential censoring. Further-
more, what is truly required for deriving (6) is

Pr(C ≥ t|Z = 1, G, V )

Pr(C ≥ t|Z = 0, G, V )
≈ 1.

As long as G is not associated with C conditional on Z and
V and Pr(C ≥ t|Z = 1, G, V )/Pr(C ≥ t|Z = 0, G, V ) is not a
function of G, estimation of the interaction parameter in (6)
is not affected.

2.3. Scenario 1: Case-Cohort Estimation Incorporating
the Case-Only Estimators

Suppose a case-cohort sample has been drawn for measuring
genetic factors, including controls from both arms and possi-
bly stratified by arm and other baseline covariates. Let β̂2co

and β̂3co denote the case-only estimators derived from (6).
Plugging the case-only estimators into the Cox model (1),

λ(t;Z, G, V ) = λ0(t) exp(β1G + β̂2coZ + β̂3coGZ + β4V ).

(7)

The usual case-cohort estimation can be adapted to obtain
estimates of β1 and β4. For example, the estimator in Self
and Prentice (1988) can be obtained by tweaking the coxph

function in R as examplified in Therneau and Li (1999), and
adding the estimated offset β̂2coZ + β̂3coGZ. The estimated
λ0(t) can be obtained from the Breslow estimator based on
estimates of regression parameters as previously described
(Prentice, 1986; Self and Prentice, 1988).

The variance estimate of the resulting β̂1 and β̂4 has to
account for the fact that β̂2co and β̂3co were estimated first
by the data in cases. The derivation entails modification
of the Murphy–Topel variance estimate of two-step estima-
tors widely used in the econometrics literature (Murphy and
Topel, 1985). Here we provide a brief sketch, starting from
asymptotic expansions of (β̂2co, β̂3co) and (β̂1,β̂4).

Let γ = (β2, β3)
T and let βg = (β1, β4)

T . Let U1 = ∑
U1i

be the estimating equation for γ̂=(β̂2co,β̂3co)
T based on the

logistic model (6), and U1i is the iid contribution from the
ith case. For all controls, we assume U1i = 0. Suppose A1 =

lim− 1
n
∂U1/∂γ. By first-order Taylor expansion at γ,

1√
n
U1 = A1

√
n(γ̂ − γ) + op(1).

The asymptotic linear expansion of the case-cohort estima-
tor β̂g after plugging in γ̂ requires some algebra, an example
of which is provided in Section 2.3.1 next. Suppose U2 is
the estimating equation for β̂g, which it can be written as
its asymptotically equivalent term

∑
Wi, the sum of the iid

score contributions. We define Wi = 0 for controls that are not
included in the case-cohort sample. Let A2 = lim− 1

n
∂U2/∂βg

and A3 = lim− 1
n
∂U2/∂γ. The first-order Taylor expansion of

U2 at both βg and γ yields

1√
n
U2 = 1√

n

∑
Wi + op(1)

= A2

√
n(β̂g − βg) + A3

√
n(γ̂ − γ) + op(1).

By the central limit theorem and under mild regularity con-
ditions,

√
n(γ̂ − γ) →d N(0, �1), where �1 is its asymptotic

variance matrix E(A−1
1 U1iU

T
1iA

−1
1 ), the robust variance

estimator. Similarly,
√

n(β̂g − βg) →d N(0, �2), where the-

asymptotic variance matrix �2 = E{A−1
2 (WiW

T
i +

A3A
−1
1 U1iU

T
1iA

−1
1 AT

3 − A3A
−1
1 U1iW

T
i −

WiU
T
1iA

−1
1 AT

3)A−1
2 }.

2.3.1. The Self-Prentice estimator. The asymptotic lin-
ear expansions for various case-cohort estimators were pre-
sented in respective works (Lin and Wei, 1989; Binder, 1992;
Lin and Ying, 1993; Lin, 2000; Borgan et al., 2000). Here,
we write out the expressions for the Self-Prentice estimator
and leave the survey estimator using IPW to the Appendix.
Both estimators are implemented in the R packages cch and
Survey, two popular softwares for analyzing case-cohort data.

In our notation, the estimating function for the Self-
Prentice estimator after plugging in the case-only estimators
(β̂2co, β̂3co) can be written as

U2 =
∑

U2i =
∑

�i

{
X2i − S(1)(βg, Ti; γ̂)

S(0)(βg, Ti; γ̂)

}
, (8)

where X2i = (Gi, Vi)
T , X1i = (Zi, GiZi)

T , and

S(r)(βg, Ti; γ̂) = 1

nsc

∑
i∈S

Ri(t) exp(γ̂TX1i + βT
g X2i)X

⊗r
2i

(9)

for r = 0, 1, where nsc is the sample size of the random subco-
hort.

The asymptotic linearization of the Self-Prentice estimator
can be expressed as A−1

2 Wi (Lin and Wei, 1989; Lin and Ying,



34 Biometrics, March 2016

1993), where A2 = lim − (1/n)(∂U2/∂βg),

Wi = U2i −
n∑

l=1

�lRi(Tl)I(i ∈ S) exp(γ̂TX1i + βT
g X2i)

nsc(βg, Tl; γ̂)

×
{

X2i − S(1)(βg, Tl; γ̂)

S(0)(βg, Tl; γ̂)

}
.

2.4. Scenario II: Augmented Case-Only (ACO) Design
for Vaccine Trials

In the proposed ACO sampling design, the genotype is as-
certained for a random subcohort from the active treatment
arm only, denoted by S1, and all additional participants who
developed the clinical outcome outside of S1. The set of sam-
pled participants is, therefore, defined by {i : �i = 1 or i ∈
S1}. Though the controls from the placebo arm are not sam-
pled, we show next that a similar 3-step procedure estimates
all parameters in the Cox model (1).

First, case-only estimators of β2 and β3 are obtained from
(6). Second, based on the case-cohort sample in the active
treatment arm, we estimate the parameters α = (α1, α2)

T in
the Cox model

λ(t;Z = 1, G, V ) = λ∗
0(t) exp(α1G + α2V ) (10)

by standard case-cohort methods (Prentice, 1986; Self and
Prentice, 1988; Lin and Ying, 1993; Barlow, 1994), where
parameterization in models (1) and (10) dictate that α1 =
β1 + β3, α2 ≡ β4, and λ∗

0(t) = λ0(t) exp(β2). The estimated
λ∗
0(t) can be obtained from the Breslow estimator based on

the estimate of α as previously described (Prentice, 1986;
Self and Prentice, 1988). Third, we compute the estimators
of (β1, λ0(t)) using the estimators obtained in previous steps
as follows:

β̂1 = α̂1 − β̂3

λ̂0(t) = λ̂∗
0(t)

exp(β̂2)
.

The full set of parameters in a Cox model are, therefore,
estimated.

Since, the estimation of (α̂1, α̂2) and (β̂2co, β̂3co) both used
data from cases in the active treatment arm, the two sets of
estimators are correlated. We estimate, the covariance matrix
by the general estimating equation theory. As shown in Sec-
tion 2.3, both estimators can be written as asymptotically
linear estimators (Newey and Powell, 1990; Robins et al.,
1994), that is, their asymptotic distribution can be expressed
as n−1/2

∑n

i=1
Bi + op(1), where Bi = A−1Ui is the iid influ-

ence function from each subject, A is the expected informa-
tion matrix and Ui is iid estimating function. Expressions of
A and Ui for (α̂1, α̂2) and (β̂2co, β̂3co) follow those in Section
2.3. Suppose the influence function for the case-cohort estima-
tor (α̂1, α̂2) is B1, and suppose the influence function for the
case-only estimator (β̂2, β̂3) is B2. Then by the central limit
theorem, the covariance between (α̂1, α̂2) and (β̂2, β̂3) can be
estimated as

∑
BT

1iB2i.

2.4.1. The alternative ACO design and nested case-control
design. For completeness, we briefly address an alternative
ACO design, in which the subcohort is instead taken only from
the placebo arm. Such design may be merely of theoretical
interest to compare its efficiency to the ACO discussed in
Section 2.4, as we will show in simulations. The estimation is
simplified: the first step is the same, and in the second step β1,
β4 and λ0 are directly estimated using the case-cohort data
in the placebo arm.

Frequently used in the biomarker research, the nested case-
control design randomly selects a fraction of controls in the
risk set at each failure time. This design is particularly suit-
able for time-varying biomarkers. Little added efficiency can
be realized when selecting more than 5 controls per case
(Breslow et al., 1983). Our augmented case-only design can
be similarly modified by using all cases plus a nested case-
control sample from one of the two arms. The estimation
procedure follows closely to those in Section 2.2, but using
the conditional logistic regression or the IPW partial like-
lihood method in the second step (Goldstein and Langholz,
1992; Samuelsen, 1997), possibly with stratification (Langholz
and Borgan, 1995). The asymptotic linearization of these es-
timators required for estimating the covariance matrix can be
found in the respective literature.

3. Simulation

The performance of the proposed estimation and designs is
evaluated in a simulation study with 1000 simulated datasets,
using the standard estimation for the case-cohort design and
the full cohort analysis as benchmarks. For Scenario I where
standard case-cohort sampling has taken place, the interest is
to evaluate how much efficiency is gained for the genetic main
effect when we incorporate the case-only estimators into case-
cohort estimation. For Scenario II, the interest is to compare
efficiency of the main effect estimator under different designs,
adding controls in the active treatment arm only or adding
controls by other ways, all of which use a similar hybrid esti-
mation procedure that incorporated the case-only estimator.

Across all scenarios the sample size in the trial is 3000, and
the participants are randomized in a 1:1 ratio to the active
treatment arm or the placebo arm. The genotype G is as-
sumed to be depending on V , a baseline covariate following
a Bernoulli distribution with rate 0.5, as logit{Pr(G = 1)} =
−1.6 + 1.4V . The rate of variant allele is around 0.3. The cu-
mulative probability of incident cases is set to be around 0.05.
The event time is exponentially distributed, with a constant
baseline hazard function of λ0(t) = 1. The true regression pa-
rameters associated with the set of covariates are listed in
Table 1 and 2, with the parameter associated with V set to
log(1.5). The censoring time is exponentially distributed with
mean 1, independent of the event time. Administrative cen-
soring is set such that the cumulative event rate is around 5%.
The ACO designs consist of a random subcohort of varying
sample sizes in the active treatment arm only or in the placebo
arm only, plus all cases outside the subcohort. The standard
case-cohort design was devised to have almost identical sam-
ple size as the ACO designs in each simulated dataset, though
the subcohort is drawn randomly from the entire trial popu-
lation.
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Table 1
Small-sample properties of estimators for the proposed designs and estimations in the Cox model (1) with a varying

subcohort fraction

β1 = β2 = β3 = 0 β1 = −β2 = β3 = log 1.5 β1 = −β2 = β3 = log 2

SC Fraction β1a β1b β1c β2 β3 β1a β1b β1c β2 β3 β1a β1b β1c β2 β3

10% Bias 0 0.005 −0.004 −0.006 −0.012 0.016 0.025 0.010 0.001 −0.017 0.020 0.034 0.012 0.001 −0.014
Var 0.081 0.084 0.083 0.043 0.123 0.073 0.076 0.074 0.058 0.110 0.070 0.072 0.071 0.074 0.116

V̂ar 0.083 0.086 0.083 0.041 0.124 0.071 0.076 0.071 0.054 0.112 0.069 0.074 0.068 0.072 0.121
CP 0.954 0.960 0.947 0.957 0.959 0.954 0.954 0.940 0.947 0.961 0.953 0.956 0.945 0.959 0.965

15% Bias −0.009 −0.009 −0.014 −0.003 −0.005 0.010 0.013 0.003 0.006 −0.014 0.016 0.023 0.008 0.003 −0.010
Var 0.077 0.082 0.079 0.041 0.127 0.066 0.071 0.069 0.056 0.110 0.064 0.069 0.065 0.074 0.117

V̂ar 0.076 0.080 0.077 0.041 0.125 0.065 0.069 0.065 0.054 0.112 0.063 0.068 0.062 0.072 0.121
CP 0.947 0.950 0.946 0.959 0.957 0.960 0.955 0.938 0.951 0.964 0.954 0.949 0.943 0.956 0.964

20% Bias −0.012 −0.010 −0.014 −0.002 −0.003 0.006 0.011 0.002 0.006 −0.011 0.011 0.019 0.006 0.005 −0.011
Var 0.076 0.081 0.078 0.041 0.131 0.065 0.071 0.067 0.057 0.112 0.062 0.068 0.063 0.074 0.118

V̂ar 0.073 0.077 0.074 0.041 0.125 0.061 0.066 0.062 0.054 0.112 0.059 0.065 0.059 0.072 0.120
CP 0.945 0.946 0.944 0.958 0.951 0.953 0.947 0.939 0.955 0.960 0.949 0.943 0.939 0.950 0.961

25% Bias −0.010 −0.009 −0.009 0.002 −0.005 0.010 0.015 0.008 0.011 −0.018 0.013 0.021 0.010 0.013 −0.017
Var 0.073 0.078 0.074 0.041 0.130 0.062 0.067 0.063 0.055 0.108 0.059 0.065 0.060 0.069 0.113

V̂ar 0.071 0.075 0.072 0.041 0.125 0.059 0.064 0.060 0.054 0.112 0.057 0.063 0.057 0.072 0.120
CP 0.954 0.950 0.947 0.956 0.954 0.956 0.945 0.948 0.958 0.960 0.954 0.943 0.947 0.954 0.961

Notation: SC Fraction, subcohort sampling fraction of the entire cohort; CP, 95% coverage probability; β1a, β1b and β1c, the
Self-Prentice estimator used to estimate β1 in the standard case-cohort design incorporating the case-only estimators, the
augmented case-only design while sampling controls from the active treatment arm only, or the augmented case-only design
with controls from the placebo arm only.

Table 1 shows the small-sample properties of the proposed
hybrid estimation procedures for incorporating case-only es-
timators into the case-cohort estimation (β1a), and for the
ACO design sampling controls from the active arm only (β1b)
or from the placebo arm only (β1c). The Self-Prentice esti-
mator was used in the second step for all three designs. The
IPW estimator performs very closely to the Self-Prentice es-
timator and, thus, is omitted from this table and Table 2.
Under the null hypothesis and under the moderate effect size
for all three parameters, all estimators appear to be consis-
tent as the biases of the estimators are all small relative to
their empirical variability. The ACO design with controls from
active arm tends to have bigger bias under the alternative.
The estimated variances agree well with the empirical vari-
ances, and the coverage probabilities of 95% confidence inter-
vals behave properly. Similar performance was observed for
the simulations with a qualitative interaction model (Supple-
mentary materials). We conclude that the hybrid estimation
procedures detailed in Section 2.3 and 2.4 work well in the
simulated datasets.

Table 2 shows the efficiency of the standard case-cohort de-
sign (with or without incorporating the case-only estimators)
and the two ACO designs, relative to the full cohort analysis.
The relative efficiency is calculated as the ratio of the sample
variance of parameters estimated from the two designs. The
results suggest that all designs incorporating case-only esti-
mators lead to a major efficiency gain for all three parameters
relative to the standard case-cohort estimation. The efficiency
gains on β2 and β3 are not surprising as they are the case-only
estimators (Vittinghoff and Bauer, 2006). More interestingly,

over 10% efficiency gain is realized for the genetic main ef-
fect β1 when the case-only estimators are incorporated into
the case-cohort analysis (Scenario I), or when the random
sampling fraction is 5-15% in the ACO designs (Scenario
II). Sampling controls from both arms appears to outperform
sampling controls from one arm only in estimating the genetic
main effect: compared to the standard case-cohort design and
analysis, the ACO design with controls from the active arm
gains 5-15% efficiency due to the use of the case-only estima-
tor, depending on the subcohort fraction; additional 5-10%
can be gained by allocating the controls in both arms, a de-
sign benefit given the case-only estimator has been exploited.
The ACO design with controls from the placebo arm only
outperforms the ACO design with controls from the active
arm only, presumably because the former has a simpler esti-
mation procedure. However, when potential systematic stud-
ies such as immune correlates are of interest, the ACO design
with controls from the active treatment arm may still be more
cost-effective.

4. Data Application

We show a pedagogical example in HIV vaccine trials with a
standard case-cohort sampling scheme. We analyzed the case-
cohort data in four ways: standard case-cohort estimation,
case-cohort estimation incorporating the case-only estimators
(Section 2.3), and augmenting case-only data with controls
from the vaccine arm only (Section 2.4). All estimators are
compared to the standard case-cohort analysis in terms of
standard errors for the genetic main effect.
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Table 2
The efficiency of the proposed designs and estimations in the Cox model (1) with varying subcohort fraction, when compared

to the full cohort analysis

β1 = β2 = β3 = β4 = 0 β1 = −β2 = β3 = log 1.5 β1 = −β2 = β3 = log 2

SC Fraction β1 β2 β3 β1 β2 β3 β1 β2 β3

10% Case-cohort 0.659 0.678 0.644 0.626 0.744 0.625 0.605 0.787 0.641
Case-cohort + case-only 0.812 0.995 1.001 0.775 0.992 1.017 0.761 0.997 1.025
ACO active 0.780 0.995 1.001 0.743 0.992 1.017 0.735 0.997 1.025
ACO placebo 0.788 0.995 1.001 0.760 0.992 1.017 0.751 0.997 1.025

15% Case-cohort 0.767 0.765 0.738 0.737 0.806 0.707 0.723 0.834 0.726
Case-cohort + case-only 0.894 0.993 0.993 0.874 0.986 1.003 0.865 0.990 1.013
ACO active 0.839 0.993 0.993 0.813 0.986 1.003 0.797 0.990 1.013
ACO placebo 0.869 0.993 0.993 0.846 0.986 1.003 0.843 0.990 1.013

20% Case-cohort 0.820 0.856 0.789 0.808 0.883 0.777 0.792 0.908 0.793
Case-cohort + case-only 0.920 0.994 0.984 0.907 0.982 0.989 0.899 0.988 1.002
ACO active 0.866 0.994 0.984 0.836 0.982 0.989 0.816 0.988 1.002
ACO placebo 0.897 0.994 0.984 0.885 0.982 0.989 0.881 0.988 1.002

25% Case-cohort 0.871 0.882 0.839 0.854 0.906 0.827 0.839 0.930 0.840
Case-cohort + case-only 0.948 0.998 0.984 0.931 0.983 0.990 0.926 0.990 1.004
ACO active 0.883 0.998 0.984 0.855 0.983 0.990 0.839 0.990 1.004
ACO placebo 0.924 0.998 0.984 0.913 0.983 0.990 0.914 0.990 1.004

Notation: SC Fraction, subcohort sampling fraction of the entire cohort; Case-cohort, the standard case-cohort design and
estimation with controls from both arms; Case-cohort + case-only, the case-cohort design incorporating the case-only esti-
mators; ACO active, the augmented case-only design with controls from the active arm only; ACO placebo, the augmented
case-only design with controls from the placebo arm only.

The Step trial, a test-of-concept study that evaluates the
protection of a cell-mediated immune vaccine, was prema-
turely terminated because the risk of HIV infection was evi-
dently elevated in the vaccine arm compared to the placebo
arm (Buchbinder et al., 2008). In order to understand this
disappointing result, a host genetics study was conducted to
assess the association of several immune genes, namely GM,
KM, and FcγR, with HIV infection and the vaccine effect. A
case-cohort sample including 25% of study participants was
pre-selected for storing blood samples, together with blood
samples taken later from incident cases, and measuring im-
munogenecity (McElrath et al., 2008). The analysis of this
genetic study has been reported elsewhere, and no signifi-
cant gene-treatment interaction was found possibly due to the
small sample size (Pandey et al., 2013). Following the strat-
egy in Pandey et al. (2013), all four analyses were restricted to
white males and the same set of covariates were adjusted for.

Table 3 shows the estimates for various designs and esti-
mation procedures for the genetic variant in FcγR-2, coded
by an additive genetic score (0/1/2). In the last three analy-
ses, β2 and β3 were estimated by the case-only method, and
thus all have smaller standard errors than the standard case-
cohort estimates. The genetic main effect β1 was estimated
using Self-Prentice estimator in all analysis. The standard er-
ror of the ACO using only 60 controls from the vaccine arm is
similar to that from the standard case-cohort estimation with
all 169 controls. The standard error of the case-cohort analy-
sis incorporating case-only estimators is even smaller because
more controls were used.

Scientifically speaking, it is more cost-effective to store biol-
ogy specimens of samples in the vaccine arm. If there was any
genotype showing significant interactions with the vaccine, in-
vestigators could directly correlate the genotype with immune
responses using samples in the vaccine arm (McElrath et al.,

Table 3
Comparison of various study designs and estimation procedures in a case-cohort genetic study in the STEP trial

# cases # controls β̂1 (SE) β̂2 (SE) β̂3 (SE)

Case-cohort 56 169 0.17 (0.40) 1.05 (0.66) −0.32 (0.51)
Case-only 56 0 − 0.63 (0.49) −0.26 (0.38)
Case-cohort + case-only 56 169 0.19 (0.31) 0.63 (0.49) −0.26 (0.38)
ACO active 56 60 0.24 (0.38) 0.63 (0.49) −0.26 (0.38)

Notation: Case-cohort + case-only, the case-cohort design incorporating the case-only estimators; ACO active, the augmented
case-only design using controls from the vaccine arm



Augmented Case-Only Designs 37

2008), to further explore the mechanism of differential vaccine
protection.

5. Discussion

In prevention clinical trials with failure time endpoints, we in-
vestigated several ways of augmenting the case-only sampling
design for studying the influence of pre-treatment biomarkers,
such as genotypes, on treatment effect and the risk of the fail-
ure event. The goal is to be able to estimate all parameters
in a Cox model, not just subgroup effects and the interac-
tion, so that absolute risk can be computed. One way is to
incorporate the case-only estimators into case-cohort estima-
tion (Scenario I). We showed that such estimators and their
variance estimates can be obtained by a hybrid estimation
procedure. Motivated by vaccine trials, we also propose an
augmented case-only design which builds on the efficient case-
only method and adds controls from the active treatment arm
only (Scenario II). Following a similar hybrid procedure, we
showed that all parameters in a Cox model and the absolute
risk can be estimated. Simulation results showed a sizable ef-
ficiency gain in estimating the genetic main effect over the
standard case-cohort design, because of incorporating case-
only estimators and exploiting gene-treatment independence.
It is worthwhile to reiterate that the motivation of (Scenario
II) is driven by scientific and cost-effective use of vaccine trial
resources, not estimation efficiency, as the simulation showed
that allocating controls in both arms achieved a better effi-
ciency.

The assumptions required by case-only estimators can be
restrictive. The rare disease and nondifferential censoring be-
tween arms may exclude many cancer therapeutic trials. The
applications we consider in this article are primarily phase III
prevention trials with a rare endpoint, e.g., HIV vaccine tri-
als. These trials enroll healthy participants and evaluate the
prevention effect of certain modality which should not induce
severe adverse effects.

The benefit of concentrating controls in the active treat-
ment arm is to have a bigger pool of active treatment re-
cipients for systematically measuring both genotypes and a
comprehensive profile of biological mediators. Ancillary stud-
ies of this nature are increasingly common in clinical trials
(Pitteri et al., 2009; Li et al., 2014). The controls can be sam-
pled from a random subcohort or sampled repeatedly from
risk sets as in nested case-control sampling. For the ACO de-
sign, the efficiency of the estimators of the genetic main effect
and the covariate can be further improved by using more ef-
ficient estimators of α1 and α2 in (10), e.g., the method of
efficient score equations (Nan, 2004), though the variance of
the resulting two-step estimators can be difficult to derive.

In the same vein, ACO designs can be devised for clinical
trials with binary endpoints, where logistic regression models
are used for analysis. For rare endpoints, the two-step esti-
mation procedure proposed in this article applies with minor
modification. The efficiency comparison with respect to the
standard logistic regression under case-control sampling de-
sign is a bit complicated, since gene-treatment independence
can also be exploited in the maximum likelihood estimation
(Dai et al., 2009). Furthermore, it is not clear whether the
ACO design can be extended to common endpoints, where the

case-only estimator is no longer applicable. Use of additive in-
teraction is another topic of interest, as it may be better to in-
form public health impact of gene-treatment interaction and
the biological inter-dependence. Gene-treatment interaction
has been exploited to improve efficiency (Han et al., 2012).
But, it is not clear whether one can estimate parameters in
an additive interaction model using a ACO design. We will
pursue these topics in future work.

6. Supplementary Materials

Web Table referenced in Section 3 and the sample code to im-
plement the estimation method are available with this article
at the Biometrics website on Wiley Online Library.

Acknowledgements

This work was supported by the National Institutes of Health
grants P01 CA53996, R01 HL114901, R01 HG006164, R01
ES017030 and R21 HL121347. The authors thanks two re-
viewers and the Associate Editor for their constructive com-
ments.

References

Barlow, W. E. (1994). Robust variance estimation for the case-
cohort design. Biometrics 50, 1064–1072.

Binder, D. A. (1992). Fitting Cox’s proportional hazards models
from survey data. Biometrika 79, 139–47.

Borgan, O., Langholz, B., Samuelsen, S. O., Goldstein, L., and
Pogoda, J. (2000). Exposure stratified case-cohort designs.
Lifetime Data Analysis 6, 39–58.

Breslow, N. E., Lubin, J. H., Marek, P., and Langholz, B. (1983).
Multiplicative models and cohort analysis. Journal of the
American Statistical Association 78, 1–12.

Breslow, N. E., Robins, J. M., and Wellner, J. A. (2003). Large
sample theory for semiparametric regression models with
two-phase, outcome-dependent sampling. Annals of Statis-
tics 31, 1110–1139.

Buchbinder, S. P., Mehrotra, D. V., Duerr, A., Fitzgerald, D. W.,
Mogg, R., Li, D., et al. (2008). Efficacy assessment of a cell-
mediated immunity hiv-1 vaccine (the step study): A double-
blind, randomised, placebo-controlled, test-of-concept trial.
Lancet 372, 1881–1893.

Charlab, R. and Zhang, L. (2013). Pharmacogenomics: Historical
persective and current status. Methods in Molecular Biology
1015, 3–22.

Cox, D. R. (1972). Regression models and life tables (with discus-
sion). Journal of the Royal Statistical Society: Series B 34,
187–220.

Cox, D. R. (1975). Partial likelihood. Biometrika 62, 269–276.
Dai, J. Y., Kooperberg, C., LeBlanc, M., and Prentice, R. L. (2012).

Two-stage testing procedures with independent filtering for
genome-wide gene-environment interaction. Biometrika 99,
929–944.

Dai, J. Y., LeBlanc, M., and Koopberg, C. (2009). Semiparametric
estimation exploiting covariate independence in two-phase
randomized clinical trials. Biometrics 65, 178–187.

Dai, J. Y., Li, S. S., and Gilbert, P. B. (2014). Case-only meth-
ods for competing risks models with application to assessing
differential vaccine efficacy by viral and host genetics. Bio-
statistics 15(1), 196–203.

Dai, J. Y., Logsdon, B. A., Huang, Y., Hsu, L., Reiner, A. P.,
Prentice, R. L., et al. (2012). Simultaneously testing for



38 Biometrics, March 2016

marginal genetic association and gene-environment interac-
tion. American Journal of Epidemiology 176, 164–173.

Evans, W. E. and McLeod, H. L. (2003). Pharmacogenomics- drug
disposition, drug targets, and side effects. The New England
Journal of Medicine 348, 538–549.

Gail, M. H., Brinton, L. A., Byar, D. P., Corle, D. K., Green, S. B.,
Schairer, C., et al. (1989). Projecting individualized proba-
bilities of developing breast cancer for while females who are
being examined annually. Journal of the National Cancer
Institute 81, 1879–1886.

Goldstein, L. and Langholz, B. (1992). Asymptotic theory for
nested case-control sampling in the cox regression model.
Annals of Statistics 20, 1903–1928.

Han, S. S., Rosenberg, P. S., Garcia-Closas, M., Figueroa, J. D.,
Silverman, D., Chanock, S. J., et al. (2012). Likelihood ratio
test for detecting gene (g)-environment (e) interactions un-
der an additive risk model exploiting g-e independence for
case-control data. American Journal of Epidemiology 176,
1060–7.

Janes, H., Pepe, M. S., Bossuyt, P. M., and Barlow, W. E. (2011).
Measuring the performance of markers for guiding treatment
decisions. Annals of Internal Medicine 154, 253–259.

Langholz, B. and Borgan, Y. (1995). Counter-matching: a stratified
nested case-control sampling method. Biometrika 82, 69–79.

Langholz, B. and Thomas, D. C. (1990). Nested case-control and
case-cohort methods of sampling from a cohort: a critical
comparison. American Journal of Epidemiology 131, 169–
176.

Li, S. S., Gilbert, P. B., Tomaras, G. D., Kijak, G., Ferrari, G.,
Thomas, R., et al. (2014). Fcgr2c polyporphisms associate
with hiv-1 vaccine protection in rv144 trial. Cancer Epidemi-
ology, Biomarkers & Prevention 124, 3879–3890.

Lin, D. Y. (2000). On fitting cox’s proportional hazards models to
survey data. Biometrika 87, 37–47.

Lin, D. Y. and Wei, L. J. (1989). The robust inference for the cox
proportional hazards model. Journal American Statistical
Association 84, 1074–1078.

Lin, D. Y. and Ying, Z. (1993). Cox regression with incomplete
covariate measurements. Journal American Statistical As-
sociation 88, 1341–1349.

McElrath, M. J., De Rosa, S. C., Moodie, Z., Dubey, S., Kierstead,
L., Janes, H., et al. (2008). Hiv-1 vaccine-induced immu-
nity in the test-of-concept step study: a case-cohort analysis.
Lancet 372, 1894–1905.

Murphy, K. M. and Topel, R. H. (1985). Estimation and inference
in two-step econometric models. Journal of Business & Eco-
nomic Statistics 3, 370–379.

Nan, B. (2004). Efficient estimation for case-cohort studies. Cana-
dian Journal of Statistics 32, 403–419.

Newey, W. K. and Powell, J. (1990). Efficient estimation of lin-
ear and type i censored regression models under conditional
quantile restrictions. Econometric Theory 6, 295–317.

Pandey, J. P., Namboodiri, A. M., Bu, S., Tapsoba, J. D., Sato, A.,
and Dai, J. Y. (2013). Immunoglobulin genes and the acqui-
sition of hiv infection in a randomized trail of recombinant
adenovirus hiv vaccine. Virology 441, 70–4.

Pitteri, S. J., Hanash, S. H., Aragaki, A., Amon, L. M., Chen, L.,
Buson, T. B., et al. (2009). Postmenopausal estrogen and
progestin effects on the serum proteome. Genome Medicine
1(12), 121.

Prentice, R. L. (1986). A case-cohort design for epidemiologic co-
hort studies and disease prevention trials. Biometrika 73,
1–11.

Prentice, R. L. and Breslow, N. E. (1978). Retrospective studies
and failure time models. Biometrika 65, 153–158.

Prentice, R. L., Huang, Y., Hinds, D. A., Peters, U., Cox, D. R.,
Beilharz, E., et al. (2010). Variation in the fgfr2 gene and
the effect of a low-fat dietary pattern on invasive breast
cancer. Cancer Epidemiology, Biomarkers & Prevention 19,
74–9.

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of
regression coefficients when some regressors are not always
observed. Journal of American Statistical Association 89,
846–866.

Samuelsen, S. O. (1997). A pseudolikelihood approach to analysis
of nested case-control studies. Biometrika 84, 379–394.

Self, S. G. and Prentice, R. L. (1988). Asymptotic distribution the-
ory and efficiency results for case-cohort studies. Annals of
Statistics 16, 64–81.

Tchetgen, E. J. and Robins, J. (2010). The semiparametric case-
only estimator. Biometrics 66, 1138–1144.

Therneau, T. M. and Li, H. (1999). Computing the cox model for
case-cohort designs. Lifetime Data Analysis 5, 99–112.

Thomas, D. C. (1977). Addendum to “methods of cohort analy-
sis: appraisal by application to asbestos mining”. Journal of
Royal Statistical Society, Serial A 140, 483–485.

Vittinghoff, E. and Bauer, D. C. (2006). Case-only analysis of
treatment-covariate interactions in clinical trials. Biometrics
62, 769–776.

Weinshilboum, R. and Wang, L. (2004). Pharmacogenomics: bench
to bedside. Nature Reviews Drug Discovery 3, 739–748.

Received November 2014. Revised July 2015. Accepted July
2015.

Appendix

The asymptotic linear expansion of the IPW estimator for
case-cohort sampling

For computing the expected covariate values at each event
time, those at-risk cases occurring outside of the random sub-
cohort can be used with proper sampling weights. Specifically,
in estimating function (8), the average term (9) is replaced by

S(r)(βg, Ti) = 1

n

∑
i∈S∪D

1

πi

Ri(t) exp(γ̂TX1i + βT
g X2i)X

⊗r
2i ,

where

πi =

⎧⎨
⎩

∑
I(�j=0,j∈S)∑

I(�j=0)
if i ∈ S and �i = 0

1 if i ∈ D
,

and D is the set of cases.
The asymptotic expansion for the survey estimator using

the inverse probability weights is modified as B2i = A−1
2 Wi,

where A2 = lim − (1/n)(∂U2/∂βg), and

Wi = U2i −
∑
l∈S∪D

1
πl

�lRi(Tl)I(i ∈ S ∪ D) exp(γ̂TX1i + βT
g X2i)

nS(0)(βg, Tl; γ̂){
X2i − S(1)(βg, Tl; γ̂)

S(0)(βg, Tl; γ̂)

}
.

The computation of the covariance matrix of β̂g follows
similarly as in Section 2.3.


